1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Kernel-based Virtual Machine driver for Linux
5 * This header defines architecture specific interfaces, x86 version
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
11 #include <linux/types.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
29 #include <asm/pvclock-abi.h>
32 #include <asm/msr-index.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
40 #define KVM_MAX_VCPUS 1024
43 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
44 * might be larger than the actual number of VCPUs because the
45 * APIC ID encodes CPU topology information.
47 * In the worst case, we'll need less than one extra bit for the
48 * Core ID, and less than one extra bit for the Package (Die) ID,
49 * so ratio of 4 should be enough.
51 #define KVM_VCPU_ID_RATIO 4
52 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54 /* memory slots that are not exposed to userspace */
55 #define KVM_PRIVATE_MEM_SLOTS 3
57 #define KVM_HALT_POLL_NS_DEFAULT 200000
59 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
61 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
62 KVM_DIRTY_LOG_INITIALLY_SET)
64 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
65 KVM_BUS_LOCK_DETECTION_EXIT)
67 /* x86-specific vcpu->requests bit members */
68 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
69 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
70 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
71 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
72 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
73 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
74 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
75 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
76 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
77 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
78 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
79 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
80 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
81 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
82 #define KVM_REQ_MCLOCK_INPROGRESS \
83 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
84 #define KVM_REQ_SCAN_IOAPIC \
85 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
86 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
87 #define KVM_REQ_APIC_PAGE_RELOAD \
88 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
89 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
90 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
91 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
92 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
93 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
94 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
95 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
96 #define KVM_REQ_APICV_UPDATE \
97 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
98 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
99 #define KVM_REQ_TLB_FLUSH_GUEST \
100 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
102 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
103 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
104 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define CR0_RESERVED_BITS \
107 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
108 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
109 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
111 #define CR4_RESERVED_BITS \
112 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
113 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
114 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
115 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
116 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
117 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
119 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
123 #define INVALID_PAGE (~(hpa_t)0)
124 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
126 #define UNMAPPED_GVA (~(gpa_t)0)
127 #define INVALID_GPA (~(gpa_t)0)
129 /* KVM Hugepage definitions for x86 */
130 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
131 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
132 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
133 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
134 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
135 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
136 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
138 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
139 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
140 #define KVM_MMU_HASH_SHIFT 12
141 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
142 #define KVM_MIN_FREE_MMU_PAGES 5
143 #define KVM_REFILL_PAGES 25
144 #define KVM_MAX_CPUID_ENTRIES 256
145 #define KVM_NR_FIXED_MTRR_REGION 88
146 #define KVM_NR_VAR_MTRR 8
148 #define ASYNC_PF_PER_VCPU 64
151 VCPU_REGS_RAX = __VCPU_REGS_RAX,
152 VCPU_REGS_RCX = __VCPU_REGS_RCX,
153 VCPU_REGS_RDX = __VCPU_REGS_RDX,
154 VCPU_REGS_RBX = __VCPU_REGS_RBX,
155 VCPU_REGS_RSP = __VCPU_REGS_RSP,
156 VCPU_REGS_RBP = __VCPU_REGS_RBP,
157 VCPU_REGS_RSI = __VCPU_REGS_RSI,
158 VCPU_REGS_RDI = __VCPU_REGS_RDI,
160 VCPU_REGS_R8 = __VCPU_REGS_R8,
161 VCPU_REGS_R9 = __VCPU_REGS_R9,
162 VCPU_REGS_R10 = __VCPU_REGS_R10,
163 VCPU_REGS_R11 = __VCPU_REGS_R11,
164 VCPU_REGS_R12 = __VCPU_REGS_R12,
165 VCPU_REGS_R13 = __VCPU_REGS_R13,
166 VCPU_REGS_R14 = __VCPU_REGS_R14,
167 VCPU_REGS_R15 = __VCPU_REGS_R15,
172 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
178 VCPU_EXREG_EXIT_INFO_1,
179 VCPU_EXREG_EXIT_INFO_2,
193 enum exit_fastpath_completion {
195 EXIT_FASTPATH_REENTER_GUEST,
196 EXIT_FASTPATH_EXIT_HANDLED,
198 typedef enum exit_fastpath_completion fastpath_t;
200 struct x86_emulate_ctxt;
201 struct x86_exception;
203 enum x86_intercept_stage;
205 #define KVM_NR_DB_REGS 4
207 #define DR6_BUS_LOCK (1 << 11)
208 #define DR6_BD (1 << 13)
209 #define DR6_BS (1 << 14)
210 #define DR6_BT (1 << 15)
211 #define DR6_RTM (1 << 16)
213 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
214 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
215 * they will never be 0 for now, but when they are defined
216 * in the future it will require no code change.
218 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
220 #define DR6_ACTIVE_LOW 0xffff0ff0
221 #define DR6_VOLATILE 0x0001e80f
222 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
224 #define DR7_BP_EN_MASK 0x000000ff
225 #define DR7_GE (1 << 9)
226 #define DR7_GD (1 << 13)
227 #define DR7_FIXED_1 0x00000400
228 #define DR7_VOLATILE 0xffff2bff
230 #define KVM_GUESTDBG_VALID_MASK \
231 (KVM_GUESTDBG_ENABLE | \
232 KVM_GUESTDBG_SINGLESTEP | \
233 KVM_GUESTDBG_USE_HW_BP | \
234 KVM_GUESTDBG_USE_SW_BP | \
235 KVM_GUESTDBG_INJECT_BP | \
236 KVM_GUESTDBG_INJECT_DB | \
237 KVM_GUESTDBG_BLOCKIRQ)
240 #define PFERR_PRESENT_BIT 0
241 #define PFERR_WRITE_BIT 1
242 #define PFERR_USER_BIT 2
243 #define PFERR_RSVD_BIT 3
244 #define PFERR_FETCH_BIT 4
245 #define PFERR_PK_BIT 5
246 #define PFERR_SGX_BIT 15
247 #define PFERR_GUEST_FINAL_BIT 32
248 #define PFERR_GUEST_PAGE_BIT 33
250 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
251 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
252 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
253 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
254 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
255 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
256 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
257 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
258 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
260 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
264 /* apic attention bits */
265 #define KVM_APIC_CHECK_VAPIC 0
267 * The following bit is set with PV-EOI, unset on EOI.
268 * We detect PV-EOI changes by guest by comparing
269 * this bit with PV-EOI in guest memory.
270 * See the implementation in apic_update_pv_eoi.
272 #define KVM_APIC_PV_EOI_PENDING 1
274 struct kvm_kernel_irq_routing_entry;
277 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
278 * also includes TDP pages) to determine whether or not a page can be used in
279 * the given MMU context. This is a subset of the overall kvm_mmu_role to
280 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
281 * 2 bytes per gfn instead of 4 bytes per gfn.
283 * Indirect upper-level shadow pages are tracked for write-protection via
284 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
285 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
286 * gfn_track will overflow and explosions will ensure.
288 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
289 * cannot be reused. The ability to reuse a SP is tracked by its role, which
290 * incorporates various mode bits and properties of the SP. Roughly speaking,
291 * the number of unique SPs that can theoretically be created is 2^n, where n
292 * is the number of bits that are used to compute the role.
294 * But, even though there are 19 bits in the mask below, not all combinations
295 * of modes and flags are possible:
297 * - invalid shadow pages are not accounted, so the bits are effectively 18
299 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
300 * execonly and ad_disabled are only used for nested EPT which has
301 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
303 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
304 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
305 * paging has exactly one upper level, making level completely redundant
306 * when has_4_byte_gpte=1.
308 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
309 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
311 * Therefore, the maximum number of possible upper-level shadow pages for a
312 * single gfn is a bit less than 2^13.
314 union kvm_mmu_page_role {
318 unsigned has_4_byte_gpte:1;
325 unsigned smep_andnot_wp:1;
326 unsigned smap_andnot_wp:1;
327 unsigned ad_disabled:1;
328 unsigned guest_mode:1;
332 * This is left at the top of the word so that
333 * kvm_memslots_for_spte_role can extract it with a
334 * simple shift. While there is room, give it a whole
335 * byte so it is also faster to load it from memory.
342 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
343 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
344 * including on nested transitions, if nothing in the full role changes then
345 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
346 * don't treat all-zero structure as valid data.
348 * The properties that are tracked in the extended role but not the page role
349 * are for things that either (a) do not affect the validity of the shadow page
350 * or (b) are indirectly reflected in the shadow page's role. For example,
351 * CR4.PKE only affects permission checks for software walks of the guest page
352 * tables (because KVM doesn't support Protection Keys with shadow paging), and
353 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
355 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
356 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
357 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
358 * SMAP aware regardless of CR0.WP.
360 union kvm_mmu_extended_role {
363 unsigned int valid:1;
364 unsigned int execonly:1;
365 unsigned int cr0_pg:1;
366 unsigned int cr4_pae:1;
367 unsigned int cr4_pse:1;
368 unsigned int cr4_pke:1;
369 unsigned int cr4_smap:1;
370 unsigned int cr4_smep:1;
371 unsigned int cr4_la57:1;
372 unsigned int efer_lma:1;
379 union kvm_mmu_page_role base;
380 union kvm_mmu_extended_role ext;
384 struct kvm_rmap_head {
388 struct kvm_pio_request {
389 unsigned long linear_rip;
396 #define PT64_ROOT_MAX_LEVEL 5
398 struct rsvd_bits_validate {
399 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
403 struct kvm_mmu_root_info {
408 #define KVM_MMU_ROOT_INFO_INVALID \
409 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
411 #define KVM_MMU_NUM_PREV_ROOTS 3
413 #define KVM_HAVE_MMU_RWLOCK
416 struct kvm_page_fault;
419 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
420 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
424 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
425 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
426 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
427 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
428 struct x86_exception *fault);
429 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
430 gpa_t gva_or_gpa, u32 access,
431 struct x86_exception *exception);
432 int (*sync_page)(struct kvm_vcpu *vcpu,
433 struct kvm_mmu_page *sp);
434 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
437 union kvm_mmu_role mmu_role;
439 u8 shadow_root_level;
442 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
445 * Bitmap; bit set = permission fault
446 * Byte index: page fault error code [4:1]
447 * Bit index: pte permissions in ACC_* format
452 * The pkru_mask indicates if protection key checks are needed. It
453 * consists of 16 domains indexed by page fault error code bits [4:1],
454 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
455 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
464 * check zero bits on shadow page table entries, these
465 * bits include not only hardware reserved bits but also
466 * the bits spte never used.
468 struct rsvd_bits_validate shadow_zero_check;
470 struct rsvd_bits_validate guest_rsvd_check;
472 u64 pdptrs[4]; /* pae */
475 struct kvm_tlb_range {
490 struct perf_event *perf_event;
491 struct kvm_vcpu *vcpu;
493 * eventsel value for general purpose counters,
494 * ctrl value for fixed counters.
501 #define KVM_PMC_MAX_FIXED 3
503 unsigned nr_arch_gp_counters;
504 unsigned nr_arch_fixed_counters;
505 unsigned available_event_types;
509 u64 counter_bitmask[2];
510 u64 global_ctrl_mask;
511 u64 global_ovf_ctrl_mask;
514 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
515 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
516 struct irq_work irq_work;
517 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
518 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
519 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
522 * The gate to release perf_events not marked in
523 * pmc_in_use only once in a vcpu time slice.
528 * The total number of programmed perf_events and it helps to avoid
529 * redundant check before cleanup if guest don't use vPMU at all.
537 KVM_DEBUGREG_BP_ENABLED = 1,
538 KVM_DEBUGREG_WONT_EXIT = 2,
541 struct kvm_mtrr_range {
544 struct list_head node;
548 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
549 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
552 struct list_head head;
555 /* Hyper-V SynIC timer */
556 struct kvm_vcpu_hv_stimer {
557 struct hrtimer timer;
559 union hv_stimer_config config;
562 struct hv_message msg;
566 /* Hyper-V synthetic interrupt controller (SynIC)*/
567 struct kvm_vcpu_hv_synic {
572 atomic64_t sint[HV_SYNIC_SINT_COUNT];
573 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
574 DECLARE_BITMAP(auto_eoi_bitmap, 256);
575 DECLARE_BITMAP(vec_bitmap, 256);
577 bool dont_zero_synic_pages;
580 /* Hyper-V per vcpu emulation context */
582 struct kvm_vcpu *vcpu;
586 struct kvm_vcpu_hv_synic synic;
587 struct kvm_hyperv_exit exit;
588 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
589 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
592 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
593 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
594 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
595 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
596 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
597 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
601 /* Xen HVM per vcpu emulation context */
602 struct kvm_vcpu_xen {
604 u32 current_runstate;
606 bool vcpu_time_info_set;
608 struct gfn_to_hva_cache vcpu_info_cache;
609 struct gfn_to_hva_cache vcpu_time_info_cache;
610 struct gfn_to_hva_cache runstate_cache;
612 u64 runstate_entry_time;
613 u64 runstate_times[4];
614 unsigned long evtchn_pending_sel;
617 struct kvm_vcpu_arch {
619 * rip and regs accesses must go through
620 * kvm_{register,rip}_{read,write} functions.
622 unsigned long regs[NR_VCPU_REGS];
627 unsigned long cr0_guest_owned_bits;
631 unsigned long cr4_guest_owned_bits;
632 unsigned long cr4_guest_rsvd_bits;
639 struct kvm_lapic *apic; /* kernel irqchip context */
641 bool load_eoi_exitmap_pending;
642 DECLARE_BITMAP(ioapic_handled_vectors, 256);
643 unsigned long apic_attention;
644 int32_t apic_arb_prio;
646 u64 ia32_misc_enable_msr;
649 bool tpr_access_reporting;
651 bool xfd_no_write_intercept;
653 u64 microcode_version;
654 u64 arch_capabilities;
655 u64 perf_capabilities;
658 * Paging state of the vcpu
660 * If the vcpu runs in guest mode with two level paging this still saves
661 * the paging mode of the l1 guest. This context is always used to
666 /* Non-nested MMU for L1 */
667 struct kvm_mmu root_mmu;
669 /* L1 MMU when running nested */
670 struct kvm_mmu guest_mmu;
673 * Paging state of an L2 guest (used for nested npt)
675 * This context will save all necessary information to walk page tables
676 * of an L2 guest. This context is only initialized for page table
677 * walking and not for faulting since we never handle l2 page faults on
680 struct kvm_mmu nested_mmu;
683 * Pointer to the mmu context currently used for
684 * gva_to_gpa translations.
686 struct kvm_mmu *walk_mmu;
688 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
689 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
690 struct kvm_mmu_memory_cache mmu_gfn_array_cache;
691 struct kvm_mmu_memory_cache mmu_page_header_cache;
694 * QEMU userspace and the guest each have their own FPU state.
695 * In vcpu_run, we switch between the user and guest FPU contexts.
696 * While running a VCPU, the VCPU thread will have the guest FPU
699 * Note that while the PKRU state lives inside the fpu registers,
700 * it is switched out separately at VMENTER and VMEXIT time. The
701 * "guest_fpstate" state here contains the guest FPU context, with the
704 struct fpu_guest guest_fpu;
708 struct kvm_pio_request pio;
711 unsigned sev_pio_count;
713 u8 event_exit_inst_len;
715 struct kvm_queued_exception {
721 unsigned long payload;
726 struct kvm_queued_interrupt {
732 int halt_request; /* real mode on Intel only */
735 struct kvm_cpuid_entry2 *cpuid_entries;
738 u64 reserved_gpa_bits;
741 /* emulate context */
743 struct x86_emulate_ctxt *emulate_ctxt;
744 bool emulate_regs_need_sync_to_vcpu;
745 bool emulate_regs_need_sync_from_vcpu;
746 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
749 struct pvclock_vcpu_time_info hv_clock;
750 unsigned int hw_tsc_khz;
751 struct gfn_to_hva_cache pv_time;
752 bool pv_time_enabled;
753 /* set guest stopped flag in pvclock flags field */
754 bool pvclock_set_guest_stopped_request;
760 struct gfn_to_hva_cache cache;
764 u64 tsc_offset; /* current tsc offset */
767 u64 tsc_offset_adjustment;
770 u64 this_tsc_generation;
772 bool tsc_always_catchup;
773 s8 virtual_tsc_shift;
774 u32 virtual_tsc_mult;
776 s64 ia32_tsc_adjust_msr;
777 u64 msr_ia32_power_ctl;
778 u64 l1_tsc_scaling_ratio;
779 u64 tsc_scaling_ratio; /* current scaling ratio */
781 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
782 unsigned nmi_pending; /* NMI queued after currently running handler */
783 bool nmi_injected; /* Trying to inject an NMI this entry */
784 bool smi_pending; /* SMI queued after currently running handler */
785 u8 handling_intr_from_guest;
787 struct kvm_mtrr mtrr_state;
790 unsigned switch_db_regs;
791 unsigned long db[KVM_NR_DB_REGS];
794 unsigned long eff_db[KVM_NR_DB_REGS];
795 unsigned long guest_debug_dr7;
796 u64 msr_platform_info;
797 u64 msr_misc_features_enables;
805 /* Cache MMIO info */
807 unsigned mmio_access;
813 /* used for guest single stepping over the given code position */
814 unsigned long singlestep_rip;
817 struct kvm_vcpu_hv *hyperv;
818 struct kvm_vcpu_xen xen;
820 cpumask_var_t wbinvd_dirty_mask;
822 unsigned long last_retry_eip;
823 unsigned long last_retry_addr;
827 gfn_t gfns[ASYNC_PF_PER_VCPU];
828 struct gfn_to_hva_cache data;
829 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
830 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
835 unsigned long nested_apf_token;
836 bool delivery_as_pf_vmexit;
837 bool pageready_pending;
840 /* OSVW MSRs (AMD only) */
848 struct gfn_to_hva_cache data;
851 u64 msr_kvm_poll_control;
854 * Indicates the guest is trying to write a gfn that contains one or
855 * more of the PTEs used to translate the write itself, i.e. the access
856 * is changing its own translation in the guest page tables. KVM exits
857 * to userspace if emulation of the faulting instruction fails and this
858 * flag is set, as KVM cannot make forward progress.
860 * If emulation fails for a write to guest page tables, KVM unprotects
861 * (zaps) the shadow page for the target gfn and resumes the guest to
862 * retry the non-emulatable instruction (on hardware). Unprotecting the
863 * gfn doesn't allow forward progress for a self-changing access because
864 * doing so also zaps the translation for the gfn, i.e. retrying the
865 * instruction will hit a !PRESENT fault, which results in a new shadow
866 * page and sends KVM back to square one.
868 bool write_fault_to_shadow_pgtable;
870 /* set at EPT violation at this point */
871 unsigned long exit_qualification;
873 /* pv related host specific info */
878 int pending_ioapic_eoi;
879 int pending_external_vector;
881 /* be preempted when it's in kernel-mode(cpl=0) */
882 bool preempted_in_kernel;
884 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
887 /* Host CPU on which VM-entry was most recently attempted */
888 int last_vmentry_cpu;
890 /* AMD MSRC001_0015 Hardware Configuration */
893 /* pv related cpuid info */
896 * value of the eax register in the KVM_CPUID_FEATURES CPUID
902 * indicates whether pv emulation should be disabled if features
903 * are not present in the guest's cpuid
908 /* Protected Guests */
909 bool guest_state_protected;
912 * Set when PDPTS were loaded directly by the userspace without
913 * reading the guest memory
915 bool pdptrs_from_userspace;
917 #if IS_ENABLED(CONFIG_HYPERV)
922 struct kvm_lpage_info {
926 struct kvm_arch_memory_slot {
927 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
928 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
929 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
933 * We use as the mode the number of bits allocated in the LDR for the
934 * logical processor ID. It happens that these are all powers of two.
935 * This makes it is very easy to detect cases where the APICs are
936 * configured for multiple modes; in that case, we cannot use the map and
937 * hence cannot use kvm_irq_delivery_to_apic_fast either.
939 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
940 #define KVM_APIC_MODE_XAPIC_FLAT 8
941 #define KVM_APIC_MODE_X2APIC 16
943 struct kvm_apic_map {
948 struct kvm_lapic *xapic_flat_map[8];
949 struct kvm_lapic *xapic_cluster_map[16][4];
951 struct kvm_lapic *phys_map[];
954 /* Hyper-V synthetic debugger (SynDbg)*/
955 struct kvm_hv_syndbg {
966 /* Current state of Hyper-V TSC page clocksource */
967 enum hv_tsc_page_status {
968 /* TSC page was not set up or disabled */
969 HV_TSC_PAGE_UNSET = 0,
970 /* TSC page MSR was written by the guest, update pending */
971 HV_TSC_PAGE_GUEST_CHANGED,
972 /* TSC page MSR was written by KVM userspace, update pending */
973 HV_TSC_PAGE_HOST_CHANGED,
974 /* TSC page was properly set up and is currently active */
976 /* TSC page is currently being updated and therefore is inactive */
977 HV_TSC_PAGE_UPDATING,
978 /* TSC page was set up with an inaccessible GPA */
982 /* Hyper-V emulation context */
984 struct mutex hv_lock;
988 enum hv_tsc_page_status hv_tsc_page_status;
990 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
991 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
994 struct ms_hyperv_tsc_page tsc_ref;
996 struct idr conn_to_evt;
998 u64 hv_reenlightenment_control;
999 u64 hv_tsc_emulation_control;
1000 u64 hv_tsc_emulation_status;
1002 /* How many vCPUs have VP index != vCPU index */
1003 atomic_t num_mismatched_vp_indexes;
1006 * How many SynICs use 'AutoEOI' feature
1007 * (protected by arch.apicv_update_lock)
1009 unsigned int synic_auto_eoi_used;
1011 struct hv_partition_assist_pg *hv_pa_pg;
1012 struct kvm_hv_syndbg hv_syndbg;
1015 struct msr_bitmap_range {
1019 unsigned long *bitmap;
1022 /* Xen emulation context */
1026 struct gfn_to_pfn_cache shinfo_cache;
1029 enum kvm_irqchip_mode {
1031 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1032 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1035 struct kvm_x86_msr_filter {
1037 bool default_allow:1;
1038 struct msr_bitmap_range ranges[16];
1041 #define APICV_INHIBIT_REASON_DISABLE 0
1042 #define APICV_INHIBIT_REASON_HYPERV 1
1043 #define APICV_INHIBIT_REASON_NESTED 2
1044 #define APICV_INHIBIT_REASON_IRQWIN 3
1045 #define APICV_INHIBIT_REASON_PIT_REINJ 4
1046 #define APICV_INHIBIT_REASON_X2APIC 5
1047 #define APICV_INHIBIT_REASON_BLOCKIRQ 6
1048 #define APICV_INHIBIT_REASON_ABSENT 7
1051 unsigned long n_used_mmu_pages;
1052 unsigned long n_requested_mmu_pages;
1053 unsigned long n_max_mmu_pages;
1054 unsigned int indirect_shadow_pages;
1056 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1057 struct list_head active_mmu_pages;
1058 struct list_head zapped_obsolete_pages;
1059 struct list_head lpage_disallowed_mmu_pages;
1060 struct kvm_page_track_notifier_node mmu_sp_tracker;
1061 struct kvm_page_track_notifier_head track_notifier_head;
1063 * Protects marking pages unsync during page faults, as TDP MMU page
1064 * faults only take mmu_lock for read. For simplicity, the unsync
1065 * pages lock is always taken when marking pages unsync regardless of
1066 * whether mmu_lock is held for read or write.
1068 spinlock_t mmu_unsync_pages_lock;
1070 struct list_head assigned_dev_head;
1071 struct iommu_domain *iommu_domain;
1072 bool iommu_noncoherent;
1073 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1074 atomic_t noncoherent_dma_count;
1075 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1076 atomic_t assigned_device_count;
1077 struct kvm_pic *vpic;
1078 struct kvm_ioapic *vioapic;
1079 struct kvm_pit *vpit;
1080 atomic_t vapics_in_nmi_mode;
1081 struct mutex apic_map_lock;
1082 struct kvm_apic_map __rcu *apic_map;
1083 atomic_t apic_map_dirty;
1085 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1086 struct rw_semaphore apicv_update_lock;
1088 bool apic_access_memslot_enabled;
1089 unsigned long apicv_inhibit_reasons;
1093 bool mwait_in_guest;
1095 bool pause_in_guest;
1096 bool cstate_in_guest;
1098 unsigned long irq_sources_bitmap;
1099 s64 kvmclock_offset;
1102 * This also protects nr_vcpus_matched_tsc which is read from a
1103 * preemption-disabled region, so it must be a raw spinlock.
1105 raw_spinlock_t tsc_write_lock;
1109 u64 last_tsc_offset;
1113 u64 cur_tsc_generation;
1114 int nr_vcpus_matched_tsc;
1116 seqcount_raw_spinlock_t pvclock_sc;
1117 bool use_master_clock;
1118 u64 master_kernel_ns;
1119 u64 master_cycle_now;
1120 struct delayed_work kvmclock_update_work;
1121 struct delayed_work kvmclock_sync_work;
1123 struct kvm_xen_hvm_config xen_hvm_config;
1125 /* reads protected by irq_srcu, writes by irq_lock */
1126 struct hlist_head mask_notifier_list;
1128 struct kvm_hv hyperv;
1131 #ifdef CONFIG_KVM_MMU_AUDIT
1135 bool backwards_tsc_observed;
1136 bool boot_vcpu_runs_old_kvmclock;
1139 u64 disabled_quirks;
1140 int cpu_dirty_logging_count;
1142 enum kvm_irqchip_mode irqchip_mode;
1143 u8 nr_reserved_ioapic_pins;
1145 bool disabled_lapic_found;
1148 bool x2apic_broadcast_quirk_disabled;
1150 bool guest_can_read_msr_platform_info;
1151 bool exception_payload_enabled;
1153 bool bus_lock_detection_enabled;
1155 * If exit_on_emulation_error is set, and the in-kernel instruction
1156 * emulator fails to emulate an instruction, allow userspace
1157 * the opportunity to look at it.
1159 bool exit_on_emulation_error;
1161 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1162 u32 user_space_msr_mask;
1163 struct kvm_x86_msr_filter __rcu *msr_filter;
1165 u32 hypercall_exit_enabled;
1167 /* Guest can access the SGX PROVISIONKEY. */
1168 bool sgx_provisioning_allowed;
1170 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1171 struct task_struct *nx_lpage_recovery_thread;
1173 #ifdef CONFIG_X86_64
1175 * Whether the TDP MMU is enabled for this VM. This contains a
1176 * snapshot of the TDP MMU module parameter from when the VM was
1177 * created and remains unchanged for the life of the VM. If this is
1178 * true, TDP MMU handler functions will run for various MMU
1181 bool tdp_mmu_enabled;
1184 * List of struct kvm_mmu_pages being used as roots.
1185 * All struct kvm_mmu_pages in the list should have
1188 * For reads, this list is protected by:
1189 * the MMU lock in read mode + RCU or
1190 * the MMU lock in write mode
1192 * For writes, this list is protected by:
1193 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1194 * the MMU lock in write mode
1196 * Roots will remain in the list until their tdp_mmu_root_count
1197 * drops to zero, at which point the thread that decremented the
1198 * count to zero should removed the root from the list and clean
1199 * it up, freeing the root after an RCU grace period.
1201 struct list_head tdp_mmu_roots;
1204 * List of struct kvmp_mmu_pages not being used as roots.
1205 * All struct kvm_mmu_pages in the list should have
1206 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1208 struct list_head tdp_mmu_pages;
1211 * Protects accesses to the following fields when the MMU lock
1212 * is held in read mode:
1213 * - tdp_mmu_roots (above)
1214 * - tdp_mmu_pages (above)
1215 * - the link field of struct kvm_mmu_pages used by the TDP MMU
1216 * - lpage_disallowed_mmu_pages
1217 * - the lpage_disallowed_link field of struct kvm_mmu_pages used
1219 * It is acceptable, but not necessary, to acquire this lock when
1220 * the thread holds the MMU lock in write mode.
1222 spinlock_t tdp_mmu_pages_lock;
1223 #endif /* CONFIG_X86_64 */
1226 * If set, at least one shadow root has been allocated. This flag
1227 * is used as one input when determining whether certain memslot
1228 * related allocations are necessary.
1230 bool shadow_root_allocated;
1232 #if IS_ENABLED(CONFIG_HYPERV)
1234 spinlock_t hv_root_tdp_lock;
1238 struct kvm_vm_stat {
1239 struct kvm_vm_stat_generic generic;
1240 u64 mmu_shadow_zapped;
1249 atomic64_t pages_4k;
1250 atomic64_t pages_2m;
1251 atomic64_t pages_1g;
1253 atomic64_t pages[KVM_NR_PAGE_SIZES];
1255 u64 nx_lpage_splits;
1256 u64 max_mmu_page_hash_collisions;
1257 u64 max_mmu_rmap_size;
1260 struct kvm_vcpu_stat {
1261 struct kvm_vcpu_stat_generic generic;
1271 u64 irq_window_exits;
1272 u64 nmi_window_exits;
1275 u64 request_irq_exits;
1277 u64 host_state_reload;
1280 u64 insn_emulation_fail;
1286 u64 directed_yield_attempted;
1287 u64 directed_yield_successful;
1291 struct x86_instruction_info;
1294 bool host_initiated;
1299 struct kvm_lapic_irq {
1307 bool msi_redir_hint;
1310 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1312 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1315 struct kvm_x86_ops {
1318 int (*hardware_enable)(void);
1319 void (*hardware_disable)(void);
1320 void (*hardware_unsetup)(void);
1321 bool (*cpu_has_accelerated_tpr)(void);
1322 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1323 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1325 unsigned int vm_size;
1326 int (*vm_init)(struct kvm *kvm);
1327 void (*vm_destroy)(struct kvm *kvm);
1329 /* Create, but do not attach this VCPU */
1330 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1331 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1332 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1334 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1335 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1336 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1338 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1339 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1340 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1341 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1342 void (*get_segment)(struct kvm_vcpu *vcpu,
1343 struct kvm_segment *var, int seg);
1344 int (*get_cpl)(struct kvm_vcpu *vcpu);
1345 void (*set_segment)(struct kvm_vcpu *vcpu,
1346 struct kvm_segment *var, int seg);
1347 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1348 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1349 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1350 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1351 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1352 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1353 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1354 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1355 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1356 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1357 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1358 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1359 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1360 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1361 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1362 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1364 void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1365 void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1366 int (*tlb_remote_flush)(struct kvm *kvm);
1367 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1368 struct kvm_tlb_range *range);
1371 * Flush any TLB entries associated with the given GVA.
1372 * Does not need to flush GPA->HPA mappings.
1373 * Can potentially get non-canonical addresses through INVLPGs, which
1374 * the implementation may choose to ignore if appropriate.
1376 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1379 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1380 * does not need to flush GPA->HPA mappings.
1382 void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1384 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1385 enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1386 int (*handle_exit)(struct kvm_vcpu *vcpu,
1387 enum exit_fastpath_completion exit_fastpath);
1388 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1389 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1390 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1391 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1392 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1393 unsigned char *hypercall_addr);
1394 void (*set_irq)(struct kvm_vcpu *vcpu);
1395 void (*set_nmi)(struct kvm_vcpu *vcpu);
1396 void (*queue_exception)(struct kvm_vcpu *vcpu);
1397 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1398 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1399 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1400 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1401 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1402 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1403 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1404 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1405 bool (*check_apicv_inhibit_reasons)(ulong bit);
1406 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1407 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1408 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1409 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1410 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1411 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1412 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1413 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1414 int trig_mode, int vector);
1415 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1416 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1417 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1418 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1420 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1423 bool (*has_wbinvd_exit)(void);
1425 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1426 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1427 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1428 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1431 * Retrieve somewhat arbitrary exit information. Intended to
1432 * be used only from within tracepoints or error paths.
1434 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1435 u64 *info1, u64 *info2,
1436 u32 *exit_int_info, u32 *exit_int_info_err_code);
1438 int (*check_intercept)(struct kvm_vcpu *vcpu,
1439 struct x86_instruction_info *info,
1440 enum x86_intercept_stage stage,
1441 struct x86_exception *exception);
1442 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1444 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1446 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1449 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1450 * value indicates CPU dirty logging is unsupported or disabled.
1452 int cpu_dirty_log_size;
1453 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1455 /* pmu operations of sub-arch */
1456 const struct kvm_pmu_ops *pmu_ops;
1457 const struct kvm_x86_nested_ops *nested_ops;
1459 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1460 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1462 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1463 uint32_t guest_irq, bool set);
1464 void (*start_assignment)(struct kvm *kvm);
1465 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1466 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1468 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1470 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1472 void (*setup_mce)(struct kvm_vcpu *vcpu);
1474 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1475 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1476 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1477 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1479 int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1480 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1481 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1482 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1483 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1485 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1487 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1488 void *insn, int insn_len);
1490 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1491 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1493 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1494 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1495 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1497 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1500 struct kvm_x86_nested_ops {
1501 void (*leave_nested)(struct kvm_vcpu *vcpu);
1502 int (*check_events)(struct kvm_vcpu *vcpu);
1503 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1504 void (*triple_fault)(struct kvm_vcpu *vcpu);
1505 int (*get_state)(struct kvm_vcpu *vcpu,
1506 struct kvm_nested_state __user *user_kvm_nested_state,
1507 unsigned user_data_size);
1508 int (*set_state)(struct kvm_vcpu *vcpu,
1509 struct kvm_nested_state __user *user_kvm_nested_state,
1510 struct kvm_nested_state *kvm_state);
1511 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1512 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1514 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1515 uint16_t *vmcs_version);
1516 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1519 struct kvm_x86_init_ops {
1520 int (*cpu_has_kvm_support)(void);
1521 int (*disabled_by_bios)(void);
1522 int (*check_processor_compatibility)(void);
1523 int (*hardware_setup)(void);
1524 unsigned int (*handle_intel_pt_intr)(void);
1526 struct kvm_x86_ops *runtime_ops;
1529 struct kvm_arch_async_pf {
1536 extern u32 __read_mostly kvm_nr_uret_msrs;
1537 extern u64 __read_mostly host_efer;
1538 extern bool __read_mostly allow_smaller_maxphyaddr;
1539 extern bool __read_mostly enable_apicv;
1540 extern struct kvm_x86_ops kvm_x86_ops;
1542 #define KVM_X86_OP(func) \
1543 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1544 #define KVM_X86_OP_NULL KVM_X86_OP
1545 #include <asm/kvm-x86-ops.h>
1547 static inline void kvm_ops_static_call_update(void)
1549 #define KVM_X86_OP(func) \
1550 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1551 #define KVM_X86_OP_NULL KVM_X86_OP
1552 #include <asm/kvm-x86-ops.h>
1555 #define __KVM_HAVE_ARCH_VM_ALLOC
1556 static inline struct kvm *kvm_arch_alloc_vm(void)
1558 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1561 #define __KVM_HAVE_ARCH_VM_FREE
1562 void kvm_arch_free_vm(struct kvm *kvm);
1564 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1565 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1567 if (kvm_x86_ops.tlb_remote_flush &&
1568 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1574 #define kvm_arch_pmi_in_guest(vcpu) \
1575 ((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1577 int kvm_mmu_module_init(void);
1578 void kvm_mmu_module_exit(void);
1580 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1581 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1582 void kvm_mmu_init_vm(struct kvm *kvm);
1583 void kvm_mmu_uninit_vm(struct kvm *kvm);
1585 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1586 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1587 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1588 const struct kvm_memory_slot *memslot,
1590 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1591 const struct kvm_memory_slot *memslot);
1592 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1593 const struct kvm_memory_slot *memslot);
1594 void kvm_mmu_zap_all(struct kvm *kvm);
1595 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1596 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1598 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1600 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1601 const void *val, int bytes);
1603 struct kvm_irq_mask_notifier {
1604 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1606 struct hlist_node link;
1609 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1610 struct kvm_irq_mask_notifier *kimn);
1611 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1612 struct kvm_irq_mask_notifier *kimn);
1613 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1616 extern bool tdp_enabled;
1618 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1620 /* control of guest tsc rate supported? */
1621 extern bool kvm_has_tsc_control;
1622 /* maximum supported tsc_khz for guests */
1623 extern u32 kvm_max_guest_tsc_khz;
1624 /* number of bits of the fractional part of the TSC scaling ratio */
1625 extern u8 kvm_tsc_scaling_ratio_frac_bits;
1626 /* maximum allowed value of TSC scaling ratio */
1627 extern u64 kvm_max_tsc_scaling_ratio;
1628 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1629 extern u64 kvm_default_tsc_scaling_ratio;
1630 /* bus lock detection supported? */
1631 extern bool kvm_has_bus_lock_exit;
1633 extern u64 kvm_mce_cap_supported;
1636 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1637 * userspace I/O) to indicate that the emulation context
1638 * should be reused as is, i.e. skip initialization of
1639 * emulation context, instruction fetch and decode.
1641 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1642 * Indicates that only select instructions (tagged with
1643 * EmulateOnUD) should be emulated (to minimize the emulator
1644 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1646 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1647 * decode the instruction length. For use *only* by
1648 * kvm_x86_ops.skip_emulated_instruction() implementations if
1649 * EMULTYPE_COMPLETE_USER_EXIT is not set.
1651 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1652 * retry native execution under certain conditions,
1653 * Can only be set in conjunction with EMULTYPE_PF.
1655 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1656 * triggered by KVM's magic "force emulation" prefix,
1657 * which is opt in via module param (off by default).
1658 * Bypasses EmulateOnUD restriction despite emulating
1659 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1660 * Used to test the full emulator from userspace.
1662 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1663 * backdoor emulation, which is opt in via module param.
1664 * VMware backdoor emulation handles select instructions
1665 * and reinjects the #GP for all other cases.
1667 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1668 * case the CR2/GPA value pass on the stack is valid.
1670 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1671 * state and inject single-step #DBs after skipping
1672 * an instruction (after completing userspace I/O).
1674 #define EMULTYPE_NO_DECODE (1 << 0)
1675 #define EMULTYPE_TRAP_UD (1 << 1)
1676 #define EMULTYPE_SKIP (1 << 2)
1677 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1678 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1679 #define EMULTYPE_VMWARE_GP (1 << 5)
1680 #define EMULTYPE_PF (1 << 6)
1681 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1683 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1684 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1685 void *insn, int insn_len);
1686 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1687 u64 *data, u8 ndata);
1688 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1690 void kvm_enable_efer_bits(u64);
1691 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1692 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1693 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1694 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1695 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1696 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1697 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1698 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1699 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1700 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1701 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1703 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1704 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1705 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1706 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1707 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1708 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1710 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1711 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1712 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1714 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1715 int reason, bool has_error_code, u32 error_code);
1717 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1718 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1719 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1720 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1721 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1722 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1723 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1724 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1725 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1726 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1727 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1728 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1730 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1733 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1734 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1735 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1737 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1738 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1740 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1741 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1742 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1743 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1744 struct x86_exception *fault);
1745 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1746 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1748 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1749 int irq_source_id, int level)
1751 /* Logical OR for level trig interrupt */
1753 __set_bit(irq_source_id, irq_state);
1755 __clear_bit(irq_source_id, irq_state);
1757 return !!(*irq_state);
1760 #define KVM_MMU_ROOT_CURRENT BIT(0)
1761 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1762 #define KVM_MMU_ROOTS_ALL (~0UL)
1764 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1765 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1767 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1769 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1771 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1772 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1773 ulong roots_to_free);
1774 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1775 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1776 struct x86_exception *exception);
1777 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1778 struct x86_exception *exception);
1779 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1780 struct x86_exception *exception);
1781 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1782 struct x86_exception *exception);
1784 bool kvm_apicv_activated(struct kvm *kvm);
1785 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1786 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1789 void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
1792 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1794 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1795 void *insn, int insn_len);
1796 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1797 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1798 gva_t gva, hpa_t root_hpa);
1799 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1800 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1802 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1803 int tdp_max_root_level, int tdp_huge_page_level);
1805 static inline u16 kvm_read_ldt(void)
1808 asm("sldt %0" : "=g"(ldt));
1812 static inline void kvm_load_ldt(u16 sel)
1814 asm("lldt %0" : : "rm"(sel));
1817 #ifdef CONFIG_X86_64
1818 static inline unsigned long read_msr(unsigned long msr)
1827 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1829 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1832 #define TSS_IOPB_BASE_OFFSET 0x66
1833 #define TSS_BASE_SIZE 0x68
1834 #define TSS_IOPB_SIZE (65536 / 8)
1835 #define TSS_REDIRECTION_SIZE (256 / 8)
1836 #define RMODE_TSS_SIZE \
1837 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1840 TASK_SWITCH_CALL = 0,
1841 TASK_SWITCH_IRET = 1,
1842 TASK_SWITCH_JMP = 2,
1843 TASK_SWITCH_GATE = 3,
1846 #define HF_GIF_MASK (1 << 0)
1847 #define HF_NMI_MASK (1 << 3)
1848 #define HF_IRET_MASK (1 << 4)
1849 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1850 #define HF_SMM_MASK (1 << 6)
1851 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1853 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1854 #define KVM_ADDRESS_SPACE_NUM 2
1856 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1857 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1859 #define KVM_ARCH_WANT_MMU_NOTIFIER
1861 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1862 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1863 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1864 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1865 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1866 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1868 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1869 unsigned long ipi_bitmap_high, u32 min,
1870 unsigned long icr, int op_64_bit);
1872 int kvm_add_user_return_msr(u32 msr);
1873 int kvm_find_user_return_msr(u32 msr);
1874 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1876 static inline bool kvm_is_supported_user_return_msr(u32 msr)
1878 return kvm_find_user_return_msr(msr) >= 0;
1881 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1882 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1883 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1884 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1886 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1887 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1889 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1890 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1891 unsigned long *vcpu_bitmap);
1893 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1894 struct kvm_async_pf *work);
1895 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1896 struct kvm_async_pf *work);
1897 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1898 struct kvm_async_pf *work);
1899 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1900 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1901 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1903 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1904 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1905 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1907 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1909 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1910 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1912 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1913 struct kvm_vcpu **dest_vcpu);
1915 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1916 struct kvm_lapic_irq *irq);
1918 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1920 /* We can only post Fixed and LowPrio IRQs */
1921 return (irq->delivery_mode == APIC_DM_FIXED ||
1922 irq->delivery_mode == APIC_DM_LOWEST);
1925 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1927 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1930 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1932 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1935 static inline int kvm_cpu_get_apicid(int mps_cpu)
1937 #ifdef CONFIG_X86_LOCAL_APIC
1938 return default_cpu_present_to_apicid(mps_cpu);
1945 #define put_smstate(type, buf, offset, val) \
1946 *(type *)((buf) + (offset) - 0x7e00) = val
1948 #define GET_SMSTATE(type, buf, offset) \
1949 (*(type *)((buf) + (offset) - 0x7e00))
1951 int kvm_cpu_dirty_log_size(void);
1953 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
1955 #define KVM_CLOCK_VALID_FLAGS \
1956 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
1958 #endif /* _ASM_X86_KVM_HOST_H */