x86, ticketlock: Collapse a layer of functions
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10  * Your basic SMP spinlocks, allowing only a single CPU anywhere
11  *
12  * Simple spin lock operations.  There are two variants, one clears IRQ's
13  * on the local processor, one does not.
14  *
15  * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
16  *
17  * (the type definitions are in asm/spinlock_types.h)
18  */
19
20 #ifdef CONFIG_X86_32
21 # define LOCK_PTR_REG "a"
22 #else
23 # define LOCK_PTR_REG "D"
24 #endif
25
26 #if defined(CONFIG_X86_32) && \
27         (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
28 /*
29  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
30  * (PPro errata 66, 92)
31  */
32 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
33 #else
34 # define UNLOCK_LOCK_PREFIX
35 #endif
36
37 /* How long a lock should spin before we consider blocking */
38 #define SPIN_THRESHOLD  (1 << 15)
39
40 #ifndef CONFIG_PARAVIRT_SPINLOCKS
41
42 static __always_inline void __ticket_lock_spinning(struct arch_spinlock *lock,
43                                                         __ticket_t ticket)
44 {
45 }
46
47 static __always_inline void ____ticket_unlock_kick(struct arch_spinlock *lock,
48                                                          __ticket_t ticket)
49 {
50 }
51
52 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
53
54
55 /*
56  * If a spinlock has someone waiting on it, then kick the appropriate
57  * waiting cpu.
58  */
59 static __always_inline void __ticket_unlock_kick(struct arch_spinlock *lock,
60                                                         __ticket_t next)
61 {
62         if (unlikely(lock->tickets.tail != next))
63                 ____ticket_unlock_kick(lock, next);
64 }
65
66 /*
67  * Ticket locks are conceptually two parts, one indicating the current head of
68  * the queue, and the other indicating the current tail. The lock is acquired
69  * by atomically noting the tail and incrementing it by one (thus adding
70  * ourself to the queue and noting our position), then waiting until the head
71  * becomes equal to the the initial value of the tail.
72  *
73  * We use an xadd covering *both* parts of the lock, to increment the tail and
74  * also load the position of the head, which takes care of memory ordering
75  * issues and should be optimal for the uncontended case. Note the tail must be
76  * in the high part, because a wide xadd increment of the low part would carry
77  * up and contaminate the high part.
78  */
79 static __always_inline void arch_spin_lock(struct arch_spinlock *lock)
80 {
81         register struct __raw_tickets inc = { .tail = 1 };
82
83         inc = xadd(&lock->tickets, inc);
84
85         for (;;) {
86                 unsigned count = SPIN_THRESHOLD;
87
88                 do {
89                         if (inc.head == inc.tail)
90                                 goto out;
91                         cpu_relax();
92                         inc.head = ACCESS_ONCE(lock->tickets.head);
93                 } while (--count);
94                 __ticket_lock_spinning(lock, inc.tail);
95         }
96 out:    barrier();      /* make sure nothing creeps before the lock is taken */
97 }
98
99 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
100 {
101         arch_spinlock_t old, new;
102
103         old.tickets = ACCESS_ONCE(lock->tickets);
104         if (old.tickets.head != old.tickets.tail)
105                 return 0;
106
107         new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
108
109         /* cmpxchg is a full barrier, so nothing can move before it */
110         return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
111 }
112
113 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
114 {
115         __ticket_t next = lock->tickets.head + 1;
116
117         __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
118         __ticket_unlock_kick(lock, next);
119 }
120
121 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
122 {
123         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
124
125         return tmp.tail != tmp.head;
126 }
127
128 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
129 {
130         struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
131
132         return (__ticket_t)(tmp.tail - tmp.head) > 1;
133 }
134 #define arch_spin_is_contended  arch_spin_is_contended
135
136 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
137                                                   unsigned long flags)
138 {
139         arch_spin_lock(lock);
140 }
141
142 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
143 {
144         while (arch_spin_is_locked(lock))
145                 cpu_relax();
146 }
147
148 /*
149  * Read-write spinlocks, allowing multiple readers
150  * but only one writer.
151  *
152  * NOTE! it is quite common to have readers in interrupts
153  * but no interrupt writers. For those circumstances we
154  * can "mix" irq-safe locks - any writer needs to get a
155  * irq-safe write-lock, but readers can get non-irqsafe
156  * read-locks.
157  *
158  * On x86, we implement read-write locks as a 32-bit counter
159  * with the high bit (sign) being the "contended" bit.
160  */
161
162 /**
163  * read_can_lock - would read_trylock() succeed?
164  * @lock: the rwlock in question.
165  */
166 static inline int arch_read_can_lock(arch_rwlock_t *lock)
167 {
168         return lock->lock > 0;
169 }
170
171 /**
172  * write_can_lock - would write_trylock() succeed?
173  * @lock: the rwlock in question.
174  */
175 static inline int arch_write_can_lock(arch_rwlock_t *lock)
176 {
177         return lock->write == WRITE_LOCK_CMP;
178 }
179
180 static inline void arch_read_lock(arch_rwlock_t *rw)
181 {
182         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
183                      "jns 1f\n"
184                      "call __read_lock_failed\n\t"
185                      "1:\n"
186                      ::LOCK_PTR_REG (rw) : "memory");
187 }
188
189 static inline void arch_write_lock(arch_rwlock_t *rw)
190 {
191         asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
192                      "jz 1f\n"
193                      "call __write_lock_failed\n\t"
194                      "1:\n"
195                      ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
196                      : "memory");
197 }
198
199 static inline int arch_read_trylock(arch_rwlock_t *lock)
200 {
201         READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
202
203         if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
204                 return 1;
205         READ_LOCK_ATOMIC(inc)(count);
206         return 0;
207 }
208
209 static inline int arch_write_trylock(arch_rwlock_t *lock)
210 {
211         atomic_t *count = (atomic_t *)&lock->write;
212
213         if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
214                 return 1;
215         atomic_add(WRITE_LOCK_CMP, count);
216         return 0;
217 }
218
219 static inline void arch_read_unlock(arch_rwlock_t *rw)
220 {
221         asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
222                      :"+m" (rw->lock) : : "memory");
223 }
224
225 static inline void arch_write_unlock(arch_rwlock_t *rw)
226 {
227         asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
228                      : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
229 }
230
231 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
232 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
233
234 #undef READ_LOCK_SIZE
235 #undef READ_LOCK_ATOMIC
236 #undef WRITE_LOCK_ADD
237 #undef WRITE_LOCK_SUB
238 #undef WRITE_LOCK_CMP
239
240 #define arch_spin_relax(lock)   cpu_relax()
241 #define arch_read_relax(lock)   cpu_relax()
242 #define arch_write_relax(lock)  cpu_relax()
243
244 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
245 static inline void smp_mb__after_lock(void) { }
246 #define ARCH_HAS_SMP_MB_AFTER_LOCK
247
248 #endif /* _ASM_X86_SPINLOCK_H */