2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
15 #include <linux/sched.h>
16 #include <linux/hardirq.h>
19 struct user_i387_struct;
21 extern int init_fpu(struct task_struct *child);
22 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
23 extern void math_state_restore(void);
25 extern bool irq_fpu_usable(void);
26 extern void kernel_fpu_begin(void);
27 extern void kernel_fpu_end(void);
30 * Some instructions like VIA's padlock instructions generate a spurious
31 * DNA fault but don't modify SSE registers. And these instructions
32 * get used from interrupt context as well. To prevent these kernel instructions
33 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
34 * should use them only in the context of irq_ts_save/restore()
36 static inline int irq_ts_save(void)
39 * If in process context and not atomic, we can take a spurious DNA fault.
40 * Otherwise, doing clts() in process context requires disabling preemption
41 * or some heavy lifting like kernel_fpu_begin()
46 if (read_cr0() & X86_CR0_TS) {
54 static inline void irq_ts_restore(int TS_state)
61 * The question "does this thread have fpu access?"
62 * is slightly racy, since preemption could come in
63 * and revoke it immediately after the test.
65 * However, even in that very unlikely scenario,
66 * we can just assume we have FPU access - typically
67 * to save the FP state - we'll just take a #NM
68 * fault and get the FPU access back.
70 static inline int user_has_fpu(void)
72 return current->thread.fpu.has_fpu;
75 extern void unlazy_fpu(struct task_struct *tsk);
77 #endif /* __ASSEMBLY__ */
79 #endif /* _ASM_X86_I387_H */