x86/hyperv: Fix the detection of E820_TYPE_PRAM in a Gen2 VM
[platform/kernel/linux-starfive.git] / arch / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9
10 #define pr_fmt(fmt)  "Hyper-V: " fmt
11
12 #include <linux/efi.h>
13 #include <linux/types.h>
14 #include <linux/bitfield.h>
15 #include <linux/io.h>
16 #include <asm/apic.h>
17 #include <asm/desc.h>
18 #include <asm/e820/api.h>
19 #include <asm/sev.h>
20 #include <asm/ibt.h>
21 #include <asm/hypervisor.h>
22 #include <asm/hyperv-tlfs.h>
23 #include <asm/mshyperv.h>
24 #include <asm/idtentry.h>
25 #include <asm/set_memory.h>
26 #include <linux/kexec.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/hyperv.h>
31 #include <linux/slab.h>
32 #include <linux/kernel.h>
33 #include <linux/cpuhotplug.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include <linux/highmem.h>
37
38 int hyperv_init_cpuhp;
39 u64 hv_current_partition_id = ~0ull;
40 EXPORT_SYMBOL_GPL(hv_current_partition_id);
41
42 void *hv_hypercall_pg;
43 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
44
45 union hv_ghcb * __percpu *hv_ghcb_pg;
46
47 /* Storage to save the hypercall page temporarily for hibernation */
48 static void *hv_hypercall_pg_saved;
49
50 struct hv_vp_assist_page **hv_vp_assist_page;
51 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
52
53 static int hyperv_init_ghcb(void)
54 {
55         u64 ghcb_gpa;
56         void *ghcb_va;
57         void **ghcb_base;
58
59         if (!ms_hyperv.paravisor_present || !hv_isolation_type_snp())
60                 return 0;
61
62         if (!hv_ghcb_pg)
63                 return -EINVAL;
64
65         /*
66          * GHCB page is allocated by paravisor. The address
67          * returned by MSR_AMD64_SEV_ES_GHCB is above shared
68          * memory boundary and map it here.
69          */
70         rdmsrl(MSR_AMD64_SEV_ES_GHCB, ghcb_gpa);
71
72         /* Mask out vTOM bit. ioremap_cache() maps decrypted */
73         ghcb_gpa &= ~ms_hyperv.shared_gpa_boundary;
74         ghcb_va = (void *)ioremap_cache(ghcb_gpa, HV_HYP_PAGE_SIZE);
75         if (!ghcb_va)
76                 return -ENOMEM;
77
78         ghcb_base = (void **)this_cpu_ptr(hv_ghcb_pg);
79         *ghcb_base = ghcb_va;
80
81         return 0;
82 }
83
84 static int hv_cpu_init(unsigned int cpu)
85 {
86         union hv_vp_assist_msr_contents msr = { 0 };
87         struct hv_vp_assist_page **hvp;
88         int ret;
89
90         ret = hv_common_cpu_init(cpu);
91         if (ret)
92                 return ret;
93
94         if (!hv_vp_assist_page)
95                 return 0;
96
97         hvp = &hv_vp_assist_page[cpu];
98         if (hv_root_partition) {
99                 /*
100                  * For root partition we get the hypervisor provided VP assist
101                  * page, instead of allocating a new page.
102                  */
103                 rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
104                 *hvp = memremap(msr.pfn << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT,
105                                 PAGE_SIZE, MEMREMAP_WB);
106         } else {
107                 /*
108                  * The VP assist page is an "overlay" page (see Hyper-V TLFS's
109                  * Section 5.2.1 "GPA Overlay Pages"). Here it must be zeroed
110                  * out to make sure we always write the EOI MSR in
111                  * hv_apic_eoi_write() *after* the EOI optimization is disabled
112                  * in hv_cpu_die(), otherwise a CPU may not be stopped in the
113                  * case of CPU offlining and the VM will hang.
114                  */
115                 if (!*hvp) {
116                         *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO);
117
118                         /*
119                          * Hyper-V should never specify a VM that is a Confidential
120                          * VM and also running in the root partition. Root partition
121                          * is blocked to run in Confidential VM. So only decrypt assist
122                          * page in non-root partition here.
123                          */
124                         if (*hvp && !ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
125                                 WARN_ON_ONCE(set_memory_decrypted((unsigned long)(*hvp), 1));
126                                 memset(*hvp, 0, PAGE_SIZE);
127                         }
128                 }
129
130                 if (*hvp)
131                         msr.pfn = vmalloc_to_pfn(*hvp);
132
133         }
134         if (!WARN_ON(!(*hvp))) {
135                 msr.enable = 1;
136                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
137         }
138
139         return hyperv_init_ghcb();
140 }
141
142 static void (*hv_reenlightenment_cb)(void);
143
144 static void hv_reenlightenment_notify(struct work_struct *dummy)
145 {
146         struct hv_tsc_emulation_status emu_status;
147
148         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
149
150         /* Don't issue the callback if TSC accesses are not emulated */
151         if (hv_reenlightenment_cb && emu_status.inprogress)
152                 hv_reenlightenment_cb();
153 }
154 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
155
156 void hyperv_stop_tsc_emulation(void)
157 {
158         u64 freq;
159         struct hv_tsc_emulation_status emu_status;
160
161         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
162         emu_status.inprogress = 0;
163         wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
164
165         rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
166         tsc_khz = div64_u64(freq, 1000);
167 }
168 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
169
170 static inline bool hv_reenlightenment_available(void)
171 {
172         /*
173          * Check for required features and privileges to make TSC frequency
174          * change notifications work.
175          */
176         return ms_hyperv.features & HV_ACCESS_FREQUENCY_MSRS &&
177                 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
178                 ms_hyperv.features & HV_ACCESS_REENLIGHTENMENT;
179 }
180
181 DEFINE_IDTENTRY_SYSVEC(sysvec_hyperv_reenlightenment)
182 {
183         apic_eoi();
184         inc_irq_stat(irq_hv_reenlightenment_count);
185         schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
186 }
187
188 void set_hv_tscchange_cb(void (*cb)(void))
189 {
190         struct hv_reenlightenment_control re_ctrl = {
191                 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
192                 .enabled = 1,
193         };
194         struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
195
196         if (!hv_reenlightenment_available()) {
197                 pr_warn("reenlightenment support is unavailable\n");
198                 return;
199         }
200
201         if (!hv_vp_index)
202                 return;
203
204         hv_reenlightenment_cb = cb;
205
206         /* Make sure callback is registered before we write to MSRs */
207         wmb();
208
209         re_ctrl.target_vp = hv_vp_index[get_cpu()];
210
211         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
212         wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
213
214         put_cpu();
215 }
216 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
217
218 void clear_hv_tscchange_cb(void)
219 {
220         struct hv_reenlightenment_control re_ctrl;
221
222         if (!hv_reenlightenment_available())
223                 return;
224
225         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
226         re_ctrl.enabled = 0;
227         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
228
229         hv_reenlightenment_cb = NULL;
230 }
231 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
232
233 static int hv_cpu_die(unsigned int cpu)
234 {
235         struct hv_reenlightenment_control re_ctrl;
236         unsigned int new_cpu;
237         void **ghcb_va;
238
239         if (hv_ghcb_pg) {
240                 ghcb_va = (void **)this_cpu_ptr(hv_ghcb_pg);
241                 if (*ghcb_va)
242                         iounmap(*ghcb_va);
243                 *ghcb_va = NULL;
244         }
245
246         hv_common_cpu_die(cpu);
247
248         if (hv_vp_assist_page && hv_vp_assist_page[cpu]) {
249                 union hv_vp_assist_msr_contents msr = { 0 };
250                 if (hv_root_partition) {
251                         /*
252                          * For root partition the VP assist page is mapped to
253                          * hypervisor provided page, and thus we unmap the
254                          * page here and nullify it, so that in future we have
255                          * correct page address mapped in hv_cpu_init.
256                          */
257                         memunmap(hv_vp_assist_page[cpu]);
258                         hv_vp_assist_page[cpu] = NULL;
259                         rdmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
260                         msr.enable = 0;
261                 }
262                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, msr.as_uint64);
263         }
264
265         if (hv_reenlightenment_cb == NULL)
266                 return 0;
267
268         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
269         if (re_ctrl.target_vp == hv_vp_index[cpu]) {
270                 /*
271                  * Reassign reenlightenment notifications to some other online
272                  * CPU or just disable the feature if there are no online CPUs
273                  * left (happens on hibernation).
274                  */
275                 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
276
277                 if (new_cpu < nr_cpu_ids)
278                         re_ctrl.target_vp = hv_vp_index[new_cpu];
279                 else
280                         re_ctrl.enabled = 0;
281
282                 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
283         }
284
285         return 0;
286 }
287
288 static int __init hv_pci_init(void)
289 {
290         bool gen2vm = efi_enabled(EFI_BOOT);
291
292         /*
293          * A Generation-2 VM doesn't support legacy PCI/PCIe, so both
294          * raw_pci_ops and raw_pci_ext_ops are NULL, and pci_subsys_init() ->
295          * pcibios_init() doesn't call pcibios_resource_survey() ->
296          * e820__reserve_resources_late(); as a result, any emulated persistent
297          * memory of E820_TYPE_PRAM (12) via the kernel parameter
298          * memmap=nn[KMG]!ss is not added into iomem_resource and hence can't be
299          * detected by register_e820_pmem(). Fix this by directly calling
300          * e820__reserve_resources_late() here: e820__reserve_resources_late()
301          * depends on e820__reserve_resources(), which has been called earlier
302          * from setup_arch(). Note: e820__reserve_resources_late() also adds
303          * any memory of E820_TYPE_PMEM (7) into iomem_resource, and
304          * acpi_nfit_register_region() -> acpi_nfit_insert_resource() ->
305          * region_intersects() returns REGION_INTERSECTS, so the memory of
306          * E820_TYPE_PMEM won't get added twice.
307          *
308          * We return 0 here so that pci_arch_init() won't print the warning:
309          * "PCI: Fatal: No config space access function found"
310          */
311         if (gen2vm) {
312                 e820__reserve_resources_late();
313                 return 0;
314         }
315
316         /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
317         return 1;
318 }
319
320 static int hv_suspend(void)
321 {
322         union hv_x64_msr_hypercall_contents hypercall_msr;
323         int ret;
324
325         if (hv_root_partition)
326                 return -EPERM;
327
328         /*
329          * Reset the hypercall page as it is going to be invalidated
330          * across hibernation. Setting hv_hypercall_pg to NULL ensures
331          * that any subsequent hypercall operation fails safely instead of
332          * crashing due to an access of an invalid page. The hypercall page
333          * pointer is restored on resume.
334          */
335         hv_hypercall_pg_saved = hv_hypercall_pg;
336         hv_hypercall_pg = NULL;
337
338         /* Disable the hypercall page in the hypervisor */
339         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
340         hypercall_msr.enable = 0;
341         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
342
343         ret = hv_cpu_die(0);
344         return ret;
345 }
346
347 static void hv_resume(void)
348 {
349         union hv_x64_msr_hypercall_contents hypercall_msr;
350         int ret;
351
352         ret = hv_cpu_init(0);
353         WARN_ON(ret);
354
355         /* Re-enable the hypercall page */
356         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
357         hypercall_msr.enable = 1;
358         hypercall_msr.guest_physical_address =
359                 vmalloc_to_pfn(hv_hypercall_pg_saved);
360         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
361
362         hv_hypercall_pg = hv_hypercall_pg_saved;
363         hv_hypercall_pg_saved = NULL;
364
365         /*
366          * Reenlightenment notifications are disabled by hv_cpu_die(0),
367          * reenable them here if hv_reenlightenment_cb was previously set.
368          */
369         if (hv_reenlightenment_cb)
370                 set_hv_tscchange_cb(hv_reenlightenment_cb);
371 }
372
373 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
374 static struct syscore_ops hv_syscore_ops = {
375         .suspend        = hv_suspend,
376         .resume         = hv_resume,
377 };
378
379 static void (* __initdata old_setup_percpu_clockev)(void);
380
381 static void __init hv_stimer_setup_percpu_clockev(void)
382 {
383         /*
384          * Ignore any errors in setting up stimer clockevents
385          * as we can run with the LAPIC timer as a fallback.
386          */
387         (void)hv_stimer_alloc(false);
388
389         /*
390          * Still register the LAPIC timer, because the direct-mode STIMER is
391          * not supported by old versions of Hyper-V. This also allows users
392          * to switch to LAPIC timer via /sys, if they want to.
393          */
394         if (old_setup_percpu_clockev)
395                 old_setup_percpu_clockev();
396 }
397
398 static void __init hv_get_partition_id(void)
399 {
400         struct hv_get_partition_id *output_page;
401         u64 status;
402         unsigned long flags;
403
404         local_irq_save(flags);
405         output_page = *this_cpu_ptr(hyperv_pcpu_output_arg);
406         status = hv_do_hypercall(HVCALL_GET_PARTITION_ID, NULL, output_page);
407         if (!hv_result_success(status)) {
408                 /* No point in proceeding if this failed */
409                 pr_err("Failed to get partition ID: %lld\n", status);
410                 BUG();
411         }
412         hv_current_partition_id = output_page->partition_id;
413         local_irq_restore(flags);
414 }
415
416 #if IS_ENABLED(CONFIG_HYPERV_VTL_MODE)
417 static u8 __init get_vtl(void)
418 {
419         u64 control = HV_HYPERCALL_REP_COMP_1 | HVCALL_GET_VP_REGISTERS;
420         struct hv_get_vp_registers_input *input;
421         struct hv_get_vp_registers_output *output;
422         unsigned long flags;
423         u64 ret;
424
425         local_irq_save(flags);
426         input = *this_cpu_ptr(hyperv_pcpu_input_arg);
427         output = (struct hv_get_vp_registers_output *)input;
428
429         memset(input, 0, struct_size(input, element, 1));
430         input->header.partitionid = HV_PARTITION_ID_SELF;
431         input->header.vpindex = HV_VP_INDEX_SELF;
432         input->header.inputvtl = 0;
433         input->element[0].name0 = HV_X64_REGISTER_VSM_VP_STATUS;
434
435         ret = hv_do_hypercall(control, input, output);
436         if (hv_result_success(ret)) {
437                 ret = output->as64.low & HV_X64_VTL_MASK;
438         } else {
439                 pr_err("Failed to get VTL(error: %lld) exiting...\n", ret);
440                 BUG();
441         }
442
443         local_irq_restore(flags);
444         return ret;
445 }
446 #else
447 static inline u8 get_vtl(void) { return 0; }
448 #endif
449
450 /*
451  * This function is to be invoked early in the boot sequence after the
452  * hypervisor has been detected.
453  *
454  * 1. Setup the hypercall page.
455  * 2. Register Hyper-V specific clocksource.
456  * 3. Setup Hyper-V specific APIC entry points.
457  */
458 void __init hyperv_init(void)
459 {
460         u64 guest_id;
461         union hv_x64_msr_hypercall_contents hypercall_msr;
462         int cpuhp;
463
464         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
465                 return;
466
467         if (hv_common_init())
468                 return;
469
470         /*
471          * The VP assist page is useless to a TDX guest: the only use we
472          * would have for it is lazy EOI, which can not be used with TDX.
473          */
474         if (hv_isolation_type_tdx())
475                 hv_vp_assist_page = NULL;
476         else
477                 hv_vp_assist_page = kcalloc(num_possible_cpus(),
478                                             sizeof(*hv_vp_assist_page),
479                                             GFP_KERNEL);
480         if (!hv_vp_assist_page) {
481                 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
482
483                 if (!hv_isolation_type_tdx())
484                         goto common_free;
485         }
486
487         if (ms_hyperv.paravisor_present && hv_isolation_type_snp()) {
488                 /* Negotiate GHCB Version. */
489                 if (!hv_ghcb_negotiate_protocol())
490                         hv_ghcb_terminate(SEV_TERM_SET_GEN,
491                                           GHCB_SEV_ES_PROT_UNSUPPORTED);
492
493                 hv_ghcb_pg = alloc_percpu(union hv_ghcb *);
494                 if (!hv_ghcb_pg)
495                         goto free_vp_assist_page;
496         }
497
498         cpuhp = cpuhp_setup_state(CPUHP_AP_HYPERV_ONLINE, "x86/hyperv_init:online",
499                                   hv_cpu_init, hv_cpu_die);
500         if (cpuhp < 0)
501                 goto free_ghcb_page;
502
503         /*
504          * Setup the hypercall page and enable hypercalls.
505          * 1. Register the guest ID
506          * 2. Enable the hypercall and register the hypercall page
507          *
508          * A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg:
509          * when the hypercall input is a page, such a VM must pass a decrypted
510          * page to Hyper-V, e.g. hv_post_message() uses the per-CPU page
511          * hyperv_pcpu_input_arg, which is decrypted if no paravisor is present.
512          *
513          * A TDX VM with the paravisor uses hv_hypercall_pg for most hypercalls,
514          * which are handled by the paravisor and the VM must use an encrypted
515          * input page: in such a VM, the hyperv_pcpu_input_arg is encrypted and
516          * used in the hypercalls, e.g. see hv_mark_gpa_visibility() and
517          * hv_arch_irq_unmask(). Such a VM uses TDX GHCI for two hypercalls:
518          * 1. HVCALL_SIGNAL_EVENT: see vmbus_set_event() and _hv_do_fast_hypercall8().
519          * 2. HVCALL_POST_MESSAGE: the input page must be a decrypted page, i.e.
520          * hv_post_message() in such a VM can't use the encrypted hyperv_pcpu_input_arg;
521          * instead, hv_post_message() uses the post_msg_page, which is decrypted
522          * in such a VM and is only used in such a VM.
523          */
524         guest_id = hv_generate_guest_id(LINUX_VERSION_CODE);
525         wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
526
527         /* With the paravisor, the VM must also write the ID via GHCB/GHCI */
528         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, guest_id);
529
530         /* A TDX VM with no paravisor only uses TDX GHCI rather than hv_hypercall_pg */
531         if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
532                 goto skip_hypercall_pg_init;
533
534         hv_hypercall_pg = __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START,
535                         VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX,
536                         VM_FLUSH_RESET_PERMS, NUMA_NO_NODE,
537                         __builtin_return_address(0));
538         if (hv_hypercall_pg == NULL)
539                 goto clean_guest_os_id;
540
541         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
542         hypercall_msr.enable = 1;
543
544         if (hv_root_partition) {
545                 struct page *pg;
546                 void *src;
547
548                 /*
549                  * For the root partition, the hypervisor will set up its
550                  * hypercall page. The hypervisor guarantees it will not show
551                  * up in the root's address space. The root can't change the
552                  * location of the hypercall page.
553                  *
554                  * Order is important here. We must enable the hypercall page
555                  * so it is populated with code, then copy the code to an
556                  * executable page.
557                  */
558                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
559
560                 pg = vmalloc_to_page(hv_hypercall_pg);
561                 src = memremap(hypercall_msr.guest_physical_address << PAGE_SHIFT, PAGE_SIZE,
562                                 MEMREMAP_WB);
563                 BUG_ON(!src);
564                 memcpy_to_page(pg, 0, src, HV_HYP_PAGE_SIZE);
565                 memunmap(src);
566
567                 hv_remap_tsc_clocksource();
568         } else {
569                 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
570                 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
571         }
572
573 skip_hypercall_pg_init:
574         /*
575          * Some versions of Hyper-V that provide IBT in guest VMs have a bug
576          * in that there's no ENDBR64 instruction at the entry to the
577          * hypercall page. Because hypercalls are invoked via an indirect call
578          * to the hypercall page, all hypercall attempts fail when IBT is
579          * enabled, and Linux panics. For such buggy versions, disable IBT.
580          *
581          * Fixed versions of Hyper-V always provide ENDBR64 on the hypercall
582          * page, so if future Linux kernel versions enable IBT for 32-bit
583          * builds, additional hypercall page hackery will be required here
584          * to provide an ENDBR32.
585          */
586 #ifdef CONFIG_X86_KERNEL_IBT
587         if (cpu_feature_enabled(X86_FEATURE_IBT) &&
588             *(u32 *)hv_hypercall_pg != gen_endbr()) {
589                 setup_clear_cpu_cap(X86_FEATURE_IBT);
590                 pr_warn("Disabling IBT because of Hyper-V bug\n");
591         }
592 #endif
593
594         /*
595          * hyperv_init() is called before LAPIC is initialized: see
596          * apic_intr_mode_init() -> x86_platform.apic_post_init() and
597          * apic_bsp_setup() -> setup_local_APIC(). The direct-mode STIMER
598          * depends on LAPIC, so hv_stimer_alloc() should be called from
599          * x86_init.timers.setup_percpu_clockev.
600          */
601         old_setup_percpu_clockev = x86_init.timers.setup_percpu_clockev;
602         x86_init.timers.setup_percpu_clockev = hv_stimer_setup_percpu_clockev;
603
604         hv_apic_init();
605
606         x86_init.pci.arch_init = hv_pci_init;
607
608         register_syscore_ops(&hv_syscore_ops);
609
610         hyperv_init_cpuhp = cpuhp;
611
612         if (cpuid_ebx(HYPERV_CPUID_FEATURES) & HV_ACCESS_PARTITION_ID)
613                 hv_get_partition_id();
614
615         BUG_ON(hv_root_partition && hv_current_partition_id == ~0ull);
616
617 #ifdef CONFIG_PCI_MSI
618         /*
619          * If we're running as root, we want to create our own PCI MSI domain.
620          * We can't set this in hv_pci_init because that would be too late.
621          */
622         if (hv_root_partition)
623                 x86_init.irqs.create_pci_msi_domain = hv_create_pci_msi_domain;
624 #endif
625
626         /* Query the VMs extended capability once, so that it can be cached. */
627         hv_query_ext_cap(0);
628
629         /* Find the VTL */
630         ms_hyperv.vtl = get_vtl();
631
632         if (ms_hyperv.vtl > 0) /* non default VTL */
633                 hv_vtl_early_init();
634
635         return;
636
637 clean_guest_os_id:
638         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
639         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
640         cpuhp_remove_state(cpuhp);
641 free_ghcb_page:
642         free_percpu(hv_ghcb_pg);
643 free_vp_assist_page:
644         kfree(hv_vp_assist_page);
645         hv_vp_assist_page = NULL;
646 common_free:
647         hv_common_free();
648 }
649
650 /*
651  * This routine is called before kexec/kdump, it does the required cleanup.
652  */
653 void hyperv_cleanup(void)
654 {
655         union hv_x64_msr_hypercall_contents hypercall_msr;
656         union hv_reference_tsc_msr tsc_msr;
657
658         /* Reset our OS id */
659         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
660         hv_ivm_msr_write(HV_X64_MSR_GUEST_OS_ID, 0);
661
662         /*
663          * Reset hypercall page reference before reset the page,
664          * let hypercall operations fail safely rather than
665          * panic the kernel for using invalid hypercall page
666          */
667         hv_hypercall_pg = NULL;
668
669         /* Reset the hypercall page */
670         hypercall_msr.as_uint64 = hv_get_register(HV_X64_MSR_HYPERCALL);
671         hypercall_msr.enable = 0;
672         hv_set_register(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
673
674         /* Reset the TSC page */
675         tsc_msr.as_uint64 = hv_get_register(HV_X64_MSR_REFERENCE_TSC);
676         tsc_msr.enable = 0;
677         hv_set_register(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
678 }
679
680 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
681 {
682         static bool panic_reported;
683         u64 guest_id;
684
685         if (in_die && !panic_on_oops)
686                 return;
687
688         /*
689          * We prefer to report panic on 'die' chain as we have proper
690          * registers to report, but if we miss it (e.g. on BUG()) we need
691          * to report it on 'panic'.
692          */
693         if (panic_reported)
694                 return;
695         panic_reported = true;
696
697         rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
698
699         wrmsrl(HV_X64_MSR_CRASH_P0, err);
700         wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
701         wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
702         wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
703         wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
704
705         /*
706          * Let Hyper-V know there is crash data available
707          */
708         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
709 }
710 EXPORT_SYMBOL_GPL(hyperv_report_panic);
711
712 bool hv_is_hyperv_initialized(void)
713 {
714         union hv_x64_msr_hypercall_contents hypercall_msr;
715
716         /*
717          * Ensure that we're really on Hyper-V, and not a KVM or Xen
718          * emulation of Hyper-V
719          */
720         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
721                 return false;
722
723         /* A TDX VM with no paravisor uses TDX GHCI call rather than hv_hypercall_pg */
724         if (hv_isolation_type_tdx() && !ms_hyperv.paravisor_present)
725                 return true;
726         /*
727          * Verify that earlier initialization succeeded by checking
728          * that the hypercall page is setup
729          */
730         hypercall_msr.as_uint64 = 0;
731         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
732
733         return hypercall_msr.enable;
734 }
735 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);