mm: soft-dirty bits for user memory changes tracking
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / x86 / include / asm / pgtable.h
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/e820.h>
6
7 #include <asm/pgtable_types.h>
8
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)                                  \
13         ((boot_cpu_data.x86 > 3)                                \
14          ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS))  \
15          : (prot))
16
17 #ifndef __ASSEMBLY__
18
19 #include <asm/x86_init.h>
20
21 /*
22  * ZERO_PAGE is a global shared page that is always zero: used
23  * for zero-mapped memory areas etc..
24  */
25 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
26 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
27
28 extern spinlock_t pgd_lock;
29 extern struct list_head pgd_list;
30
31 extern struct mm_struct *pgd_page_get_mm(struct page *page);
32
33 #ifdef CONFIG_PARAVIRT
34 #include <asm/paravirt.h>
35 #else  /* !CONFIG_PARAVIRT */
36 #define set_pte(ptep, pte)              native_set_pte(ptep, pte)
37 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
38 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
39
40 #define set_pte_atomic(ptep, pte)                                       \
41         native_set_pte_atomic(ptep, pte)
42
43 #define set_pmd(pmdp, pmd)              native_set_pmd(pmdp, pmd)
44
45 #ifndef __PAGETABLE_PUD_FOLDED
46 #define set_pgd(pgdp, pgd)              native_set_pgd(pgdp, pgd)
47 #define pgd_clear(pgd)                  native_pgd_clear(pgd)
48 #endif
49
50 #ifndef set_pud
51 # define set_pud(pudp, pud)             native_set_pud(pudp, pud)
52 #endif
53
54 #ifndef __PAGETABLE_PMD_FOLDED
55 #define pud_clear(pud)                  native_pud_clear(pud)
56 #endif
57
58 #define pte_clear(mm, addr, ptep)       native_pte_clear(mm, addr, ptep)
59 #define pmd_clear(pmd)                  native_pmd_clear(pmd)
60
61 #define pte_update(mm, addr, ptep)              do { } while (0)
62 #define pte_update_defer(mm, addr, ptep)        do { } while (0)
63 #define pmd_update(mm, addr, ptep)              do { } while (0)
64 #define pmd_update_defer(mm, addr, ptep)        do { } while (0)
65
66 #define pgd_val(x)      native_pgd_val(x)
67 #define __pgd(x)        native_make_pgd(x)
68
69 #ifndef __PAGETABLE_PUD_FOLDED
70 #define pud_val(x)      native_pud_val(x)
71 #define __pud(x)        native_make_pud(x)
72 #endif
73
74 #ifndef __PAGETABLE_PMD_FOLDED
75 #define pmd_val(x)      native_pmd_val(x)
76 #define __pmd(x)        native_make_pmd(x)
77 #endif
78
79 #define pte_val(x)      native_pte_val(x)
80 #define __pte(x)        native_make_pte(x)
81
82 #define arch_end_context_switch(prev)   do {} while(0)
83
84 #endif  /* CONFIG_PARAVIRT */
85
86 /*
87  * The following only work if pte_present() is true.
88  * Undefined behaviour if not..
89  */
90 static inline int pte_dirty(pte_t pte)
91 {
92         return pte_flags(pte) & _PAGE_DIRTY;
93 }
94
95 static inline int pte_young(pte_t pte)
96 {
97         return pte_flags(pte) & _PAGE_ACCESSED;
98 }
99
100 static inline int pmd_young(pmd_t pmd)
101 {
102         return pmd_flags(pmd) & _PAGE_ACCESSED;
103 }
104
105 static inline int pte_write(pte_t pte)
106 {
107         return pte_flags(pte) & _PAGE_RW;
108 }
109
110 static inline int pte_file(pte_t pte)
111 {
112         return pte_flags(pte) & _PAGE_FILE;
113 }
114
115 static inline int pte_huge(pte_t pte)
116 {
117         return pte_flags(pte) & _PAGE_PSE;
118 }
119
120 static inline int pte_global(pte_t pte)
121 {
122         return pte_flags(pte) & _PAGE_GLOBAL;
123 }
124
125 static inline int pte_exec(pte_t pte)
126 {
127         return !(pte_flags(pte) & _PAGE_NX);
128 }
129
130 static inline int pte_special(pte_t pte)
131 {
132         return pte_flags(pte) & _PAGE_SPECIAL;
133 }
134
135 static inline unsigned long pte_pfn(pte_t pte)
136 {
137         return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
138 }
139
140 static inline unsigned long pmd_pfn(pmd_t pmd)
141 {
142         return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT;
143 }
144
145 static inline unsigned long pud_pfn(pud_t pud)
146 {
147         return (pud_val(pud) & PTE_PFN_MASK) >> PAGE_SHIFT;
148 }
149
150 #define pte_page(pte)   pfn_to_page(pte_pfn(pte))
151
152 static inline int pmd_large(pmd_t pte)
153 {
154         return pmd_flags(pte) & _PAGE_PSE;
155 }
156
157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
158 static inline int pmd_trans_splitting(pmd_t pmd)
159 {
160         return pmd_val(pmd) & _PAGE_SPLITTING;
161 }
162
163 static inline int pmd_trans_huge(pmd_t pmd)
164 {
165         return pmd_val(pmd) & _PAGE_PSE;
166 }
167
168 static inline int has_transparent_hugepage(void)
169 {
170         return cpu_has_pse;
171 }
172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
173
174 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
175 {
176         pteval_t v = native_pte_val(pte);
177
178         return native_make_pte(v | set);
179 }
180
181 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
182 {
183         pteval_t v = native_pte_val(pte);
184
185         return native_make_pte(v & ~clear);
186 }
187
188 static inline pte_t pte_mkclean(pte_t pte)
189 {
190         return pte_clear_flags(pte, _PAGE_DIRTY);
191 }
192
193 static inline pte_t pte_mkold(pte_t pte)
194 {
195         return pte_clear_flags(pte, _PAGE_ACCESSED);
196 }
197
198 static inline pte_t pte_wrprotect(pte_t pte)
199 {
200         return pte_clear_flags(pte, _PAGE_RW);
201 }
202
203 static inline pte_t pte_mkexec(pte_t pte)
204 {
205         return pte_clear_flags(pte, _PAGE_NX);
206 }
207
208 static inline pte_t pte_mkdirty(pte_t pte)
209 {
210         return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
211 }
212
213 static inline pte_t pte_mkyoung(pte_t pte)
214 {
215         return pte_set_flags(pte, _PAGE_ACCESSED);
216 }
217
218 static inline pte_t pte_mkwrite(pte_t pte)
219 {
220         return pte_set_flags(pte, _PAGE_RW);
221 }
222
223 static inline pte_t pte_mkhuge(pte_t pte)
224 {
225         return pte_set_flags(pte, _PAGE_PSE);
226 }
227
228 static inline pte_t pte_clrhuge(pte_t pte)
229 {
230         return pte_clear_flags(pte, _PAGE_PSE);
231 }
232
233 static inline pte_t pte_mkglobal(pte_t pte)
234 {
235         return pte_set_flags(pte, _PAGE_GLOBAL);
236 }
237
238 static inline pte_t pte_clrglobal(pte_t pte)
239 {
240         return pte_clear_flags(pte, _PAGE_GLOBAL);
241 }
242
243 static inline pte_t pte_mkspecial(pte_t pte)
244 {
245         return pte_set_flags(pte, _PAGE_SPECIAL);
246 }
247
248 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
249 {
250         pmdval_t v = native_pmd_val(pmd);
251
252         return __pmd(v | set);
253 }
254
255 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
256 {
257         pmdval_t v = native_pmd_val(pmd);
258
259         return __pmd(v & ~clear);
260 }
261
262 static inline pmd_t pmd_mkold(pmd_t pmd)
263 {
264         return pmd_clear_flags(pmd, _PAGE_ACCESSED);
265 }
266
267 static inline pmd_t pmd_wrprotect(pmd_t pmd)
268 {
269         return pmd_clear_flags(pmd, _PAGE_RW);
270 }
271
272 static inline pmd_t pmd_mkdirty(pmd_t pmd)
273 {
274         return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
275 }
276
277 static inline pmd_t pmd_mkhuge(pmd_t pmd)
278 {
279         return pmd_set_flags(pmd, _PAGE_PSE);
280 }
281
282 static inline pmd_t pmd_mkyoung(pmd_t pmd)
283 {
284         return pmd_set_flags(pmd, _PAGE_ACCESSED);
285 }
286
287 static inline pmd_t pmd_mkwrite(pmd_t pmd)
288 {
289         return pmd_set_flags(pmd, _PAGE_RW);
290 }
291
292 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
293 {
294         return pmd_clear_flags(pmd, _PAGE_PRESENT);
295 }
296
297 static inline int pte_soft_dirty(pte_t pte)
298 {
299         return pte_flags(pte) & _PAGE_SOFT_DIRTY;
300 }
301
302 static inline int pmd_soft_dirty(pmd_t pmd)
303 {
304         return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
305 }
306
307 static inline pte_t pte_mksoft_dirty(pte_t pte)
308 {
309         return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
310 }
311
312 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
313 {
314         return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
315 }
316
317 /*
318  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
319  * can use those bits for other purposes, so leave them be.
320  */
321 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
322 {
323         pgprotval_t protval = pgprot_val(pgprot);
324
325         if (protval & _PAGE_PRESENT)
326                 protval &= __supported_pte_mask;
327
328         return protval;
329 }
330
331 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
332 {
333         return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
334                      massage_pgprot(pgprot));
335 }
336
337 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
338 {
339         return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
340                      massage_pgprot(pgprot));
341 }
342
343 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
344 {
345         pteval_t val = pte_val(pte);
346
347         /*
348          * Chop off the NX bit (if present), and add the NX portion of
349          * the newprot (if present):
350          */
351         val &= _PAGE_CHG_MASK;
352         val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
353
354         return __pte(val);
355 }
356
357 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
358 {
359         pmdval_t val = pmd_val(pmd);
360
361         val &= _HPAGE_CHG_MASK;
362         val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
363
364         return __pmd(val);
365 }
366
367 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
368 #define pgprot_modify pgprot_modify
369 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
370 {
371         pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
372         pgprotval_t addbits = pgprot_val(newprot);
373         return __pgprot(preservebits | addbits);
374 }
375
376 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
377
378 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
379
380 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
381                                          unsigned long flags,
382                                          unsigned long new_flags)
383 {
384         /*
385          * PAT type is always WB for untracked ranges, so no need to check.
386          */
387         if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
388                 return 1;
389
390         /*
391          * Certain new memtypes are not allowed with certain
392          * requested memtype:
393          * - request is uncached, return cannot be write-back
394          * - request is write-combine, return cannot be write-back
395          */
396         if ((flags == _PAGE_CACHE_UC_MINUS &&
397              new_flags == _PAGE_CACHE_WB) ||
398             (flags == _PAGE_CACHE_WC &&
399              new_flags == _PAGE_CACHE_WB)) {
400                 return 0;
401         }
402
403         return 1;
404 }
405
406 pmd_t *populate_extra_pmd(unsigned long vaddr);
407 pte_t *populate_extra_pte(unsigned long vaddr);
408 #endif  /* __ASSEMBLY__ */
409
410 #ifdef CONFIG_X86_32
411 # include <asm/pgtable_32.h>
412 #else
413 # include <asm/pgtable_64.h>
414 #endif
415
416 #ifndef __ASSEMBLY__
417 #include <linux/mm_types.h>
418 #include <linux/log2.h>
419
420 static inline int pte_none(pte_t pte)
421 {
422         return !pte.pte;
423 }
424
425 #define __HAVE_ARCH_PTE_SAME
426 static inline int pte_same(pte_t a, pte_t b)
427 {
428         return a.pte == b.pte;
429 }
430
431 static inline int pte_present(pte_t a)
432 {
433         return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE |
434                                _PAGE_NUMA);
435 }
436
437 #define pte_accessible pte_accessible
438 static inline int pte_accessible(pte_t a)
439 {
440         return pte_flags(a) & _PAGE_PRESENT;
441 }
442
443 static inline int pte_hidden(pte_t pte)
444 {
445         return pte_flags(pte) & _PAGE_HIDDEN;
446 }
447
448 static inline int pmd_present(pmd_t pmd)
449 {
450         /*
451          * Checking for _PAGE_PSE is needed too because
452          * split_huge_page will temporarily clear the present bit (but
453          * the _PAGE_PSE flag will remain set at all times while the
454          * _PAGE_PRESENT bit is clear).
455          */
456         return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE |
457                                  _PAGE_NUMA);
458 }
459
460 static inline int pmd_none(pmd_t pmd)
461 {
462         /* Only check low word on 32-bit platforms, since it might be
463            out of sync with upper half. */
464         return (unsigned long)native_pmd_val(pmd) == 0;
465 }
466
467 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
468 {
469         return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK);
470 }
471
472 /*
473  * Currently stuck as a macro due to indirect forward reference to
474  * linux/mmzone.h's __section_mem_map_addr() definition:
475  */
476 #define pmd_page(pmd)   pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT)
477
478 /*
479  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
480  *
481  * this macro returns the index of the entry in the pmd page which would
482  * control the given virtual address
483  */
484 static inline unsigned long pmd_index(unsigned long address)
485 {
486         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
487 }
488
489 /*
490  * Conversion functions: convert a page and protection to a page entry,
491  * and a page entry and page directory to the page they refer to.
492  *
493  * (Currently stuck as a macro because of indirect forward reference
494  * to linux/mm.h:page_to_nid())
495  */
496 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
497
498 /*
499  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
500  *
501  * this function returns the index of the entry in the pte page which would
502  * control the given virtual address
503  */
504 static inline unsigned long pte_index(unsigned long address)
505 {
506         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
507 }
508
509 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
510 {
511         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
512 }
513
514 static inline int pmd_bad(pmd_t pmd)
515 {
516 #ifdef CONFIG_NUMA_BALANCING
517         /* pmd_numa check */
518         if ((pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA)
519                 return 0;
520 #endif
521         return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
522 }
523
524 static inline unsigned long pages_to_mb(unsigned long npg)
525 {
526         return npg >> (20 - PAGE_SHIFT);
527 }
528
529 #if PAGETABLE_LEVELS > 2
530 static inline int pud_none(pud_t pud)
531 {
532         return native_pud_val(pud) == 0;
533 }
534
535 static inline int pud_present(pud_t pud)
536 {
537         return pud_flags(pud) & _PAGE_PRESENT;
538 }
539
540 static inline unsigned long pud_page_vaddr(pud_t pud)
541 {
542         return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK);
543 }
544
545 /*
546  * Currently stuck as a macro due to indirect forward reference to
547  * linux/mmzone.h's __section_mem_map_addr() definition:
548  */
549 #define pud_page(pud)           pfn_to_page(pud_val(pud) >> PAGE_SHIFT)
550
551 /* Find an entry in the second-level page table.. */
552 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
553 {
554         return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
555 }
556
557 static inline int pud_large(pud_t pud)
558 {
559         return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
560                 (_PAGE_PSE | _PAGE_PRESENT);
561 }
562
563 static inline int pud_bad(pud_t pud)
564 {
565         return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
566 }
567 #else
568 static inline int pud_large(pud_t pud)
569 {
570         return 0;
571 }
572 #endif  /* PAGETABLE_LEVELS > 2 */
573
574 #if PAGETABLE_LEVELS > 3
575 static inline int pgd_present(pgd_t pgd)
576 {
577         return pgd_flags(pgd) & _PAGE_PRESENT;
578 }
579
580 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
581 {
582         return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
583 }
584
585 /*
586  * Currently stuck as a macro due to indirect forward reference to
587  * linux/mmzone.h's __section_mem_map_addr() definition:
588  */
589 #define pgd_page(pgd)           pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
590
591 /* to find an entry in a page-table-directory. */
592 static inline unsigned long pud_index(unsigned long address)
593 {
594         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
595 }
596
597 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
598 {
599         return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
600 }
601
602 static inline int pgd_bad(pgd_t pgd)
603 {
604         return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
605 }
606
607 static inline int pgd_none(pgd_t pgd)
608 {
609         return !native_pgd_val(pgd);
610 }
611 #endif  /* PAGETABLE_LEVELS > 3 */
612
613 #endif  /* __ASSEMBLY__ */
614
615 /*
616  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
617  *
618  * this macro returns the index of the entry in the pgd page which would
619  * control the given virtual address
620  */
621 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
622
623 /*
624  * pgd_offset() returns a (pgd_t *)
625  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
626  */
627 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
628 /*
629  * a shortcut which implies the use of the kernel's pgd, instead
630  * of a process's
631  */
632 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
633
634
635 #define KERNEL_PGD_BOUNDARY     pgd_index(PAGE_OFFSET)
636 #define KERNEL_PGD_PTRS         (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
637
638 #ifndef __ASSEMBLY__
639
640 extern int direct_gbpages;
641 void init_mem_mapping(void);
642 void early_alloc_pgt_buf(void);
643
644 /* local pte updates need not use xchg for locking */
645 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
646 {
647         pte_t res = *ptep;
648
649         /* Pure native function needs no input for mm, addr */
650         native_pte_clear(NULL, 0, ptep);
651         return res;
652 }
653
654 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
655 {
656         pmd_t res = *pmdp;
657
658         native_pmd_clear(pmdp);
659         return res;
660 }
661
662 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
663                                      pte_t *ptep , pte_t pte)
664 {
665         native_set_pte(ptep, pte);
666 }
667
668 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
669                                      pmd_t *pmdp , pmd_t pmd)
670 {
671         native_set_pmd(pmdp, pmd);
672 }
673
674 #ifndef CONFIG_PARAVIRT
675 /*
676  * Rules for using pte_update - it must be called after any PTE update which
677  * has not been done using the set_pte / clear_pte interfaces.  It is used by
678  * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
679  * updates should either be sets, clears, or set_pte_atomic for P->P
680  * transitions, which means this hook should only be called for user PTEs.
681  * This hook implies a P->P protection or access change has taken place, which
682  * requires a subsequent TLB flush.  The notification can optionally be delayed
683  * until the TLB flush event by using the pte_update_defer form of the
684  * interface, but care must be taken to assure that the flush happens while
685  * still holding the same page table lock so that the shadow and primary pages
686  * do not become out of sync on SMP.
687  */
688 #define pte_update(mm, addr, ptep)              do { } while (0)
689 #define pte_update_defer(mm, addr, ptep)        do { } while (0)
690 #endif
691
692 /*
693  * We only update the dirty/accessed state if we set
694  * the dirty bit by hand in the kernel, since the hardware
695  * will do the accessed bit for us, and we don't want to
696  * race with other CPU's that might be updating the dirty
697  * bit at the same time.
698  */
699 struct vm_area_struct;
700
701 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
702 extern int ptep_set_access_flags(struct vm_area_struct *vma,
703                                  unsigned long address, pte_t *ptep,
704                                  pte_t entry, int dirty);
705
706 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
707 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
708                                      unsigned long addr, pte_t *ptep);
709
710 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
711 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
712                                   unsigned long address, pte_t *ptep);
713
714 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
715 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
716                                        pte_t *ptep)
717 {
718         pte_t pte = native_ptep_get_and_clear(ptep);
719         pte_update(mm, addr, ptep);
720         return pte;
721 }
722
723 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
724 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
725                                             unsigned long addr, pte_t *ptep,
726                                             int full)
727 {
728         pte_t pte;
729         if (full) {
730                 /*
731                  * Full address destruction in progress; paravirt does not
732                  * care about updates and native needs no locking
733                  */
734                 pte = native_local_ptep_get_and_clear(ptep);
735         } else {
736                 pte = ptep_get_and_clear(mm, addr, ptep);
737         }
738         return pte;
739 }
740
741 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
742 static inline void ptep_set_wrprotect(struct mm_struct *mm,
743                                       unsigned long addr, pte_t *ptep)
744 {
745         clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
746         pte_update(mm, addr, ptep);
747 }
748
749 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
750
751 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
752
753 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
754 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
755                                  unsigned long address, pmd_t *pmdp,
756                                  pmd_t entry, int dirty);
757
758 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
759 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
760                                      unsigned long addr, pmd_t *pmdp);
761
762 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
763 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
764                                   unsigned long address, pmd_t *pmdp);
765
766
767 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
768 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
769                                  unsigned long addr, pmd_t *pmdp);
770
771 #define __HAVE_ARCH_PMD_WRITE
772 static inline int pmd_write(pmd_t pmd)
773 {
774         return pmd_flags(pmd) & _PAGE_RW;
775 }
776
777 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
778 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr,
779                                        pmd_t *pmdp)
780 {
781         pmd_t pmd = native_pmdp_get_and_clear(pmdp);
782         pmd_update(mm, addr, pmdp);
783         return pmd;
784 }
785
786 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
787 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
788                                       unsigned long addr, pmd_t *pmdp)
789 {
790         clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
791         pmd_update(mm, addr, pmdp);
792 }
793
794 /*
795  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
796  *
797  *  dst - pointer to pgd range anwhere on a pgd page
798  *  src - ""
799  *  count - the number of pgds to copy.
800  *
801  * dst and src can be on the same page, but the range must not overlap,
802  * and must not cross a page boundary.
803  */
804 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
805 {
806        memcpy(dst, src, count * sizeof(pgd_t));
807 }
808
809 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
810 static inline int page_level_shift(enum pg_level level)
811 {
812         return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
813 }
814 static inline unsigned long page_level_size(enum pg_level level)
815 {
816         return 1UL << page_level_shift(level);
817 }
818 static inline unsigned long page_level_mask(enum pg_level level)
819 {
820         return ~(page_level_size(level) - 1);
821 }
822
823 /*
824  * The x86 doesn't have any external MMU info: the kernel page
825  * tables contain all the necessary information.
826  */
827 static inline void update_mmu_cache(struct vm_area_struct *vma,
828                 unsigned long addr, pte_t *ptep)
829 {
830 }
831 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
832                 unsigned long addr, pmd_t *pmd)
833 {
834 }
835
836 #include <asm-generic/pgtable.h>
837 #endif  /* __ASSEMBLY__ */
838
839 #endif /* _ASM_X86_PGTABLE_H */