1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Kernel-based Virtual Machine driver for Linux
5 * This header defines architecture specific interfaces, x86 version
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
11 #include <linux/types.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
30 #include <asm/pvclock-abi.h>
33 #include <asm/msr-index.h>
35 #include <asm/kvm_page_track.h>
36 #include <asm/kvm_vcpu_regs.h>
37 #include <asm/hyperv-tlfs.h>
39 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41 #define KVM_MAX_VCPUS 1024
44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45 * might be larger than the actual number of VCPUs because the
46 * APIC ID encodes CPU topology information.
48 * In the worst case, we'll need less than one extra bit for the
49 * Core ID, and less than one extra bit for the Package (Die) ID,
50 * so ratio of 4 should be enough.
52 #define KVM_VCPU_ID_RATIO 4
53 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
55 /* memory slots that are not exposed to userspace */
56 #define KVM_INTERNAL_MEM_SLOTS 3
58 #define KVM_HALT_POLL_NS_DEFAULT 200000
60 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
62 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 KVM_DIRTY_LOG_INITIALLY_SET)
65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
66 KVM_BUS_LOCK_DETECTION_EXIT)
68 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
69 KVM_X86_NOTIFY_VMEXIT_USER)
71 /* x86-specific vcpu->requests bit members */
72 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
73 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
74 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
75 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
76 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
77 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
78 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
79 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
80 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
81 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
82 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
83 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
84 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
85 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
86 #define KVM_REQ_MCLOCK_INPROGRESS \
87 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
88 #define KVM_REQ_SCAN_IOAPIC \
89 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
91 #define KVM_REQ_APIC_PAGE_RELOAD \
92 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
94 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
95 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
96 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
97 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
98 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
99 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
100 #define KVM_REQ_APICV_UPDATE \
101 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
103 #define KVM_REQ_TLB_FLUSH_GUEST \
104 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
106 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
107 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
108 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
110 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
112 #define CR0_RESERVED_BITS \
113 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
114 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
115 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
117 #define CR4_RESERVED_BITS \
118 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
119 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
120 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
121 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
122 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
123 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
125 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
129 #define INVALID_PAGE (~(hpa_t)0)
130 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
132 #define INVALID_GPA (~(gpa_t)0)
134 /* KVM Hugepage definitions for x86 */
135 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
136 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
137 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
138 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
139 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
140 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
141 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
143 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
144 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
145 #define KVM_MMU_HASH_SHIFT 12
146 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
147 #define KVM_MIN_FREE_MMU_PAGES 5
148 #define KVM_REFILL_PAGES 25
149 #define KVM_MAX_CPUID_ENTRIES 256
150 #define KVM_NR_FIXED_MTRR_REGION 88
151 #define KVM_NR_VAR_MTRR 8
153 #define ASYNC_PF_PER_VCPU 64
156 VCPU_REGS_RAX = __VCPU_REGS_RAX,
157 VCPU_REGS_RCX = __VCPU_REGS_RCX,
158 VCPU_REGS_RDX = __VCPU_REGS_RDX,
159 VCPU_REGS_RBX = __VCPU_REGS_RBX,
160 VCPU_REGS_RSP = __VCPU_REGS_RSP,
161 VCPU_REGS_RBP = __VCPU_REGS_RBP,
162 VCPU_REGS_RSI = __VCPU_REGS_RSI,
163 VCPU_REGS_RDI = __VCPU_REGS_RDI,
165 VCPU_REGS_R8 = __VCPU_REGS_R8,
166 VCPU_REGS_R9 = __VCPU_REGS_R9,
167 VCPU_REGS_R10 = __VCPU_REGS_R10,
168 VCPU_REGS_R11 = __VCPU_REGS_R11,
169 VCPU_REGS_R12 = __VCPU_REGS_R12,
170 VCPU_REGS_R13 = __VCPU_REGS_R13,
171 VCPU_REGS_R14 = __VCPU_REGS_R14,
172 VCPU_REGS_R15 = __VCPU_REGS_R15,
177 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
183 VCPU_EXREG_EXIT_INFO_1,
184 VCPU_EXREG_EXIT_INFO_2,
198 enum exit_fastpath_completion {
200 EXIT_FASTPATH_REENTER_GUEST,
201 EXIT_FASTPATH_EXIT_HANDLED,
203 typedef enum exit_fastpath_completion fastpath_t;
205 struct x86_emulate_ctxt;
206 struct x86_exception;
208 enum x86_intercept_stage;
210 #define KVM_NR_DB_REGS 4
212 #define DR6_BUS_LOCK (1 << 11)
213 #define DR6_BD (1 << 13)
214 #define DR6_BS (1 << 14)
215 #define DR6_BT (1 << 15)
216 #define DR6_RTM (1 << 16)
218 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
219 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
220 * they will never be 0 for now, but when they are defined
221 * in the future it will require no code change.
223 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
225 #define DR6_ACTIVE_LOW 0xffff0ff0
226 #define DR6_VOLATILE 0x0001e80f
227 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
229 #define DR7_BP_EN_MASK 0x000000ff
230 #define DR7_GE (1 << 9)
231 #define DR7_GD (1 << 13)
232 #define DR7_FIXED_1 0x00000400
233 #define DR7_VOLATILE 0xffff2bff
235 #define KVM_GUESTDBG_VALID_MASK \
236 (KVM_GUESTDBG_ENABLE | \
237 KVM_GUESTDBG_SINGLESTEP | \
238 KVM_GUESTDBG_USE_HW_BP | \
239 KVM_GUESTDBG_USE_SW_BP | \
240 KVM_GUESTDBG_INJECT_BP | \
241 KVM_GUESTDBG_INJECT_DB | \
242 KVM_GUESTDBG_BLOCKIRQ)
245 #define PFERR_PRESENT_BIT 0
246 #define PFERR_WRITE_BIT 1
247 #define PFERR_USER_BIT 2
248 #define PFERR_RSVD_BIT 3
249 #define PFERR_FETCH_BIT 4
250 #define PFERR_PK_BIT 5
251 #define PFERR_SGX_BIT 15
252 #define PFERR_GUEST_FINAL_BIT 32
253 #define PFERR_GUEST_PAGE_BIT 33
254 #define PFERR_IMPLICIT_ACCESS_BIT 48
256 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
257 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
258 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
259 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
260 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
261 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
262 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
263 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
264 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
265 #define PFERR_IMPLICIT_ACCESS (1ULL << PFERR_IMPLICIT_ACCESS_BIT)
267 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
271 /* apic attention bits */
272 #define KVM_APIC_CHECK_VAPIC 0
274 * The following bit is set with PV-EOI, unset on EOI.
275 * We detect PV-EOI changes by guest by comparing
276 * this bit with PV-EOI in guest memory.
277 * See the implementation in apic_update_pv_eoi.
279 #define KVM_APIC_PV_EOI_PENDING 1
281 struct kvm_kernel_irq_routing_entry;
284 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
285 * also includes TDP pages) to determine whether or not a page can be used in
286 * the given MMU context. This is a subset of the overall kvm_cpu_role to
287 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
288 * 2 bytes per gfn instead of 4 bytes per gfn.
290 * Upper-level shadow pages having gptes are tracked for write-protection via
291 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
292 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
293 * gfn_track will overflow and explosions will ensure.
295 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
296 * cannot be reused. The ability to reuse a SP is tracked by its role, which
297 * incorporates various mode bits and properties of the SP. Roughly speaking,
298 * the number of unique SPs that can theoretically be created is 2^n, where n
299 * is the number of bits that are used to compute the role.
301 * But, even though there are 19 bits in the mask below, not all combinations
302 * of modes and flags are possible:
304 * - invalid shadow pages are not accounted, so the bits are effectively 18
306 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
307 * execonly and ad_disabled are only used for nested EPT which has
308 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
310 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
311 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
312 * paging has exactly one upper level, making level completely redundant
313 * when has_4_byte_gpte=1.
315 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
316 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
318 * Therefore, the maximum number of possible upper-level shadow pages for a
319 * single gfn is a bit less than 2^13.
321 union kvm_mmu_page_role {
325 unsigned has_4_byte_gpte:1;
332 unsigned smep_andnot_wp:1;
333 unsigned smap_andnot_wp:1;
334 unsigned ad_disabled:1;
335 unsigned guest_mode:1;
336 unsigned passthrough:1;
340 * This is left at the top of the word so that
341 * kvm_memslots_for_spte_role can extract it with a
342 * simple shift. While there is room, give it a whole
343 * byte so it is also faster to load it from memory.
350 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
351 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
352 * including on nested transitions, if nothing in the full role changes then
353 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
354 * don't treat all-zero structure as valid data.
356 * The properties that are tracked in the extended role but not the page role
357 * are for things that either (a) do not affect the validity of the shadow page
358 * or (b) are indirectly reflected in the shadow page's role. For example,
359 * CR4.PKE only affects permission checks for software walks of the guest page
360 * tables (because KVM doesn't support Protection Keys with shadow paging), and
361 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
363 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
364 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
365 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
366 * SMAP aware regardless of CR0.WP.
368 union kvm_mmu_extended_role {
371 unsigned int valid:1;
372 unsigned int execonly:1;
373 unsigned int cr4_pse:1;
374 unsigned int cr4_pke:1;
375 unsigned int cr4_smap:1;
376 unsigned int cr4_smep:1;
377 unsigned int cr4_la57:1;
378 unsigned int efer_lma:1;
385 union kvm_mmu_page_role base;
386 union kvm_mmu_extended_role ext;
390 struct kvm_rmap_head {
394 struct kvm_pio_request {
395 unsigned long linear_rip;
402 #define PT64_ROOT_MAX_LEVEL 5
404 struct rsvd_bits_validate {
405 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
409 struct kvm_mmu_root_info {
414 #define KVM_MMU_ROOT_INFO_INVALID \
415 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
417 #define KVM_MMU_NUM_PREV_ROOTS 3
419 #define KVM_HAVE_MMU_RWLOCK
422 struct kvm_page_fault;
425 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
426 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
430 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
431 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
432 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
433 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
434 struct x86_exception *fault);
435 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
436 gpa_t gva_or_gpa, u64 access,
437 struct x86_exception *exception);
438 int (*sync_page)(struct kvm_vcpu *vcpu,
439 struct kvm_mmu_page *sp);
440 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
441 struct kvm_mmu_root_info root;
442 union kvm_cpu_role cpu_role;
443 union kvm_mmu_page_role root_role;
446 * The pkru_mask indicates if protection key checks are needed. It
447 * consists of 16 domains indexed by page fault error code bits [4:1],
448 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
449 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
453 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
456 * Bitmap; bit set = permission fault
457 * Byte index: page fault error code [4:1]
458 * Bit index: pte permissions in ACC_* format
467 * check zero bits on shadow page table entries, these
468 * bits include not only hardware reserved bits but also
469 * the bits spte never used.
471 struct rsvd_bits_validate shadow_zero_check;
473 struct rsvd_bits_validate guest_rsvd_check;
475 u64 pdptrs[4]; /* pae */
478 struct kvm_tlb_range {
493 struct perf_event *perf_event;
494 struct kvm_vcpu *vcpu;
496 * eventsel value for general purpose counters,
497 * ctrl value for fixed counters.
504 #define KVM_PMC_MAX_FIXED 3
506 unsigned nr_arch_gp_counters;
507 unsigned nr_arch_fixed_counters;
508 unsigned available_event_types;
510 u64 fixed_ctr_ctrl_mask;
513 u64 counter_bitmask[2];
514 u64 global_ctrl_mask;
515 u64 global_ovf_ctrl_mask;
519 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
520 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
521 struct irq_work irq_work;
522 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
523 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
524 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
528 u64 pebs_enable_mask;
530 u64 pebs_data_cfg_mask;
533 * If a guest counter is cross-mapped to host counter with different
534 * index, its PEBS capability will be temporarily disabled.
536 * The user should make sure that this mask is updated
537 * after disabling interrupts and before perf_guest_get_msrs();
539 u64 host_cross_mapped_mask;
542 * The gate to release perf_events not marked in
543 * pmc_in_use only once in a vcpu time slice.
548 * The total number of programmed perf_events and it helps to avoid
549 * redundant check before cleanup if guest don't use vPMU at all.
557 KVM_DEBUGREG_BP_ENABLED = 1,
558 KVM_DEBUGREG_WONT_EXIT = 2,
561 struct kvm_mtrr_range {
564 struct list_head node;
568 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
569 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
572 struct list_head head;
575 /* Hyper-V SynIC timer */
576 struct kvm_vcpu_hv_stimer {
577 struct hrtimer timer;
579 union hv_stimer_config config;
582 struct hv_message msg;
586 /* Hyper-V synthetic interrupt controller (SynIC)*/
587 struct kvm_vcpu_hv_synic {
592 atomic64_t sint[HV_SYNIC_SINT_COUNT];
593 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
594 DECLARE_BITMAP(auto_eoi_bitmap, 256);
595 DECLARE_BITMAP(vec_bitmap, 256);
597 bool dont_zero_synic_pages;
600 /* Hyper-V per vcpu emulation context */
602 struct kvm_vcpu *vcpu;
606 struct kvm_vcpu_hv_synic synic;
607 struct kvm_hyperv_exit exit;
608 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
609 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
612 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
613 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
614 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
615 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
616 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
617 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
621 /* Xen HVM per vcpu emulation context */
622 struct kvm_vcpu_xen {
624 u32 current_runstate;
626 struct gfn_to_pfn_cache vcpu_info_cache;
627 struct gfn_to_pfn_cache vcpu_time_info_cache;
628 struct gfn_to_pfn_cache runstate_cache;
630 u64 runstate_entry_time;
631 u64 runstate_times[4];
632 unsigned long evtchn_pending_sel;
633 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
635 u64 timer_expires; /* In guest epoch */
636 atomic_t timer_pending;
637 struct hrtimer timer;
639 struct timer_list poll_timer;
642 struct kvm_vcpu_arch {
644 * rip and regs accesses must go through
645 * kvm_{register,rip}_{read,write} functions.
647 unsigned long regs[NR_VCPU_REGS];
652 unsigned long cr0_guest_owned_bits;
656 unsigned long cr4_guest_owned_bits;
657 unsigned long cr4_guest_rsvd_bits;
664 struct kvm_lapic *apic; /* kernel irqchip context */
665 bool load_eoi_exitmap_pending;
666 DECLARE_BITMAP(ioapic_handled_vectors, 256);
667 unsigned long apic_attention;
668 int32_t apic_arb_prio;
670 u64 ia32_misc_enable_msr;
673 bool at_instruction_boundary;
674 bool tpr_access_reporting;
676 bool xfd_no_write_intercept;
678 u64 microcode_version;
679 u64 arch_capabilities;
680 u64 perf_capabilities;
683 * Paging state of the vcpu
685 * If the vcpu runs in guest mode with two level paging this still saves
686 * the paging mode of the l1 guest. This context is always used to
691 /* Non-nested MMU for L1 */
692 struct kvm_mmu root_mmu;
694 /* L1 MMU when running nested */
695 struct kvm_mmu guest_mmu;
698 * Paging state of an L2 guest (used for nested npt)
700 * This context will save all necessary information to walk page tables
701 * of an L2 guest. This context is only initialized for page table
702 * walking and not for faulting since we never handle l2 page faults on
705 struct kvm_mmu nested_mmu;
708 * Pointer to the mmu context currently used for
709 * gva_to_gpa translations.
711 struct kvm_mmu *walk_mmu;
713 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
714 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
715 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
716 struct kvm_mmu_memory_cache mmu_page_header_cache;
719 * QEMU userspace and the guest each have their own FPU state.
720 * In vcpu_run, we switch between the user and guest FPU contexts.
721 * While running a VCPU, the VCPU thread will have the guest FPU
724 * Note that while the PKRU state lives inside the fpu registers,
725 * it is switched out separately at VMENTER and VMEXIT time. The
726 * "guest_fpstate" state here contains the guest FPU context, with the
729 struct fpu_guest guest_fpu;
733 struct kvm_pio_request pio;
736 unsigned sev_pio_count;
738 u8 event_exit_inst_len;
740 struct kvm_queued_exception {
746 unsigned long payload;
751 struct kvm_queued_interrupt {
757 int halt_request; /* real mode on Intel only */
760 struct kvm_cpuid_entry2 *cpuid_entries;
763 u64 reserved_gpa_bits;
766 /* emulate context */
768 struct x86_emulate_ctxt *emulate_ctxt;
769 bool emulate_regs_need_sync_to_vcpu;
770 bool emulate_regs_need_sync_from_vcpu;
771 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
774 struct pvclock_vcpu_time_info hv_clock;
775 unsigned int hw_tsc_khz;
776 struct gfn_to_pfn_cache pv_time;
777 /* set guest stopped flag in pvclock flags field */
778 bool pvclock_set_guest_stopped_request;
784 struct gfn_to_hva_cache cache;
788 u64 tsc_offset; /* current tsc offset */
791 u64 tsc_offset_adjustment;
794 u64 this_tsc_generation;
796 bool tsc_always_catchup;
797 s8 virtual_tsc_shift;
798 u32 virtual_tsc_mult;
800 s64 ia32_tsc_adjust_msr;
801 u64 msr_ia32_power_ctl;
802 u64 l1_tsc_scaling_ratio;
803 u64 tsc_scaling_ratio; /* current scaling ratio */
805 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
806 unsigned nmi_pending; /* NMI queued after currently running handler */
807 bool nmi_injected; /* Trying to inject an NMI this entry */
808 bool smi_pending; /* SMI queued after currently running handler */
809 u8 handling_intr_from_guest;
811 struct kvm_mtrr mtrr_state;
814 unsigned switch_db_regs;
815 unsigned long db[KVM_NR_DB_REGS];
818 unsigned long eff_db[KVM_NR_DB_REGS];
819 unsigned long guest_debug_dr7;
820 u64 msr_platform_info;
821 u64 msr_misc_features_enables;
830 /* Cache MMIO info */
832 unsigned mmio_access;
838 /* used for guest single stepping over the given code position */
839 unsigned long singlestep_rip;
842 struct kvm_vcpu_hv *hyperv;
843 struct kvm_vcpu_xen xen;
845 cpumask_var_t wbinvd_dirty_mask;
847 unsigned long last_retry_eip;
848 unsigned long last_retry_addr;
852 gfn_t gfns[ASYNC_PF_PER_VCPU];
853 struct gfn_to_hva_cache data;
854 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
855 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
860 unsigned long nested_apf_token;
861 bool delivery_as_pf_vmexit;
862 bool pageready_pending;
865 /* OSVW MSRs (AMD only) */
873 struct gfn_to_hva_cache data;
876 u64 msr_kvm_poll_control;
879 * Indicates the guest is trying to write a gfn that contains one or
880 * more of the PTEs used to translate the write itself, i.e. the access
881 * is changing its own translation in the guest page tables. KVM exits
882 * to userspace if emulation of the faulting instruction fails and this
883 * flag is set, as KVM cannot make forward progress.
885 * If emulation fails for a write to guest page tables, KVM unprotects
886 * (zaps) the shadow page for the target gfn and resumes the guest to
887 * retry the non-emulatable instruction (on hardware). Unprotecting the
888 * gfn doesn't allow forward progress for a self-changing access because
889 * doing so also zaps the translation for the gfn, i.e. retrying the
890 * instruction will hit a !PRESENT fault, which results in a new shadow
891 * page and sends KVM back to square one.
893 bool write_fault_to_shadow_pgtable;
895 /* set at EPT violation at this point */
896 unsigned long exit_qualification;
898 /* pv related host specific info */
903 int pending_ioapic_eoi;
904 int pending_external_vector;
906 /* be preempted when it's in kernel-mode(cpl=0) */
907 bool preempted_in_kernel;
909 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
912 /* Host CPU on which VM-entry was most recently attempted */
913 int last_vmentry_cpu;
915 /* AMD MSRC001_0015 Hardware Configuration */
918 /* pv related cpuid info */
921 * value of the eax register in the KVM_CPUID_FEATURES CPUID
927 * indicates whether pv emulation should be disabled if features
928 * are not present in the guest's cpuid
933 /* Protected Guests */
934 bool guest_state_protected;
937 * Set when PDPTS were loaded directly by the userspace without
938 * reading the guest memory
940 bool pdptrs_from_userspace;
942 #if IS_ENABLED(CONFIG_HYPERV)
947 struct kvm_lpage_info {
951 struct kvm_arch_memory_slot {
952 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
953 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
954 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
958 * We use as the mode the number of bits allocated in the LDR for the
959 * logical processor ID. It happens that these are all powers of two.
960 * This makes it is very easy to detect cases where the APICs are
961 * configured for multiple modes; in that case, we cannot use the map and
962 * hence cannot use kvm_irq_delivery_to_apic_fast either.
964 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
965 #define KVM_APIC_MODE_XAPIC_FLAT 8
966 #define KVM_APIC_MODE_X2APIC 16
968 struct kvm_apic_map {
973 struct kvm_lapic *xapic_flat_map[8];
974 struct kvm_lapic *xapic_cluster_map[16][4];
976 struct kvm_lapic *phys_map[];
979 /* Hyper-V synthetic debugger (SynDbg)*/
980 struct kvm_hv_syndbg {
991 /* Current state of Hyper-V TSC page clocksource */
992 enum hv_tsc_page_status {
993 /* TSC page was not set up or disabled */
994 HV_TSC_PAGE_UNSET = 0,
995 /* TSC page MSR was written by the guest, update pending */
996 HV_TSC_PAGE_GUEST_CHANGED,
997 /* TSC page update was triggered from the host side */
998 HV_TSC_PAGE_HOST_CHANGED,
999 /* TSC page was properly set up and is currently active */
1001 /* TSC page was set up with an inaccessible GPA */
1005 /* Hyper-V emulation context */
1007 struct mutex hv_lock;
1011 enum hv_tsc_page_status hv_tsc_page_status;
1013 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1014 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1017 struct ms_hyperv_tsc_page tsc_ref;
1019 struct idr conn_to_evt;
1021 u64 hv_reenlightenment_control;
1022 u64 hv_tsc_emulation_control;
1023 u64 hv_tsc_emulation_status;
1025 /* How many vCPUs have VP index != vCPU index */
1026 atomic_t num_mismatched_vp_indexes;
1029 * How many SynICs use 'AutoEOI' feature
1030 * (protected by arch.apicv_update_lock)
1032 unsigned int synic_auto_eoi_used;
1034 struct hv_partition_assist_pg *hv_pa_pg;
1035 struct kvm_hv_syndbg hv_syndbg;
1038 struct msr_bitmap_range {
1042 unsigned long *bitmap;
1045 /* Xen emulation context */
1050 struct gfn_to_pfn_cache shinfo_cache;
1051 struct idr evtchn_ports;
1052 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1055 enum kvm_irqchip_mode {
1057 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1058 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1061 struct kvm_x86_msr_filter {
1063 bool default_allow:1;
1064 struct msr_bitmap_range ranges[16];
1067 enum kvm_apicv_inhibit {
1069 /********************************************************************/
1070 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1071 /********************************************************************/
1074 * APIC acceleration is disabled by a module parameter
1075 * and/or not supported in hardware.
1077 APICV_INHIBIT_REASON_DISABLE,
1080 * APIC acceleration is inhibited because AutoEOI feature is
1081 * being used by a HyperV guest.
1083 APICV_INHIBIT_REASON_HYPERV,
1086 * APIC acceleration is inhibited because the userspace didn't yet
1087 * enable the kernel/split irqchip.
1089 APICV_INHIBIT_REASON_ABSENT,
1091 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1092 * (out of band, debug measure of blocking all interrupts on this vCPU)
1093 * was enabled, to avoid AVIC/APICv bypassing it.
1095 APICV_INHIBIT_REASON_BLOCKIRQ,
1098 * For simplicity, the APIC acceleration is inhibited
1099 * first time either APIC ID or APIC base are changed by the guest
1100 * from their reset values.
1102 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1103 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1105 /******************************************************/
1106 /* INHIBITs that are relevant only to the AMD's AVIC. */
1107 /******************************************************/
1110 * AVIC is inhibited on a vCPU because it runs a nested guest.
1112 * This is needed because unlike APICv, the peers of this vCPU
1113 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1114 * a vCPU runs nested.
1116 APICV_INHIBIT_REASON_NESTED,
1119 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1120 * which cannot be injected when the AVIC is enabled, thus AVIC
1121 * is inhibited while KVM waits for IRQ window.
1123 APICV_INHIBIT_REASON_IRQWIN,
1126 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1127 * which AVIC doesn't support for edge triggered interrupts.
1129 APICV_INHIBIT_REASON_PIT_REINJ,
1132 * AVIC is disabled because SEV doesn't support it.
1134 APICV_INHIBIT_REASON_SEV,
1138 unsigned long n_used_mmu_pages;
1139 unsigned long n_requested_mmu_pages;
1140 unsigned long n_max_mmu_pages;
1141 unsigned int indirect_shadow_pages;
1143 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1144 struct list_head active_mmu_pages;
1145 struct list_head zapped_obsolete_pages;
1146 struct list_head lpage_disallowed_mmu_pages;
1147 struct kvm_page_track_notifier_node mmu_sp_tracker;
1148 struct kvm_page_track_notifier_head track_notifier_head;
1150 * Protects marking pages unsync during page faults, as TDP MMU page
1151 * faults only take mmu_lock for read. For simplicity, the unsync
1152 * pages lock is always taken when marking pages unsync regardless of
1153 * whether mmu_lock is held for read or write.
1155 spinlock_t mmu_unsync_pages_lock;
1157 struct list_head assigned_dev_head;
1158 struct iommu_domain *iommu_domain;
1159 bool iommu_noncoherent;
1160 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1161 atomic_t noncoherent_dma_count;
1162 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1163 atomic_t assigned_device_count;
1164 struct kvm_pic *vpic;
1165 struct kvm_ioapic *vioapic;
1166 struct kvm_pit *vpit;
1167 atomic_t vapics_in_nmi_mode;
1168 struct mutex apic_map_lock;
1169 struct kvm_apic_map __rcu *apic_map;
1170 atomic_t apic_map_dirty;
1172 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1173 struct rw_semaphore apicv_update_lock;
1175 bool apic_access_memslot_enabled;
1176 unsigned long apicv_inhibit_reasons;
1180 bool mwait_in_guest;
1182 bool pause_in_guest;
1183 bool cstate_in_guest;
1185 unsigned long irq_sources_bitmap;
1186 s64 kvmclock_offset;
1189 * This also protects nr_vcpus_matched_tsc which is read from a
1190 * preemption-disabled region, so it must be a raw spinlock.
1192 raw_spinlock_t tsc_write_lock;
1196 u64 last_tsc_offset;
1200 u64 cur_tsc_generation;
1201 int nr_vcpus_matched_tsc;
1203 u32 default_tsc_khz;
1205 seqcount_raw_spinlock_t pvclock_sc;
1206 bool use_master_clock;
1207 u64 master_kernel_ns;
1208 u64 master_cycle_now;
1209 struct delayed_work kvmclock_update_work;
1210 struct delayed_work kvmclock_sync_work;
1212 struct kvm_xen_hvm_config xen_hvm_config;
1214 /* reads protected by irq_srcu, writes by irq_lock */
1215 struct hlist_head mask_notifier_list;
1217 struct kvm_hv hyperv;
1220 bool backwards_tsc_observed;
1221 bool boot_vcpu_runs_old_kvmclock;
1224 u64 disabled_quirks;
1225 int cpu_dirty_logging_count;
1227 enum kvm_irqchip_mode irqchip_mode;
1228 u8 nr_reserved_ioapic_pins;
1230 bool disabled_lapic_found;
1233 bool x2apic_broadcast_quirk_disabled;
1235 bool guest_can_read_msr_platform_info;
1236 bool exception_payload_enabled;
1238 bool triple_fault_event;
1240 bool bus_lock_detection_enabled;
1244 u32 notify_vmexit_flags;
1246 * If exit_on_emulation_error is set, and the in-kernel instruction
1247 * emulator fails to emulate an instruction, allow userspace
1248 * the opportunity to look at it.
1250 bool exit_on_emulation_error;
1252 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1253 u32 user_space_msr_mask;
1254 struct kvm_x86_msr_filter __rcu *msr_filter;
1256 u32 hypercall_exit_enabled;
1258 /* Guest can access the SGX PROVISIONKEY. */
1259 bool sgx_provisioning_allowed;
1261 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1262 struct task_struct *nx_lpage_recovery_thread;
1264 #ifdef CONFIG_X86_64
1266 * Whether the TDP MMU is enabled for this VM. This contains a
1267 * snapshot of the TDP MMU module parameter from when the VM was
1268 * created and remains unchanged for the life of the VM. If this is
1269 * true, TDP MMU handler functions will run for various MMU
1272 bool tdp_mmu_enabled;
1275 * List of struct kvm_mmu_pages being used as roots.
1276 * All struct kvm_mmu_pages in the list should have
1279 * For reads, this list is protected by:
1280 * the MMU lock in read mode + RCU or
1281 * the MMU lock in write mode
1283 * For writes, this list is protected by:
1284 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1285 * the MMU lock in write mode
1287 * Roots will remain in the list until their tdp_mmu_root_count
1288 * drops to zero, at which point the thread that decremented the
1289 * count to zero should removed the root from the list and clean
1290 * it up, freeing the root after an RCU grace period.
1292 struct list_head tdp_mmu_roots;
1295 * List of struct kvmp_mmu_pages not being used as roots.
1296 * All struct kvm_mmu_pages in the list should have
1297 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1299 struct list_head tdp_mmu_pages;
1302 * Protects accesses to the following fields when the MMU lock
1303 * is held in read mode:
1304 * - tdp_mmu_roots (above)
1305 * - tdp_mmu_pages (above)
1306 * - the link field of struct kvm_mmu_pages used by the TDP MMU
1307 * - lpage_disallowed_mmu_pages
1308 * - the lpage_disallowed_link field of struct kvm_mmu_pages used
1310 * It is acceptable, but not necessary, to acquire this lock when
1311 * the thread holds the MMU lock in write mode.
1313 spinlock_t tdp_mmu_pages_lock;
1314 struct workqueue_struct *tdp_mmu_zap_wq;
1315 #endif /* CONFIG_X86_64 */
1318 * If set, at least one shadow root has been allocated. This flag
1319 * is used as one input when determining whether certain memslot
1320 * related allocations are necessary.
1322 bool shadow_root_allocated;
1324 #if IS_ENABLED(CONFIG_HYPERV)
1326 spinlock_t hv_root_tdp_lock;
1329 * VM-scope maximum vCPU ID. Used to determine the size of structures
1330 * that increase along with the maximum vCPU ID, in which case, using
1331 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1335 bool disable_nx_huge_pages;
1338 * Memory caches used to allocate shadow pages when performing eager
1339 * page splitting. No need for a shadowed_info_cache since eager page
1340 * splitting only allocates direct shadow pages.
1342 * Protected by kvm->slots_lock.
1344 struct kvm_mmu_memory_cache split_shadow_page_cache;
1345 struct kvm_mmu_memory_cache split_page_header_cache;
1348 * Memory cache used to allocate pte_list_desc structs while splitting
1349 * huge pages. In the worst case, to split one huge page, 512
1350 * pte_list_desc structs are needed to add each lower level leaf sptep
1351 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1354 * Protected by kvm->slots_lock.
1356 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1357 struct kvm_mmu_memory_cache split_desc_cache;
1360 struct kvm_vm_stat {
1361 struct kvm_vm_stat_generic generic;
1362 u64 mmu_shadow_zapped;
1371 atomic64_t pages_4k;
1372 atomic64_t pages_2m;
1373 atomic64_t pages_1g;
1375 atomic64_t pages[KVM_NR_PAGE_SIZES];
1377 u64 nx_lpage_splits;
1378 u64 max_mmu_page_hash_collisions;
1379 u64 max_mmu_rmap_size;
1382 struct kvm_vcpu_stat {
1383 struct kvm_vcpu_stat_generic generic;
1389 u64 pf_mmio_spte_created;
1398 u64 irq_window_exits;
1399 u64 nmi_window_exits;
1402 u64 request_irq_exits;
1404 u64 host_state_reload;
1407 u64 insn_emulation_fail;
1413 u64 directed_yield_attempted;
1414 u64 directed_yield_successful;
1415 u64 preemption_reported;
1416 u64 preemption_other;
1418 u64 notify_window_exits;
1421 struct x86_instruction_info;
1424 bool host_initiated;
1429 struct kvm_lapic_irq {
1437 bool msi_redir_hint;
1440 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1442 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1445 struct kvm_x86_ops {
1448 int (*hardware_enable)(void);
1449 void (*hardware_disable)(void);
1450 void (*hardware_unsetup)(void);
1451 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1452 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1454 unsigned int vm_size;
1455 int (*vm_init)(struct kvm *kvm);
1456 void (*vm_destroy)(struct kvm *kvm);
1458 /* Create, but do not attach this VCPU */
1459 int (*vcpu_precreate)(struct kvm *kvm);
1460 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1461 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1462 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1464 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1465 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1466 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1468 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1469 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1470 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1471 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1472 void (*get_segment)(struct kvm_vcpu *vcpu,
1473 struct kvm_segment *var, int seg);
1474 int (*get_cpl)(struct kvm_vcpu *vcpu);
1475 void (*set_segment)(struct kvm_vcpu *vcpu,
1476 struct kvm_segment *var, int seg);
1477 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1478 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1479 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1480 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1481 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1482 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1483 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1484 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1485 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1486 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1487 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1488 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1489 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1490 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1491 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1492 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1494 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1495 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1496 int (*tlb_remote_flush)(struct kvm *kvm);
1497 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1498 struct kvm_tlb_range *range);
1501 * Flush any TLB entries associated with the given GVA.
1502 * Does not need to flush GPA->HPA mappings.
1503 * Can potentially get non-canonical addresses through INVLPGs, which
1504 * the implementation may choose to ignore if appropriate.
1506 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1509 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1510 * does not need to flush GPA->HPA mappings.
1512 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1514 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1515 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1516 int (*handle_exit)(struct kvm_vcpu *vcpu,
1517 enum exit_fastpath_completion exit_fastpath);
1518 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1519 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1520 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1521 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1522 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1523 unsigned char *hypercall_addr);
1524 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1525 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1526 void (*queue_exception)(struct kvm_vcpu *vcpu);
1527 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1528 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1529 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1530 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1531 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1532 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1533 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1534 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1535 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1536 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1537 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1538 void (*hwapic_isr_update)(int isr);
1539 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1540 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1541 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1542 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1543 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1544 int trig_mode, int vector);
1545 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1546 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1547 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1548 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1550 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1553 bool (*has_wbinvd_exit)(void);
1555 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1556 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1557 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1558 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1561 * Retrieve somewhat arbitrary exit information. Intended to
1562 * be used only from within tracepoints or error paths.
1564 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1565 u64 *info1, u64 *info2,
1566 u32 *exit_int_info, u32 *exit_int_info_err_code);
1568 int (*check_intercept)(struct kvm_vcpu *vcpu,
1569 struct x86_instruction_info *info,
1570 enum x86_intercept_stage stage,
1571 struct x86_exception *exception);
1572 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1574 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1576 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1579 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1580 * value indicates CPU dirty logging is unsupported or disabled.
1582 int cpu_dirty_log_size;
1583 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1585 const struct kvm_x86_nested_ops *nested_ops;
1587 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1588 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1590 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1591 uint32_t guest_irq, bool set);
1592 void (*pi_start_assignment)(struct kvm *kvm);
1593 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1594 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1596 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1598 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1600 void (*setup_mce)(struct kvm_vcpu *vcpu);
1602 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1603 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1604 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1605 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1607 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1608 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1609 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1610 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1611 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1612 void (*guest_memory_reclaimed)(struct kvm *kvm);
1614 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1616 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1617 void *insn, int insn_len);
1619 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1620 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1622 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1623 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1624 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1626 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1629 * Returns vCPU specific APICv inhibit reasons
1631 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1634 struct kvm_x86_nested_ops {
1635 void (*leave_nested)(struct kvm_vcpu *vcpu);
1636 int (*check_events)(struct kvm_vcpu *vcpu);
1637 bool (*handle_page_fault_workaround)(struct kvm_vcpu *vcpu,
1638 struct x86_exception *fault);
1639 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1640 void (*triple_fault)(struct kvm_vcpu *vcpu);
1641 int (*get_state)(struct kvm_vcpu *vcpu,
1642 struct kvm_nested_state __user *user_kvm_nested_state,
1643 unsigned user_data_size);
1644 int (*set_state)(struct kvm_vcpu *vcpu,
1645 struct kvm_nested_state __user *user_kvm_nested_state,
1646 struct kvm_nested_state *kvm_state);
1647 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1648 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1650 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1651 uint16_t *vmcs_version);
1652 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1655 struct kvm_x86_init_ops {
1656 int (*cpu_has_kvm_support)(void);
1657 int (*disabled_by_bios)(void);
1658 int (*check_processor_compatibility)(void);
1659 int (*hardware_setup)(void);
1660 unsigned int (*handle_intel_pt_intr)(void);
1662 struct kvm_x86_ops *runtime_ops;
1663 struct kvm_pmu_ops *pmu_ops;
1666 struct kvm_arch_async_pf {
1673 extern u32 __read_mostly kvm_nr_uret_msrs;
1674 extern u64 __read_mostly host_efer;
1675 extern bool __read_mostly allow_smaller_maxphyaddr;
1676 extern bool __read_mostly enable_apicv;
1677 extern struct kvm_x86_ops kvm_x86_ops;
1679 #define KVM_X86_OP(func) \
1680 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1681 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1682 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1683 #include <asm/kvm-x86-ops.h>
1685 #define __KVM_HAVE_ARCH_VM_ALLOC
1686 static inline struct kvm *kvm_arch_alloc_vm(void)
1688 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1691 #define __KVM_HAVE_ARCH_VM_FREE
1692 void kvm_arch_free_vm(struct kvm *kvm);
1694 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1695 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1697 if (kvm_x86_ops.tlb_remote_flush &&
1698 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1704 #define kvm_arch_pmi_in_guest(vcpu) \
1705 ((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1707 void __init kvm_mmu_x86_module_init(void);
1708 int kvm_mmu_vendor_module_init(void);
1709 void kvm_mmu_vendor_module_exit(void);
1711 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1712 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1713 int kvm_mmu_init_vm(struct kvm *kvm);
1714 void kvm_mmu_uninit_vm(struct kvm *kvm);
1716 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1717 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1718 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1719 const struct kvm_memory_slot *memslot,
1721 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1722 const struct kvm_memory_slot *memslot,
1724 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1725 const struct kvm_memory_slot *memslot,
1728 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1729 const struct kvm_memory_slot *memslot);
1730 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1731 const struct kvm_memory_slot *memslot);
1732 void kvm_mmu_zap_all(struct kvm *kvm);
1733 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1734 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1736 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1738 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1739 const void *val, int bytes);
1741 struct kvm_irq_mask_notifier {
1742 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1744 struct hlist_node link;
1747 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1748 struct kvm_irq_mask_notifier *kimn);
1749 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1750 struct kvm_irq_mask_notifier *kimn);
1751 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1754 extern bool tdp_enabled;
1756 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1759 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1760 * userspace I/O) to indicate that the emulation context
1761 * should be reused as is, i.e. skip initialization of
1762 * emulation context, instruction fetch and decode.
1764 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1765 * Indicates that only select instructions (tagged with
1766 * EmulateOnUD) should be emulated (to minimize the emulator
1767 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1769 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1770 * decode the instruction length. For use *only* by
1771 * kvm_x86_ops.skip_emulated_instruction() implementations if
1772 * EMULTYPE_COMPLETE_USER_EXIT is not set.
1774 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1775 * retry native execution under certain conditions,
1776 * Can only be set in conjunction with EMULTYPE_PF.
1778 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1779 * triggered by KVM's magic "force emulation" prefix,
1780 * which is opt in via module param (off by default).
1781 * Bypasses EmulateOnUD restriction despite emulating
1782 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1783 * Used to test the full emulator from userspace.
1785 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1786 * backdoor emulation, which is opt in via module param.
1787 * VMware backdoor emulation handles select instructions
1788 * and reinjects the #GP for all other cases.
1790 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1791 * case the CR2/GPA value pass on the stack is valid.
1793 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1794 * state and inject single-step #DBs after skipping
1795 * an instruction (after completing userspace I/O).
1797 #define EMULTYPE_NO_DECODE (1 << 0)
1798 #define EMULTYPE_TRAP_UD (1 << 1)
1799 #define EMULTYPE_SKIP (1 << 2)
1800 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1801 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1802 #define EMULTYPE_VMWARE_GP (1 << 5)
1803 #define EMULTYPE_PF (1 << 6)
1804 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1806 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1807 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1808 void *insn, int insn_len);
1809 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1810 u64 *data, u8 ndata);
1811 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1813 void kvm_enable_efer_bits(u64);
1814 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1815 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1816 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1817 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1818 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1819 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1820 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1821 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1822 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1823 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1824 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1826 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1827 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1828 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1829 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1830 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1831 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1833 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1834 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1835 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1837 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1838 int reason, bool has_error_code, u32 error_code);
1840 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1841 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1842 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1844 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1845 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1846 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1847 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1848 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1849 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1850 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1852 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1853 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1855 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1856 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1857 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1859 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1860 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1861 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1862 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1863 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1864 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1865 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1866 struct x86_exception *fault);
1867 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1868 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1870 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1871 int irq_source_id, int level)
1873 /* Logical OR for level trig interrupt */
1875 __set_bit(irq_source_id, irq_state);
1877 __clear_bit(irq_source_id, irq_state);
1879 return !!(*irq_state);
1882 #define KVM_MMU_ROOT_CURRENT BIT(0)
1883 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1884 #define KVM_MMU_ROOTS_ALL (~0UL)
1886 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1887 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1889 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1891 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1893 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1894 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1895 ulong roots_to_free);
1896 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1897 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1898 struct x86_exception *exception);
1899 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1900 struct x86_exception *exception);
1901 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1902 struct x86_exception *exception);
1903 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1904 struct x86_exception *exception);
1906 bool kvm_apicv_activated(struct kvm *kvm);
1907 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1908 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1909 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1910 enum kvm_apicv_inhibit reason, bool set);
1911 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1912 enum kvm_apicv_inhibit reason, bool set);
1914 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1915 enum kvm_apicv_inhibit reason)
1917 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1920 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1921 enum kvm_apicv_inhibit reason)
1923 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
1926 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1928 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1929 void *insn, int insn_len);
1930 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1931 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1932 gva_t gva, hpa_t root_hpa);
1933 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1934 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1936 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1937 int tdp_max_root_level, int tdp_huge_page_level);
1939 static inline u16 kvm_read_ldt(void)
1942 asm("sldt %0" : "=g"(ldt));
1946 static inline void kvm_load_ldt(u16 sel)
1948 asm("lldt %0" : : "rm"(sel));
1951 #ifdef CONFIG_X86_64
1952 static inline unsigned long read_msr(unsigned long msr)
1961 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1963 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1966 #define TSS_IOPB_BASE_OFFSET 0x66
1967 #define TSS_BASE_SIZE 0x68
1968 #define TSS_IOPB_SIZE (65536 / 8)
1969 #define TSS_REDIRECTION_SIZE (256 / 8)
1970 #define RMODE_TSS_SIZE \
1971 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1974 TASK_SWITCH_CALL = 0,
1975 TASK_SWITCH_IRET = 1,
1976 TASK_SWITCH_JMP = 2,
1977 TASK_SWITCH_GATE = 3,
1980 #define HF_GIF_MASK (1 << 0)
1981 #define HF_NMI_MASK (1 << 3)
1982 #define HF_IRET_MASK (1 << 4)
1983 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1984 #define HF_SMM_MASK (1 << 6)
1985 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1987 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1988 #define KVM_ADDRESS_SPACE_NUM 2
1990 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1991 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1993 #define KVM_ARCH_WANT_MMU_NOTIFIER
1995 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1996 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1997 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1998 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1999 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2000 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2002 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2003 unsigned long ipi_bitmap_high, u32 min,
2004 unsigned long icr, int op_64_bit);
2006 int kvm_add_user_return_msr(u32 msr);
2007 int kvm_find_user_return_msr(u32 msr);
2008 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2010 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2012 return kvm_find_user_return_msr(msr) >= 0;
2015 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2016 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2017 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2018 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2020 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2021 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2023 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2024 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2025 unsigned long *vcpu_bitmap);
2027 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2028 struct kvm_async_pf *work);
2029 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2030 struct kvm_async_pf *work);
2031 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2032 struct kvm_async_pf *work);
2033 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2034 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2035 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2037 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2038 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2039 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2041 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2043 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2044 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2046 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2047 struct kvm_vcpu **dest_vcpu);
2049 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2050 struct kvm_lapic_irq *irq);
2052 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2054 /* We can only post Fixed and LowPrio IRQs */
2055 return (irq->delivery_mode == APIC_DM_FIXED ||
2056 irq->delivery_mode == APIC_DM_LOWEST);
2059 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2061 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2064 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2066 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2069 static inline int kvm_cpu_get_apicid(int mps_cpu)
2071 #ifdef CONFIG_X86_LOCAL_APIC
2072 return default_cpu_present_to_apicid(mps_cpu);
2079 #define put_smstate(type, buf, offset, val) \
2080 *(type *)((buf) + (offset) - 0x7e00) = val
2082 #define GET_SMSTATE(type, buf, offset) \
2083 (*(type *)((buf) + (offset) - 0x7e00))
2085 int kvm_cpu_dirty_log_size(void);
2087 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2089 #define KVM_CLOCK_VALID_FLAGS \
2090 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2092 #define KVM_X86_VALID_QUIRKS \
2093 (KVM_X86_QUIRK_LINT0_REENABLED | \
2094 KVM_X86_QUIRK_CD_NW_CLEARED | \
2095 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2096 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2097 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2098 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2099 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2101 #endif /* _ASM_X86_KVM_HOST_H */