1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
12 #include "../perf_event.h"
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE 24
20 #define PEBS_FIXUP_SIZE PAGE_SIZE
23 * pebs_record_32 for p4 and core not supported
25 struct pebs_record_32 {
33 union intel_x86_pebs_dse {
36 unsigned int ld_dse:4;
37 unsigned int ld_stlb_miss:1;
38 unsigned int ld_locked:1;
39 unsigned int ld_data_blk:1;
40 unsigned int ld_addr_blk:1;
41 unsigned int ld_reserved:24;
44 unsigned int st_l1d_hit:1;
45 unsigned int st_reserved1:3;
46 unsigned int st_stlb_miss:1;
47 unsigned int st_locked:1;
48 unsigned int st_reserved2:26;
51 unsigned int st_lat_dse:4;
52 unsigned int st_lat_stlb_miss:1;
53 unsigned int st_lat_locked:1;
54 unsigned int ld_reserved3:26;
60 * Map PEBS Load Latency Data Source encodings to generic
61 * memory data source information
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
73 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
75 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
76 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
77 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
78 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
79 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
80 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
82 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
83 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
84 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
89 /* Patch up minor differences in the bits */
90 void __init intel_pmu_pebs_data_source_nhm(void)
92 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
97 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
99 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
101 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
108 void __init intel_pmu_pebs_data_source_skl(bool pmem)
110 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
113 static void __init intel_pmu_pebs_data_source_grt(u64 *data_source)
115 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
116 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
117 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
120 void __init intel_pmu_pebs_data_source_adl(void)
124 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
125 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
126 __intel_pmu_pebs_data_source_skl(false, data_source);
128 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
129 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
130 intel_pmu_pebs_data_source_grt(data_source);
133 static u64 precise_store_data(u64 status)
135 union intel_x86_pebs_dse dse;
136 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
142 * 1 = stored missed 2nd level TLB
144 * so it either hit the walker or the OS
145 * otherwise hit 2nd level TLB
147 if (dse.st_stlb_miss)
153 * bit 0: hit L1 data cache
154 * if not set, then all we know is that
163 * bit 5: Locked prefix
166 val |= P(LOCK, LOCKED);
171 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
173 union perf_mem_data_src dse;
175 dse.val = PERF_MEM_NA;
177 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
178 dse.mem_op = PERF_MEM_OP_STORE;
179 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
180 dse.mem_op = PERF_MEM_OP_LOAD;
183 * L1 info only valid for following events:
185 * MEM_UOPS_RETIRED.STLB_MISS_STORES
186 * MEM_UOPS_RETIRED.LOCK_STORES
187 * MEM_UOPS_RETIRED.SPLIT_STORES
188 * MEM_UOPS_RETIRED.ALL_STORES
190 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
192 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
194 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
199 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
203 * 0 = did not miss 2nd level TLB
204 * 1 = missed 2nd level TLB
207 *val |= P(TLB, MISS) | P(TLB, L2);
209 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
213 *val |= P(LOCK, LOCKED);
216 /* Retrieve the latency data for e-core of ADL */
217 u64 adl_latency_data_small(struct perf_event *event, u64 status)
219 union intel_x86_pebs_dse dse;
222 WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big);
226 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
229 * For the atom core on ADL,
230 * bit 4: lock, bit 5: TLB access.
232 pebs_set_tlb_lock(&val, dse.ld_locked, dse.ld_stlb_miss);
242 static u64 load_latency_data(struct perf_event *event, u64 status)
244 union intel_x86_pebs_dse dse;
250 * use the mapping table for bit 0-3
252 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
255 * Nehalem models do not support TLB, Lock infos
257 if (x86_pmu.pebs_no_tlb) {
258 val |= P(TLB, NA) | P(LOCK, NA);
262 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
265 * Ice Lake and earlier models do not support block infos.
267 if (!x86_pmu.pebs_block) {
272 * bit 6: load was blocked since its data could not be forwarded
273 * from a preceding store
279 * bit 7: load was blocked due to potential address conflict with
285 if (!dse.ld_data_blk && !dse.ld_addr_blk)
291 static u64 store_latency_data(struct perf_event *event, u64 status)
293 union intel_x86_pebs_dse dse;
299 * use the mapping table for bit 0-3
301 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
303 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
310 struct pebs_record_core {
314 u64 r8, r9, r10, r11;
315 u64 r12, r13, r14, r15;
318 struct pebs_record_nhm {
322 u64 r8, r9, r10, r11;
323 u64 r12, r13, r14, r15;
324 u64 status, dla, dse, lat;
328 * Same as pebs_record_nhm, with two additional fields.
330 struct pebs_record_hsw {
334 u64 r8, r9, r10, r11;
335 u64 r12, r13, r14, r15;
336 u64 status, dla, dse, lat;
337 u64 real_ip, tsx_tuning;
340 union hsw_tsx_tuning {
342 u32 cycles_last_block : 32,
345 instruction_abort : 1,
346 non_instruction_abort : 1,
355 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
357 /* Same as HSW, plus TSC */
359 struct pebs_record_skl {
363 u64 r8, r9, r10, r11;
364 u64 r12, r13, r14, r15;
365 u64 status, dla, dse, lat;
366 u64 real_ip, tsx_tuning;
370 void init_debug_store_on_cpu(int cpu)
372 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
377 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
378 (u32)((u64)(unsigned long)ds),
379 (u32)((u64)(unsigned long)ds >> 32));
382 void fini_debug_store_on_cpu(int cpu)
384 if (!per_cpu(cpu_hw_events, cpu).ds)
387 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
390 static DEFINE_PER_CPU(void *, insn_buffer);
392 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
394 unsigned long start = (unsigned long)cea;
398 pa = virt_to_phys(addr);
401 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
402 cea_set_pte(cea, pa, prot);
405 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
406 * all TLB entries for it.
408 flush_tlb_kernel_range(start, start + size);
412 static void ds_clear_cea(void *cea, size_t size)
414 unsigned long start = (unsigned long)cea;
418 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
419 cea_set_pte(cea, 0, PAGE_NONE);
421 flush_tlb_kernel_range(start, start + size);
425 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
427 unsigned int order = get_order(size);
428 int node = cpu_to_node(cpu);
431 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
432 return page ? page_address(page) : NULL;
435 static void dsfree_pages(const void *buffer, size_t size)
438 free_pages((unsigned long)buffer, get_order(size));
441 static int alloc_pebs_buffer(int cpu)
443 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
444 struct debug_store *ds = hwev->ds;
445 size_t bsiz = x86_pmu.pebs_buffer_size;
446 int max, node = cpu_to_node(cpu);
447 void *buffer, *insn_buff, *cea;
452 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
453 if (unlikely(!buffer))
457 * HSW+ already provides us the eventing ip; no need to allocate this
460 if (x86_pmu.intel_cap.pebs_format < 2) {
461 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
463 dsfree_pages(buffer, bsiz);
466 per_cpu(insn_buffer, cpu) = insn_buff;
468 hwev->ds_pebs_vaddr = buffer;
469 /* Update the cpu entry area mapping */
470 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
471 ds->pebs_buffer_base = (unsigned long) cea;
472 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
473 ds->pebs_index = ds->pebs_buffer_base;
474 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
475 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
479 static void release_pebs_buffer(int cpu)
481 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
487 kfree(per_cpu(insn_buffer, cpu));
488 per_cpu(insn_buffer, cpu) = NULL;
490 /* Clear the fixmap */
491 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
492 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
493 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
494 hwev->ds_pebs_vaddr = NULL;
497 static int alloc_bts_buffer(int cpu)
499 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
500 struct debug_store *ds = hwev->ds;
507 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
508 if (unlikely(!buffer)) {
509 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
512 hwev->ds_bts_vaddr = buffer;
513 /* Update the fixmap */
514 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
515 ds->bts_buffer_base = (unsigned long) cea;
516 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
517 ds->bts_index = ds->bts_buffer_base;
518 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
519 ds->bts_absolute_maximum = ds->bts_buffer_base +
520 max * BTS_RECORD_SIZE;
521 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
522 (max / 16) * BTS_RECORD_SIZE;
526 static void release_bts_buffer(int cpu)
528 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
534 /* Clear the fixmap */
535 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
536 ds_clear_cea(cea, BTS_BUFFER_SIZE);
537 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
538 hwev->ds_bts_vaddr = NULL;
541 static int alloc_ds_buffer(int cpu)
543 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
545 memset(ds, 0, sizeof(*ds));
546 per_cpu(cpu_hw_events, cpu).ds = ds;
550 static void release_ds_buffer(int cpu)
552 per_cpu(cpu_hw_events, cpu).ds = NULL;
555 void release_ds_buffers(void)
559 if (!x86_pmu.bts && !x86_pmu.pebs)
562 for_each_possible_cpu(cpu)
563 release_ds_buffer(cpu);
565 for_each_possible_cpu(cpu) {
567 * Again, ignore errors from offline CPUs, they will no longer
568 * observe cpu_hw_events.ds and not program the DS_AREA when
571 fini_debug_store_on_cpu(cpu);
574 for_each_possible_cpu(cpu) {
575 release_pebs_buffer(cpu);
576 release_bts_buffer(cpu);
580 void reserve_ds_buffers(void)
582 int bts_err = 0, pebs_err = 0;
585 x86_pmu.bts_active = 0;
586 x86_pmu.pebs_active = 0;
588 if (!x86_pmu.bts && !x86_pmu.pebs)
597 for_each_possible_cpu(cpu) {
598 if (alloc_ds_buffer(cpu)) {
603 if (!bts_err && alloc_bts_buffer(cpu))
606 if (!pebs_err && alloc_pebs_buffer(cpu))
609 if (bts_err && pebs_err)
614 for_each_possible_cpu(cpu)
615 release_bts_buffer(cpu);
619 for_each_possible_cpu(cpu)
620 release_pebs_buffer(cpu);
623 if (bts_err && pebs_err) {
624 for_each_possible_cpu(cpu)
625 release_ds_buffer(cpu);
627 if (x86_pmu.bts && !bts_err)
628 x86_pmu.bts_active = 1;
630 if (x86_pmu.pebs && !pebs_err)
631 x86_pmu.pebs_active = 1;
633 for_each_possible_cpu(cpu) {
635 * Ignores wrmsr_on_cpu() errors for offline CPUs they
636 * will get this call through intel_pmu_cpu_starting().
638 init_debug_store_on_cpu(cpu);
647 struct event_constraint bts_constraint =
648 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
650 void intel_pmu_enable_bts(u64 config)
652 unsigned long debugctlmsr;
654 debugctlmsr = get_debugctlmsr();
656 debugctlmsr |= DEBUGCTLMSR_TR;
657 debugctlmsr |= DEBUGCTLMSR_BTS;
658 if (config & ARCH_PERFMON_EVENTSEL_INT)
659 debugctlmsr |= DEBUGCTLMSR_BTINT;
661 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
662 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
664 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
665 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
667 update_debugctlmsr(debugctlmsr);
670 void intel_pmu_disable_bts(void)
672 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
673 unsigned long debugctlmsr;
678 debugctlmsr = get_debugctlmsr();
681 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
682 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
684 update_debugctlmsr(debugctlmsr);
687 int intel_pmu_drain_bts_buffer(void)
689 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
690 struct debug_store *ds = cpuc->ds;
696 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
697 struct bts_record *at, *base, *top;
698 struct perf_output_handle handle;
699 struct perf_event_header header;
700 struct perf_sample_data data;
701 unsigned long skip = 0;
707 if (!x86_pmu.bts_active)
710 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
711 top = (struct bts_record *)(unsigned long)ds->bts_index;
716 memset(®s, 0, sizeof(regs));
718 ds->bts_index = ds->bts_buffer_base;
720 perf_sample_data_init(&data, 0, event->hw.last_period);
723 * BTS leaks kernel addresses in branches across the cpl boundary,
724 * such as traps or system calls, so unless the user is asking for
725 * kernel tracing (and right now it's not possible), we'd need to
726 * filter them out. But first we need to count how many of those we
727 * have in the current batch. This is an extra O(n) pass, however,
728 * it's much faster than the other one especially considering that
729 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
730 * alloc_bts_buffer()).
732 for (at = base; at < top; at++) {
734 * Note that right now *this* BTS code only works if
735 * attr::exclude_kernel is set, but let's keep this extra
736 * check here in case that changes.
738 if (event->attr.exclude_kernel &&
739 (kernel_ip(at->from) || kernel_ip(at->to)))
744 * Prepare a generic sample, i.e. fill in the invariant fields.
745 * We will overwrite the from and to address before we output
749 perf_prepare_sample(&header, &data, event, ®s);
751 if (perf_output_begin(&handle, &data, event,
752 header.size * (top - base - skip)))
755 for (at = base; at < top; at++) {
756 /* Filter out any records that contain kernel addresses. */
757 if (event->attr.exclude_kernel &&
758 (kernel_ip(at->from) || kernel_ip(at->to)))
764 perf_output_sample(&handle, &header, &data, event);
767 perf_output_end(&handle);
769 /* There's new data available. */
770 event->hw.interrupts++;
771 event->pending_kill = POLL_IN;
777 static inline void intel_pmu_drain_pebs_buffer(void)
779 struct perf_sample_data data;
781 x86_pmu.drain_pebs(NULL, &data);
787 struct event_constraint intel_core2_pebs_event_constraints[] = {
788 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
789 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
790 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
791 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
792 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
793 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
794 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
798 struct event_constraint intel_atom_pebs_event_constraints[] = {
799 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
800 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
801 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
802 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
803 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
804 /* Allow all events as PEBS with no flags */
805 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
809 struct event_constraint intel_slm_pebs_event_constraints[] = {
810 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
811 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
812 /* Allow all events as PEBS with no flags */
813 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
817 struct event_constraint intel_glm_pebs_event_constraints[] = {
818 /* Allow all events as PEBS with no flags */
819 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
823 struct event_constraint intel_grt_pebs_event_constraints[] = {
824 /* Allow all events as PEBS with no flags */
825 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0xf),
826 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
830 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
831 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
832 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
833 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
834 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
835 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
836 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
837 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
838 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
839 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
840 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
841 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
842 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
843 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
847 struct event_constraint intel_westmere_pebs_event_constraints[] = {
848 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
849 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
850 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
851 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
852 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
853 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
854 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
855 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
856 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
857 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
858 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
859 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
860 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
864 struct event_constraint intel_snb_pebs_event_constraints[] = {
865 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
866 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
867 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
868 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
869 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
870 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
871 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
872 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
873 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
874 /* Allow all events as PEBS with no flags */
875 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
879 struct event_constraint intel_ivb_pebs_event_constraints[] = {
880 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
881 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
882 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
883 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
884 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
885 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
886 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
887 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
888 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
889 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
890 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
891 /* Allow all events as PEBS with no flags */
892 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
896 struct event_constraint intel_hsw_pebs_event_constraints[] = {
897 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
898 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
899 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
900 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
901 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
902 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
903 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
904 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
905 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
906 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
907 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
908 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
909 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
910 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
911 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
912 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
913 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
914 /* Allow all events as PEBS with no flags */
915 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
919 struct event_constraint intel_bdw_pebs_event_constraints[] = {
920 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
921 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
922 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
923 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
924 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
925 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
926 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
927 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
928 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
929 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
930 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
931 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
932 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
933 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
934 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
935 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
936 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
937 /* Allow all events as PEBS with no flags */
938 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
943 struct event_constraint intel_skl_pebs_event_constraints[] = {
944 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
945 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
946 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
947 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
948 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
949 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
950 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
951 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
952 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
953 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
954 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
955 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
956 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
957 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
958 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
959 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
960 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
961 /* Allow all events as PEBS with no flags */
962 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
966 struct event_constraint intel_icl_pebs_event_constraints[] = {
967 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
968 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
969 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
971 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
972 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */
973 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */
975 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
977 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
980 * Everything else is handled by PMU_FL_PEBS_ALL, because we
981 * need the full constraints from the main table.
987 struct event_constraint intel_spr_pebs_event_constraints[] = {
988 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
989 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
991 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
992 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
993 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
994 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
995 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
997 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
999 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1002 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1003 * need the full constraints from the main table.
1006 EVENT_CONSTRAINT_END
1009 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1011 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1012 struct event_constraint *c;
1014 if (!event->attr.precise_ip)
1017 if (pebs_constraints) {
1018 for_each_event_constraint(c, pebs_constraints) {
1019 if (constraint_match(c, event->hw.config)) {
1020 event->hw.flags |= c->flags;
1027 * Extended PEBS support
1028 * Makes the PEBS code search the normal constraints.
1030 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1033 return &emptyconstraint;
1037 * We need the sched_task callback even for per-cpu events when we use
1038 * the large interrupt threshold, such that we can provide PID and TID
1041 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1043 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1046 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1049 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1051 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1053 if (!sched_in && pebs_needs_sched_cb(cpuc))
1054 intel_pmu_drain_pebs_buffer();
1057 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1059 struct debug_store *ds = cpuc->ds;
1060 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1061 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1065 if (cpuc->n_pebs_via_pt)
1068 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1069 reserved = max_pebs_events + num_counters_fixed;
1071 reserved = max_pebs_events;
1073 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1074 threshold = ds->pebs_absolute_maximum -
1075 reserved * cpuc->pebs_record_size;
1077 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1080 ds->pebs_interrupt_threshold = threshold;
1083 static void adaptive_pebs_record_size_update(void)
1085 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1087 int sz = sizeof(struct pebs_basic);
1089 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1090 sz += sizeof(struct pebs_meminfo);
1091 if (pebs_data_cfg & PEBS_DATACFG_GP)
1092 sz += sizeof(struct pebs_gprs);
1093 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1094 sz += sizeof(struct pebs_xmm);
1095 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1096 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1098 cpuc->pebs_record_size = sz;
1101 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1102 PERF_SAMPLE_PHYS_ADDR | \
1103 PERF_SAMPLE_WEIGHT_TYPE | \
1104 PERF_SAMPLE_TRANSACTION | \
1105 PERF_SAMPLE_DATA_PAGE_SIZE)
1107 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1109 struct perf_event_attr *attr = &event->attr;
1110 u64 sample_type = attr->sample_type;
1111 u64 pebs_data_cfg = 0;
1112 bool gprs, tsx_weight;
1114 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1115 attr->precise_ip > 1)
1116 return pebs_data_cfg;
1118 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1119 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1122 * We need GPRs when:
1123 * + user requested them
1124 * + precise_ip < 2 for the non event IP
1125 * + For RTM TSX weight we need GPRs for the abort code.
1127 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1128 (attr->sample_regs_intr & PEBS_GP_REGS);
1130 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1131 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1132 x86_pmu.rtm_abort_event);
1134 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1135 pebs_data_cfg |= PEBS_DATACFG_GP;
1137 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1138 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1139 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1141 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1143 * For now always log all LBRs. Could configure this
1146 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1147 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1150 return pebs_data_cfg;
1154 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1155 struct perf_event *event, bool add)
1157 struct pmu *pmu = event->ctx->pmu;
1159 * Make sure we get updated with the first PEBS
1160 * event. It will trigger also during removal, but
1161 * that does not hurt:
1163 bool update = cpuc->n_pebs == 1;
1165 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1167 perf_sched_cb_inc(pmu);
1169 perf_sched_cb_dec(pmu);
1175 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1176 * iterating all remaining PEBS events to reconstruct the config.
1178 if (x86_pmu.intel_cap.pebs_baseline && add) {
1181 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1182 if (cpuc->n_pebs == 1) {
1183 cpuc->pebs_data_cfg = 0;
1184 cpuc->pebs_record_size = sizeof(struct pebs_basic);
1187 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1189 /* Update pebs_record_size if new event requires more data. */
1190 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1191 cpuc->pebs_data_cfg |= pebs_data_cfg;
1192 adaptive_pebs_record_size_update();
1198 pebs_update_threshold(cpuc);
1201 void intel_pmu_pebs_add(struct perf_event *event)
1203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1204 struct hw_perf_event *hwc = &event->hw;
1205 bool needed_cb = pebs_needs_sched_cb(cpuc);
1208 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1209 cpuc->n_large_pebs++;
1210 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1211 cpuc->n_pebs_via_pt++;
1213 pebs_update_state(needed_cb, cpuc, event, true);
1216 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1218 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1220 if (!is_pebs_pt(event))
1223 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1224 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1227 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1229 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1230 struct hw_perf_event *hwc = &event->hw;
1231 struct debug_store *ds = cpuc->ds;
1232 u64 value = ds->pebs_event_reset[hwc->idx];
1233 u32 base = MSR_RELOAD_PMC0;
1234 unsigned int idx = hwc->idx;
1236 if (!is_pebs_pt(event))
1239 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1240 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1242 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1244 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1245 base = MSR_RELOAD_FIXED_CTR0;
1246 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1247 if (x86_pmu.intel_cap.pebs_format < 5)
1248 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1250 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1252 wrmsrl(base + idx, value);
1255 void intel_pmu_pebs_enable(struct perf_event *event)
1257 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1258 struct hw_perf_event *hwc = &event->hw;
1259 struct debug_store *ds = cpuc->ds;
1260 unsigned int idx = hwc->idx;
1262 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1264 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1266 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1267 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1268 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1269 cpuc->pebs_enabled |= 1ULL << 63;
1271 if (x86_pmu.intel_cap.pebs_baseline) {
1272 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1273 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1274 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1275 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1279 if (idx >= INTEL_PMC_IDX_FIXED) {
1280 if (x86_pmu.intel_cap.pebs_format < 5)
1281 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1283 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1287 * Use auto-reload if possible to save a MSR write in the PMI.
1288 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1290 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1291 ds->pebs_event_reset[idx] =
1292 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1294 ds->pebs_event_reset[idx] = 0;
1297 intel_pmu_pebs_via_pt_enable(event);
1300 void intel_pmu_pebs_del(struct perf_event *event)
1302 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1303 struct hw_perf_event *hwc = &event->hw;
1304 bool needed_cb = pebs_needs_sched_cb(cpuc);
1307 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1308 cpuc->n_large_pebs--;
1309 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1310 cpuc->n_pebs_via_pt--;
1312 pebs_update_state(needed_cb, cpuc, event, false);
1315 void intel_pmu_pebs_disable(struct perf_event *event)
1317 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318 struct hw_perf_event *hwc = &event->hw;
1320 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1321 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1322 intel_pmu_drain_pebs_buffer();
1324 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1326 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1327 (x86_pmu.version < 5))
1328 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1329 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1330 cpuc->pebs_enabled &= ~(1ULL << 63);
1332 intel_pmu_pebs_via_pt_disable(event);
1335 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1337 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1340 void intel_pmu_pebs_enable_all(void)
1342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1344 if (cpuc->pebs_enabled)
1345 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1348 void intel_pmu_pebs_disable_all(void)
1350 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1352 if (cpuc->pebs_enabled)
1353 __intel_pmu_pebs_disable_all();
1356 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1358 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359 unsigned long from = cpuc->lbr_entries[0].from;
1360 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1361 unsigned long ip = regs->ip;
1367 * We don't need to fixup if the PEBS assist is fault like
1369 if (!x86_pmu.intel_cap.pebs_trap)
1373 * No LBR entry, no basic block, no rewinding
1375 if (!cpuc->lbr_stack.nr || !from || !to)
1379 * Basic blocks should never cross user/kernel boundaries
1381 if (kernel_ip(ip) != kernel_ip(to))
1385 * unsigned math, either ip is before the start (impossible) or
1386 * the basic block is larger than 1 page (sanity)
1388 if ((ip - to) > PEBS_FIXUP_SIZE)
1392 * We sampled a branch insn, rewind using the LBR stack
1395 set_linear_ip(regs, from);
1400 if (!kernel_ip(ip)) {
1402 u8 *buf = this_cpu_read(insn_buffer);
1404 /* 'size' must fit our buffer, see above */
1405 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1419 #ifdef CONFIG_X86_64
1420 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1422 insn_init(&insn, kaddr, size, is_64bit);
1425 * Make sure there was not a problem decoding the instruction.
1426 * This is doubly important because we have an infinite loop if
1429 if (insn_get_length(&insn))
1433 kaddr += insn.length;
1434 size -= insn.length;
1438 set_linear_ip(regs, old_to);
1443 * Even though we decoded the basic block, the instruction stream
1444 * never matched the given IP, either the TO or the IP got corrupted.
1449 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1452 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1453 return tsx.cycles_last_block;
1458 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1460 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1462 /* For RTM XABORTs also log the abort code from AX */
1463 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1464 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1468 static inline u64 get_pebs_status(void *n)
1470 if (x86_pmu.intel_cap.pebs_format < 4)
1471 return ((struct pebs_record_nhm *)n)->status;
1472 return ((struct pebs_basic *)n)->applicable_counters;
1475 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1476 (PERF_X86_EVENT_PEBS_ST_HSW | \
1477 PERF_X86_EVENT_PEBS_LD_HSW | \
1478 PERF_X86_EVENT_PEBS_NA_HSW)
1480 static u64 get_data_src(struct perf_event *event, u64 aux)
1482 u64 val = PERF_MEM_NA;
1483 int fl = event->hw.flags;
1484 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1486 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1487 val = load_latency_data(event, aux);
1488 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1489 val = store_latency_data(event, aux);
1490 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1491 val = x86_pmu.pebs_latency_data(event, aux);
1492 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1493 val = precise_datala_hsw(event, aux);
1495 val = precise_store_data(aux);
1499 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1500 PERF_SAMPLE_PHYS_ADDR | \
1501 PERF_SAMPLE_DATA_PAGE_SIZE)
1503 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1504 struct pt_regs *iregs, void *__pebs,
1505 struct perf_sample_data *data,
1506 struct pt_regs *regs)
1509 * We cast to the biggest pebs_record but are careful not to
1510 * unconditionally access the 'extra' entries.
1512 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1513 struct pebs_record_skl *pebs = __pebs;
1520 sample_type = event->attr.sample_type;
1521 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1523 perf_sample_data_init(data, 0, event->hw.last_period);
1525 data->period = event->hw.last_period;
1528 * Use latency for weight (only avail with PEBS-LL)
1530 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1531 data->weight.full = pebs->lat;
1534 * data.data_src encodes the data source
1536 if (sample_type & PERF_SAMPLE_DATA_SRC)
1537 data->data_src.val = get_data_src(event, pebs->dse);
1540 * We must however always use iregs for the unwinder to stay sane; the
1541 * record BP,SP,IP can point into thin air when the record is from a
1542 * previous PMI context or an (I)RET happened between the record and
1545 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1546 data->callchain = perf_callchain(event, iregs);
1549 * We use the interrupt regs as a base because the PEBS record does not
1550 * contain a full regs set, specifically it seems to lack segment
1551 * descriptors, which get used by things like user_mode().
1553 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1558 * Initialize regs_>flags from PEBS,
1559 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1560 * i.e., do not rely on it being zero:
1562 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1564 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1565 regs->ax = pebs->ax;
1566 regs->bx = pebs->bx;
1567 regs->cx = pebs->cx;
1568 regs->dx = pebs->dx;
1569 regs->si = pebs->si;
1570 regs->di = pebs->di;
1572 regs->bp = pebs->bp;
1573 regs->sp = pebs->sp;
1575 #ifndef CONFIG_X86_32
1576 regs->r8 = pebs->r8;
1577 regs->r9 = pebs->r9;
1578 regs->r10 = pebs->r10;
1579 regs->r11 = pebs->r11;
1580 regs->r12 = pebs->r12;
1581 regs->r13 = pebs->r13;
1582 regs->r14 = pebs->r14;
1583 regs->r15 = pebs->r15;
1587 if (event->attr.precise_ip > 1) {
1589 * Haswell and later processors have an 'eventing IP'
1590 * (real IP) which fixes the off-by-1 skid in hardware.
1591 * Use it when precise_ip >= 2 :
1593 if (x86_pmu.intel_cap.pebs_format >= 2) {
1594 set_linear_ip(regs, pebs->real_ip);
1595 regs->flags |= PERF_EFLAGS_EXACT;
1597 /* Otherwise, use PEBS off-by-1 IP: */
1598 set_linear_ip(regs, pebs->ip);
1601 * With precise_ip >= 2, try to fix up the off-by-1 IP
1602 * using the LBR. If successful, the fixup function
1603 * corrects regs->ip and calls set_linear_ip() on regs:
1605 if (intel_pmu_pebs_fixup_ip(regs))
1606 regs->flags |= PERF_EFLAGS_EXACT;
1610 * When precise_ip == 1, return the PEBS off-by-1 IP,
1611 * no fixup attempted:
1613 set_linear_ip(regs, pebs->ip);
1617 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1618 x86_pmu.intel_cap.pebs_format >= 1)
1619 data->addr = pebs->dla;
1621 if (x86_pmu.intel_cap.pebs_format >= 2) {
1622 /* Only set the TSX weight when no memory weight. */
1623 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1624 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1626 if (sample_type & PERF_SAMPLE_TRANSACTION)
1627 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1632 * v3 supplies an accurate time stamp, so we use that
1633 * for the time stamp.
1635 * We can only do this for the default trace clock.
1637 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1638 event->attr.use_clockid == 0)
1639 data->time = native_sched_clock_from_tsc(pebs->tsc);
1641 if (has_branch_stack(event))
1642 data->br_stack = &cpuc->lbr_stack;
1645 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1646 struct pebs_gprs *gprs)
1648 regs->ax = gprs->ax;
1649 regs->bx = gprs->bx;
1650 regs->cx = gprs->cx;
1651 regs->dx = gprs->dx;
1652 regs->si = gprs->si;
1653 regs->di = gprs->di;
1654 regs->bp = gprs->bp;
1655 regs->sp = gprs->sp;
1656 #ifndef CONFIG_X86_32
1657 regs->r8 = gprs->r8;
1658 regs->r9 = gprs->r9;
1659 regs->r10 = gprs->r10;
1660 regs->r11 = gprs->r11;
1661 regs->r12 = gprs->r12;
1662 regs->r13 = gprs->r13;
1663 regs->r14 = gprs->r14;
1664 regs->r15 = gprs->r15;
1668 #define PEBS_LATENCY_MASK 0xffff
1669 #define PEBS_CACHE_LATENCY_OFFSET 32
1672 * With adaptive PEBS the layout depends on what fields are configured.
1675 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1676 struct pt_regs *iregs, void *__pebs,
1677 struct perf_sample_data *data,
1678 struct pt_regs *regs)
1680 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1681 struct pebs_basic *basic = __pebs;
1682 void *next_record = basic + 1;
1685 struct pebs_meminfo *meminfo = NULL;
1686 struct pebs_gprs *gprs = NULL;
1687 struct x86_perf_regs *perf_regs;
1692 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1693 perf_regs->xmm_regs = NULL;
1695 sample_type = event->attr.sample_type;
1696 format_size = basic->format_size;
1697 perf_sample_data_init(data, 0, event->hw.last_period);
1698 data->period = event->hw.last_period;
1700 if (event->attr.use_clockid == 0)
1701 data->time = native_sched_clock_from_tsc(basic->tsc);
1704 * We must however always use iregs for the unwinder to stay sane; the
1705 * record BP,SP,IP can point into thin air when the record is from a
1706 * previous PMI context or an (I)RET happened between the record and
1709 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1710 data->callchain = perf_callchain(event, iregs);
1713 /* The ip in basic is EventingIP */
1714 set_linear_ip(regs, basic->ip);
1715 regs->flags = PERF_EFLAGS_EXACT;
1718 * The record for MEMINFO is in front of GP
1719 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1720 * Save the pointer here but process later.
1722 if (format_size & PEBS_DATACFG_MEMINFO) {
1723 meminfo = next_record;
1724 next_record = meminfo + 1;
1727 if (format_size & PEBS_DATACFG_GP) {
1729 next_record = gprs + 1;
1731 if (event->attr.precise_ip < 2) {
1732 set_linear_ip(regs, gprs->ip);
1733 regs->flags &= ~PERF_EFLAGS_EXACT;
1736 if (sample_type & PERF_SAMPLE_REGS_INTR)
1737 adaptive_pebs_save_regs(regs, gprs);
1740 if (format_size & PEBS_DATACFG_MEMINFO) {
1741 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1742 u64 weight = meminfo->latency;
1744 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1745 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1746 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1750 * Although meminfo::latency is defined as a u64,
1751 * only the lower 32 bits include the valid data
1752 * in practice on Ice Lake and earlier platforms.
1754 if (sample_type & PERF_SAMPLE_WEIGHT) {
1755 data->weight.full = weight ?:
1756 intel_get_tsx_weight(meminfo->tsx_tuning);
1758 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1759 intel_get_tsx_weight(meminfo->tsx_tuning);
1763 if (sample_type & PERF_SAMPLE_DATA_SRC)
1764 data->data_src.val = get_data_src(event, meminfo->aux);
1766 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1767 data->addr = meminfo->address;
1769 if (sample_type & PERF_SAMPLE_TRANSACTION)
1770 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1771 gprs ? gprs->ax : 0);
1774 if (format_size & PEBS_DATACFG_XMMS) {
1775 struct pebs_xmm *xmm = next_record;
1777 next_record = xmm + 1;
1778 perf_regs->xmm_regs = xmm->xmm;
1781 if (format_size & PEBS_DATACFG_LBRS) {
1782 struct lbr_entry *lbr = next_record;
1783 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1785 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1787 if (has_branch_stack(event)) {
1788 intel_pmu_store_pebs_lbrs(lbr);
1789 data->br_stack = &cpuc->lbr_stack;
1793 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1794 "PEBS record size %llu, expected %llu, config %llx\n",
1796 (u64)(next_record - __pebs),
1797 basic->format_size);
1800 static inline void *
1801 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1803 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1808 * fmt0 does not have a status bitfield (does not use
1809 * perf_record_nhm format)
1811 if (x86_pmu.intel_cap.pebs_format < 1)
1817 for (at = base; at < top; at += cpuc->pebs_record_size) {
1818 unsigned long status = get_pebs_status(at);
1820 if (test_bit(bit, (unsigned long *)&status)) {
1821 /* PEBS v3 has accurate status bits */
1822 if (x86_pmu.intel_cap.pebs_format >= 3)
1825 if (status == (1 << bit))
1828 /* clear non-PEBS bit and re-check */
1829 pebs_status = status & cpuc->pebs_enabled;
1830 pebs_status &= PEBS_COUNTER_MASK;
1831 if (pebs_status == (1 << bit))
1838 void intel_pmu_auto_reload_read(struct perf_event *event)
1840 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1842 perf_pmu_disable(event->pmu);
1843 intel_pmu_drain_pebs_buffer();
1844 perf_pmu_enable(event->pmu);
1848 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1851 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1853 struct hw_perf_event *hwc = &event->hw;
1854 int shift = 64 - x86_pmu.cntval_bits;
1855 u64 period = hwc->sample_period;
1856 u64 prev_raw_count, new_raw_count;
1862 * drain_pebs() only happens when the PMU is disabled.
1864 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1866 prev_raw_count = local64_read(&hwc->prev_count);
1867 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1868 local64_set(&hwc->prev_count, new_raw_count);
1871 * Since the counter increments a negative counter value and
1872 * overflows on the sign switch, giving the interval:
1876 * the difference between two consecutive reads is:
1878 * A) value2 - value1;
1879 * when no overflows have happened in between,
1881 * B) (0 - value1) + (value2 - (-period));
1882 * when one overflow happened in between,
1884 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1885 * when @n overflows happened in between.
1887 * Here A) is the obvious difference, B) is the extension to the
1888 * discrete interval, where the first term is to the top of the
1889 * interval and the second term is from the bottom of the next
1890 * interval and C) the extension to multiple intervals, where the
1891 * middle term is the whole intervals covered.
1893 * An equivalent of C, by reduction, is:
1895 * value2 - value1 + n * period
1897 new = ((s64)(new_raw_count << shift) >> shift);
1898 old = ((s64)(prev_raw_count << shift) >> shift);
1899 local64_add(new - old + count * period, &event->count);
1901 local64_set(&hwc->period_left, -new);
1903 perf_event_update_userpage(event);
1908 static __always_inline void
1909 __intel_pmu_pebs_event(struct perf_event *event,
1910 struct pt_regs *iregs,
1911 struct perf_sample_data *data,
1912 void *base, void *top,
1914 void (*setup_sample)(struct perf_event *,
1917 struct perf_sample_data *,
1920 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1921 struct hw_perf_event *hwc = &event->hw;
1922 struct x86_perf_regs perf_regs;
1923 struct pt_regs *regs = &perf_regs.regs;
1924 void *at = get_next_pebs_record_by_bit(base, top, bit);
1925 static struct pt_regs dummy_iregs;
1927 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1929 * Now, auto-reload is only enabled in fixed period mode.
1930 * The reload value is always hwc->sample_period.
1931 * May need to change it, if auto-reload is enabled in
1934 intel_pmu_save_and_restart_reload(event, count);
1935 } else if (!intel_pmu_save_and_restart(event))
1939 iregs = &dummy_iregs;
1942 setup_sample(event, iregs, at, data, regs);
1943 perf_event_output(event, data, regs);
1944 at += cpuc->pebs_record_size;
1945 at = get_next_pebs_record_by_bit(at, top, bit);
1949 setup_sample(event, iregs, at, data, regs);
1950 if (iregs == &dummy_iregs) {
1952 * The PEBS records may be drained in the non-overflow context,
1953 * e.g., large PEBS + context switch. Perf should treat the
1954 * last record the same as other PEBS records, and doesn't
1955 * invoke the generic overflow handler.
1957 perf_event_output(event, data, regs);
1960 * All but the last records are processed.
1961 * The last one is left to be able to call the overflow handler.
1963 if (perf_event_overflow(event, data, regs))
1964 x86_pmu_stop(event, 0);
1968 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1970 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1971 struct debug_store *ds = cpuc->ds;
1972 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1973 struct pebs_record_core *at, *top;
1976 if (!x86_pmu.pebs_active)
1979 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1980 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1983 * Whatever else happens, drain the thing
1985 ds->pebs_index = ds->pebs_buffer_base;
1987 if (!test_bit(0, cpuc->active_mask))
1990 WARN_ON_ONCE(!event);
1992 if (!event->attr.precise_ip)
1997 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1998 intel_pmu_save_and_restart_reload(event, 0);
2002 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2003 setup_pebs_fixed_sample_data);
2006 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2008 struct perf_event *event;
2012 * The drain_pebs() could be called twice in a short period
2013 * for auto-reload event in pmu::read(). There are no
2014 * overflows have happened in between.
2015 * It needs to call intel_pmu_save_and_restart_reload() to
2016 * update the event->count for this case.
2018 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2019 event = cpuc->events[bit];
2020 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2021 intel_pmu_save_and_restart_reload(event, 0);
2025 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2027 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2028 struct debug_store *ds = cpuc->ds;
2029 struct perf_event *event;
2030 void *base, *at, *top;
2031 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2032 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2036 if (!x86_pmu.pebs_active)
2039 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2040 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2042 ds->pebs_index = ds->pebs_buffer_base;
2044 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2045 size = x86_pmu.max_pebs_events;
2046 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2047 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2048 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2051 if (unlikely(base >= top)) {
2052 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2056 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2057 struct pebs_record_nhm *p = at;
2060 pebs_status = p->status & cpuc->pebs_enabled;
2061 pebs_status &= mask;
2063 /* PEBS v3 has more accurate status bits */
2064 if (x86_pmu.intel_cap.pebs_format >= 3) {
2065 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2072 * On some CPUs the PEBS status can be zero when PEBS is
2073 * racing with clearing of GLOBAL_STATUS.
2075 * Normally we would drop that record, but in the
2076 * case when there is only a single active PEBS event
2077 * we can assume it's for that event.
2079 if (!pebs_status && cpuc->pebs_enabled &&
2080 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2081 pebs_status = p->status = cpuc->pebs_enabled;
2083 bit = find_first_bit((unsigned long *)&pebs_status,
2084 x86_pmu.max_pebs_events);
2085 if (bit >= x86_pmu.max_pebs_events)
2089 * The PEBS hardware does not deal well with the situation
2090 * when events happen near to each other and multiple bits
2091 * are set. But it should happen rarely.
2093 * If these events include one PEBS and multiple non-PEBS
2094 * events, it doesn't impact PEBS record. The record will
2095 * be handled normally. (slow path)
2097 * If these events include two or more PEBS events, the
2098 * records for the events can be collapsed into a single
2099 * one, and it's not possible to reconstruct all events
2100 * that caused the PEBS record. It's called collision.
2101 * If collision happened, the record will be dropped.
2103 if (pebs_status != (1ULL << bit)) {
2104 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2112 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2113 if ((counts[bit] == 0) && (error[bit] == 0))
2116 event = cpuc->events[bit];
2117 if (WARN_ON_ONCE(!event))
2120 if (WARN_ON_ONCE(!event->attr.precise_ip))
2123 /* log dropped samples number */
2125 perf_log_lost_samples(event, error[bit]);
2127 if (iregs && perf_event_account_interrupt(event))
2128 x86_pmu_stop(event, 0);
2132 __intel_pmu_pebs_event(event, iregs, data, base,
2133 top, bit, counts[bit],
2134 setup_pebs_fixed_sample_data);
2139 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2141 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2142 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2143 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2144 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2145 struct debug_store *ds = cpuc->ds;
2146 struct perf_event *event;
2147 void *base, *at, *top;
2151 if (!x86_pmu.pebs_active)
2154 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2155 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2157 ds->pebs_index = ds->pebs_buffer_base;
2159 mask = ((1ULL << max_pebs_events) - 1) |
2160 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2161 size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2163 if (unlikely(base >= top)) {
2164 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2168 for (at = base; at < top; at += cpuc->pebs_record_size) {
2171 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2172 pebs_status &= mask;
2174 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2178 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2179 if (counts[bit] == 0)
2182 event = cpuc->events[bit];
2183 if (WARN_ON_ONCE(!event))
2186 if (WARN_ON_ONCE(!event->attr.precise_ip))
2189 __intel_pmu_pebs_event(event, iregs, data, base,
2190 top, bit, counts[bit],
2191 setup_pebs_adaptive_sample_data);
2196 * BTS, PEBS probe and setup
2199 void __init intel_ds_init(void)
2202 * No support for 32bit formats
2204 if (!boot_cpu_has(X86_FEATURE_DTES64))
2207 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2208 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2209 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2210 if (x86_pmu.version <= 4)
2211 x86_pmu.pebs_no_isolation = 1;
2214 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2215 char *pebs_qual = "";
2216 int format = x86_pmu.intel_cap.pebs_format;
2219 x86_pmu.intel_cap.pebs_baseline = 0;
2223 pr_cont("PEBS fmt0%c, ", pebs_type);
2224 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2226 * Using >PAGE_SIZE buffers makes the WRMSR to
2227 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2228 * mysteriously hang on Core2.
2230 * As a workaround, we don't do this.
2232 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2233 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2237 pr_cont("PEBS fmt1%c, ", pebs_type);
2238 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2239 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2243 pr_cont("PEBS fmt2%c, ", pebs_type);
2244 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2245 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2249 pr_cont("PEBS fmt3%c, ", pebs_type);
2250 x86_pmu.pebs_record_size =
2251 sizeof(struct pebs_record_skl);
2252 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2253 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2258 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2259 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2260 if (x86_pmu.intel_cap.pebs_baseline) {
2261 x86_pmu.large_pebs_flags |=
2262 PERF_SAMPLE_BRANCH_STACK |
2264 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2265 pebs_qual = "-baseline";
2266 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2268 /* Only basic record supported */
2269 x86_pmu.large_pebs_flags &=
2270 ~(PERF_SAMPLE_ADDR |
2272 PERF_SAMPLE_DATA_SRC |
2273 PERF_SAMPLE_TRANSACTION |
2274 PERF_SAMPLE_REGS_USER |
2275 PERF_SAMPLE_REGS_INTR);
2277 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2279 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2280 pr_cont("PEBS-via-PT, ");
2281 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2287 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2293 void perf_restore_debug_store(void)
2295 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2297 if (!x86_pmu.bts && !x86_pmu.pebs)
2300 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);