perf/x86/intel: Fix pebs event constraints for SPR
[platform/kernel/linux-rpi.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE         24
19
20 #define PEBS_FIXUP_SIZE         PAGE_SIZE
21
22 /*
23  * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26         u32 flags, ip;
27         u32 ax, bc, cx, dx;
28         u32 si, di, bp, sp;
29 };
30
31  */
32
33 union intel_x86_pebs_dse {
34         u64 val;
35         struct {
36                 unsigned int ld_dse:4;
37                 unsigned int ld_stlb_miss:1;
38                 unsigned int ld_locked:1;
39                 unsigned int ld_data_blk:1;
40                 unsigned int ld_addr_blk:1;
41                 unsigned int ld_reserved:24;
42         };
43         struct {
44                 unsigned int st_l1d_hit:1;
45                 unsigned int st_reserved1:3;
46                 unsigned int st_stlb_miss:1;
47                 unsigned int st_locked:1;
48                 unsigned int st_reserved2:26;
49         };
50         struct {
51                 unsigned int st_lat_dse:4;
52                 unsigned int st_lat_stlb_miss:1;
53                 unsigned int st_lat_locked:1;
54                 unsigned int ld_reserved3:26;
55         };
56 };
57
58
59 /*
60  * Map PEBS Load Latency Data Source encodings to generic
61  * memory data source information
62  */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
73         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
75         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
76         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
77         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
78         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
79         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
80         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
82         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
83         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
84         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88
89 /* Patch up minor differences in the bits */
90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96
97 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
98 {
99         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100
101         data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102         data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104         data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105         data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107
108 void __init intel_pmu_pebs_data_source_skl(bool pmem)
109 {
110         __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
111 }
112
113 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
114 {
115         data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
116         data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
117         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
118 }
119
120 void __init intel_pmu_pebs_data_source_grt(void)
121 {
122         __intel_pmu_pebs_data_source_grt(pebs_data_source);
123 }
124
125 void __init intel_pmu_pebs_data_source_adl(void)
126 {
127         u64 *data_source;
128
129         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
130         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
131         __intel_pmu_pebs_data_source_skl(false, data_source);
132
133         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
134         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
135         __intel_pmu_pebs_data_source_grt(data_source);
136 }
137
138 static u64 precise_store_data(u64 status)
139 {
140         union intel_x86_pebs_dse dse;
141         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
142
143         dse.val = status;
144
145         /*
146          * bit 4: TLB access
147          * 1 = stored missed 2nd level TLB
148          *
149          * so it either hit the walker or the OS
150          * otherwise hit 2nd level TLB
151          */
152         if (dse.st_stlb_miss)
153                 val |= P(TLB, MISS);
154         else
155                 val |= P(TLB, HIT);
156
157         /*
158          * bit 0: hit L1 data cache
159          * if not set, then all we know is that
160          * it missed L1D
161          */
162         if (dse.st_l1d_hit)
163                 val |= P(LVL, HIT);
164         else
165                 val |= P(LVL, MISS);
166
167         /*
168          * bit 5: Locked prefix
169          */
170         if (dse.st_locked)
171                 val |= P(LOCK, LOCKED);
172
173         return val;
174 }
175
176 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
177 {
178         union perf_mem_data_src dse;
179
180         dse.val = PERF_MEM_NA;
181
182         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
183                 dse.mem_op = PERF_MEM_OP_STORE;
184         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
185                 dse.mem_op = PERF_MEM_OP_LOAD;
186
187         /*
188          * L1 info only valid for following events:
189          *
190          * MEM_UOPS_RETIRED.STLB_MISS_STORES
191          * MEM_UOPS_RETIRED.LOCK_STORES
192          * MEM_UOPS_RETIRED.SPLIT_STORES
193          * MEM_UOPS_RETIRED.ALL_STORES
194          */
195         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
196                 if (status & 1)
197                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
198                 else
199                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
200         }
201         return dse.val;
202 }
203
204 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
205 {
206         /*
207          * TLB access
208          * 0 = did not miss 2nd level TLB
209          * 1 = missed 2nd level TLB
210          */
211         if (tlb)
212                 *val |= P(TLB, MISS) | P(TLB, L2);
213         else
214                 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
215
216         /* locked prefix */
217         if (lock)
218                 *val |= P(LOCK, LOCKED);
219 }
220
221 /* Retrieve the latency data for e-core of ADL */
222 u64 adl_latency_data_small(struct perf_event *event, u64 status)
223 {
224         union intel_x86_pebs_dse dse;
225         u64 val;
226
227         WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big);
228
229         dse.val = status;
230
231         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
232
233         /*
234          * For the atom core on ADL,
235          * bit 4: lock, bit 5: TLB access.
236          */
237         pebs_set_tlb_lock(&val, dse.ld_locked, dse.ld_stlb_miss);
238
239         if (dse.ld_data_blk)
240                 val |= P(BLK, DATA);
241         else
242                 val |= P(BLK, NA);
243
244         return val;
245 }
246
247 static u64 load_latency_data(struct perf_event *event, u64 status)
248 {
249         union intel_x86_pebs_dse dse;
250         u64 val;
251
252         dse.val = status;
253
254         /*
255          * use the mapping table for bit 0-3
256          */
257         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
258
259         /*
260          * Nehalem models do not support TLB, Lock infos
261          */
262         if (x86_pmu.pebs_no_tlb) {
263                 val |= P(TLB, NA) | P(LOCK, NA);
264                 return val;
265         }
266
267         pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
268
269         /*
270          * Ice Lake and earlier models do not support block infos.
271          */
272         if (!x86_pmu.pebs_block) {
273                 val |= P(BLK, NA);
274                 return val;
275         }
276         /*
277          * bit 6: load was blocked since its data could not be forwarded
278          *        from a preceding store
279          */
280         if (dse.ld_data_blk)
281                 val |= P(BLK, DATA);
282
283         /*
284          * bit 7: load was blocked due to potential address conflict with
285          *        a preceding store
286          */
287         if (dse.ld_addr_blk)
288                 val |= P(BLK, ADDR);
289
290         if (!dse.ld_data_blk && !dse.ld_addr_blk)
291                 val |= P(BLK, NA);
292
293         return val;
294 }
295
296 static u64 store_latency_data(struct perf_event *event, u64 status)
297 {
298         union intel_x86_pebs_dse dse;
299         union perf_mem_data_src src;
300         u64 val;
301
302         dse.val = status;
303
304         /*
305          * use the mapping table for bit 0-3
306          */
307         val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
308
309         pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
310
311         val |= P(BLK, NA);
312
313         /*
314          * the pebs_data_source table is only for loads
315          * so override the mem_op to say STORE instead
316          */
317         src.val = val;
318         src.mem_op = P(OP,STORE);
319
320         return src.val;
321 }
322
323 struct pebs_record_core {
324         u64 flags, ip;
325         u64 ax, bx, cx, dx;
326         u64 si, di, bp, sp;
327         u64 r8,  r9,  r10, r11;
328         u64 r12, r13, r14, r15;
329 };
330
331 struct pebs_record_nhm {
332         u64 flags, ip;
333         u64 ax, bx, cx, dx;
334         u64 si, di, bp, sp;
335         u64 r8,  r9,  r10, r11;
336         u64 r12, r13, r14, r15;
337         u64 status, dla, dse, lat;
338 };
339
340 /*
341  * Same as pebs_record_nhm, with two additional fields.
342  */
343 struct pebs_record_hsw {
344         u64 flags, ip;
345         u64 ax, bx, cx, dx;
346         u64 si, di, bp, sp;
347         u64 r8,  r9,  r10, r11;
348         u64 r12, r13, r14, r15;
349         u64 status, dla, dse, lat;
350         u64 real_ip, tsx_tuning;
351 };
352
353 union hsw_tsx_tuning {
354         struct {
355                 u32 cycles_last_block     : 32,
356                     hle_abort             : 1,
357                     rtm_abort             : 1,
358                     instruction_abort     : 1,
359                     non_instruction_abort : 1,
360                     retry                 : 1,
361                     data_conflict         : 1,
362                     capacity_writes       : 1,
363                     capacity_reads        : 1;
364         };
365         u64         value;
366 };
367
368 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
369
370 /* Same as HSW, plus TSC */
371
372 struct pebs_record_skl {
373         u64 flags, ip;
374         u64 ax, bx, cx, dx;
375         u64 si, di, bp, sp;
376         u64 r8,  r9,  r10, r11;
377         u64 r12, r13, r14, r15;
378         u64 status, dla, dse, lat;
379         u64 real_ip, tsx_tuning;
380         u64 tsc;
381 };
382
383 void init_debug_store_on_cpu(int cpu)
384 {
385         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
386
387         if (!ds)
388                 return;
389
390         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
391                      (u32)((u64)(unsigned long)ds),
392                      (u32)((u64)(unsigned long)ds >> 32));
393 }
394
395 void fini_debug_store_on_cpu(int cpu)
396 {
397         if (!per_cpu(cpu_hw_events, cpu).ds)
398                 return;
399
400         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
401 }
402
403 static DEFINE_PER_CPU(void *, insn_buffer);
404
405 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
406 {
407         unsigned long start = (unsigned long)cea;
408         phys_addr_t pa;
409         size_t msz = 0;
410
411         pa = virt_to_phys(addr);
412
413         preempt_disable();
414         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
415                 cea_set_pte(cea, pa, prot);
416
417         /*
418          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
419          * all TLB entries for it.
420          */
421         flush_tlb_kernel_range(start, start + size);
422         preempt_enable();
423 }
424
425 static void ds_clear_cea(void *cea, size_t size)
426 {
427         unsigned long start = (unsigned long)cea;
428         size_t msz = 0;
429
430         preempt_disable();
431         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
432                 cea_set_pte(cea, 0, PAGE_NONE);
433
434         flush_tlb_kernel_range(start, start + size);
435         preempt_enable();
436 }
437
438 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
439 {
440         unsigned int order = get_order(size);
441         int node = cpu_to_node(cpu);
442         struct page *page;
443
444         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
445         return page ? page_address(page) : NULL;
446 }
447
448 static void dsfree_pages(const void *buffer, size_t size)
449 {
450         if (buffer)
451                 free_pages((unsigned long)buffer, get_order(size));
452 }
453
454 static int alloc_pebs_buffer(int cpu)
455 {
456         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
457         struct debug_store *ds = hwev->ds;
458         size_t bsiz = x86_pmu.pebs_buffer_size;
459         int max, node = cpu_to_node(cpu);
460         void *buffer, *insn_buff, *cea;
461
462         if (!x86_pmu.pebs)
463                 return 0;
464
465         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
466         if (unlikely(!buffer))
467                 return -ENOMEM;
468
469         /*
470          * HSW+ already provides us the eventing ip; no need to allocate this
471          * buffer then.
472          */
473         if (x86_pmu.intel_cap.pebs_format < 2) {
474                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
475                 if (!insn_buff) {
476                         dsfree_pages(buffer, bsiz);
477                         return -ENOMEM;
478                 }
479                 per_cpu(insn_buffer, cpu) = insn_buff;
480         }
481         hwev->ds_pebs_vaddr = buffer;
482         /* Update the cpu entry area mapping */
483         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
484         ds->pebs_buffer_base = (unsigned long) cea;
485         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
486         ds->pebs_index = ds->pebs_buffer_base;
487         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
488         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
489         return 0;
490 }
491
492 static void release_pebs_buffer(int cpu)
493 {
494         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
495         void *cea;
496
497         if (!x86_pmu.pebs)
498                 return;
499
500         kfree(per_cpu(insn_buffer, cpu));
501         per_cpu(insn_buffer, cpu) = NULL;
502
503         /* Clear the fixmap */
504         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
505         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
506         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
507         hwev->ds_pebs_vaddr = NULL;
508 }
509
510 static int alloc_bts_buffer(int cpu)
511 {
512         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
513         struct debug_store *ds = hwev->ds;
514         void *buffer, *cea;
515         int max;
516
517         if (!x86_pmu.bts)
518                 return 0;
519
520         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
521         if (unlikely(!buffer)) {
522                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
523                 return -ENOMEM;
524         }
525         hwev->ds_bts_vaddr = buffer;
526         /* Update the fixmap */
527         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
528         ds->bts_buffer_base = (unsigned long) cea;
529         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
530         ds->bts_index = ds->bts_buffer_base;
531         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
532         ds->bts_absolute_maximum = ds->bts_buffer_base +
533                                         max * BTS_RECORD_SIZE;
534         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
535                                         (max / 16) * BTS_RECORD_SIZE;
536         return 0;
537 }
538
539 static void release_bts_buffer(int cpu)
540 {
541         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
542         void *cea;
543
544         if (!x86_pmu.bts)
545                 return;
546
547         /* Clear the fixmap */
548         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
549         ds_clear_cea(cea, BTS_BUFFER_SIZE);
550         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
551         hwev->ds_bts_vaddr = NULL;
552 }
553
554 static int alloc_ds_buffer(int cpu)
555 {
556         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
557
558         memset(ds, 0, sizeof(*ds));
559         per_cpu(cpu_hw_events, cpu).ds = ds;
560         return 0;
561 }
562
563 static void release_ds_buffer(int cpu)
564 {
565         per_cpu(cpu_hw_events, cpu).ds = NULL;
566 }
567
568 void release_ds_buffers(void)
569 {
570         int cpu;
571
572         if (!x86_pmu.bts && !x86_pmu.pebs)
573                 return;
574
575         for_each_possible_cpu(cpu)
576                 release_ds_buffer(cpu);
577
578         for_each_possible_cpu(cpu) {
579                 /*
580                  * Again, ignore errors from offline CPUs, they will no longer
581                  * observe cpu_hw_events.ds and not program the DS_AREA when
582                  * they come up.
583                  */
584                 fini_debug_store_on_cpu(cpu);
585         }
586
587         for_each_possible_cpu(cpu) {
588                 release_pebs_buffer(cpu);
589                 release_bts_buffer(cpu);
590         }
591 }
592
593 void reserve_ds_buffers(void)
594 {
595         int bts_err = 0, pebs_err = 0;
596         int cpu;
597
598         x86_pmu.bts_active = 0;
599         x86_pmu.pebs_active = 0;
600
601         if (!x86_pmu.bts && !x86_pmu.pebs)
602                 return;
603
604         if (!x86_pmu.bts)
605                 bts_err = 1;
606
607         if (!x86_pmu.pebs)
608                 pebs_err = 1;
609
610         for_each_possible_cpu(cpu) {
611                 if (alloc_ds_buffer(cpu)) {
612                         bts_err = 1;
613                         pebs_err = 1;
614                 }
615
616                 if (!bts_err && alloc_bts_buffer(cpu))
617                         bts_err = 1;
618
619                 if (!pebs_err && alloc_pebs_buffer(cpu))
620                         pebs_err = 1;
621
622                 if (bts_err && pebs_err)
623                         break;
624         }
625
626         if (bts_err) {
627                 for_each_possible_cpu(cpu)
628                         release_bts_buffer(cpu);
629         }
630
631         if (pebs_err) {
632                 for_each_possible_cpu(cpu)
633                         release_pebs_buffer(cpu);
634         }
635
636         if (bts_err && pebs_err) {
637                 for_each_possible_cpu(cpu)
638                         release_ds_buffer(cpu);
639         } else {
640                 if (x86_pmu.bts && !bts_err)
641                         x86_pmu.bts_active = 1;
642
643                 if (x86_pmu.pebs && !pebs_err)
644                         x86_pmu.pebs_active = 1;
645
646                 for_each_possible_cpu(cpu) {
647                         /*
648                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
649                          * will get this call through intel_pmu_cpu_starting().
650                          */
651                         init_debug_store_on_cpu(cpu);
652                 }
653         }
654 }
655
656 /*
657  * BTS
658  */
659
660 struct event_constraint bts_constraint =
661         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
662
663 void intel_pmu_enable_bts(u64 config)
664 {
665         unsigned long debugctlmsr;
666
667         debugctlmsr = get_debugctlmsr();
668
669         debugctlmsr |= DEBUGCTLMSR_TR;
670         debugctlmsr |= DEBUGCTLMSR_BTS;
671         if (config & ARCH_PERFMON_EVENTSEL_INT)
672                 debugctlmsr |= DEBUGCTLMSR_BTINT;
673
674         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
675                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
676
677         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
678                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
679
680         update_debugctlmsr(debugctlmsr);
681 }
682
683 void intel_pmu_disable_bts(void)
684 {
685         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
686         unsigned long debugctlmsr;
687
688         if (!cpuc->ds)
689                 return;
690
691         debugctlmsr = get_debugctlmsr();
692
693         debugctlmsr &=
694                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
695                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
696
697         update_debugctlmsr(debugctlmsr);
698 }
699
700 int intel_pmu_drain_bts_buffer(void)
701 {
702         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
703         struct debug_store *ds = cpuc->ds;
704         struct bts_record {
705                 u64     from;
706                 u64     to;
707                 u64     flags;
708         };
709         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
710         struct bts_record *at, *base, *top;
711         struct perf_output_handle handle;
712         struct perf_event_header header;
713         struct perf_sample_data data;
714         unsigned long skip = 0;
715         struct pt_regs regs;
716
717         if (!event)
718                 return 0;
719
720         if (!x86_pmu.bts_active)
721                 return 0;
722
723         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
724         top  = (struct bts_record *)(unsigned long)ds->bts_index;
725
726         if (top <= base)
727                 return 0;
728
729         memset(&regs, 0, sizeof(regs));
730
731         ds->bts_index = ds->bts_buffer_base;
732
733         perf_sample_data_init(&data, 0, event->hw.last_period);
734
735         /*
736          * BTS leaks kernel addresses in branches across the cpl boundary,
737          * such as traps or system calls, so unless the user is asking for
738          * kernel tracing (and right now it's not possible), we'd need to
739          * filter them out. But first we need to count how many of those we
740          * have in the current batch. This is an extra O(n) pass, however,
741          * it's much faster than the other one especially considering that
742          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
743          * alloc_bts_buffer()).
744          */
745         for (at = base; at < top; at++) {
746                 /*
747                  * Note that right now *this* BTS code only works if
748                  * attr::exclude_kernel is set, but let's keep this extra
749                  * check here in case that changes.
750                  */
751                 if (event->attr.exclude_kernel &&
752                     (kernel_ip(at->from) || kernel_ip(at->to)))
753                         skip++;
754         }
755
756         /*
757          * Prepare a generic sample, i.e. fill in the invariant fields.
758          * We will overwrite the from and to address before we output
759          * the sample.
760          */
761         rcu_read_lock();
762         perf_prepare_sample(&header, &data, event, &regs);
763
764         if (perf_output_begin(&handle, &data, event,
765                               header.size * (top - base - skip)))
766                 goto unlock;
767
768         for (at = base; at < top; at++) {
769                 /* Filter out any records that contain kernel addresses. */
770                 if (event->attr.exclude_kernel &&
771                     (kernel_ip(at->from) || kernel_ip(at->to)))
772                         continue;
773
774                 data.ip         = at->from;
775                 data.addr       = at->to;
776
777                 perf_output_sample(&handle, &header, &data, event);
778         }
779
780         perf_output_end(&handle);
781
782         /* There's new data available. */
783         event->hw.interrupts++;
784         event->pending_kill = POLL_IN;
785 unlock:
786         rcu_read_unlock();
787         return 1;
788 }
789
790 static inline void intel_pmu_drain_pebs_buffer(void)
791 {
792         struct perf_sample_data data;
793
794         x86_pmu.drain_pebs(NULL, &data);
795 }
796
797 /*
798  * PEBS
799  */
800 struct event_constraint intel_core2_pebs_event_constraints[] = {
801         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
802         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
803         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
804         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
805         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
806         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
807         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
808         EVENT_CONSTRAINT_END
809 };
810
811 struct event_constraint intel_atom_pebs_event_constraints[] = {
812         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
813         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
814         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
815         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
816         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
817         /* Allow all events as PEBS with no flags */
818         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
819         EVENT_CONSTRAINT_END
820 };
821
822 struct event_constraint intel_slm_pebs_event_constraints[] = {
823         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
824         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
825         /* Allow all events as PEBS with no flags */
826         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
827         EVENT_CONSTRAINT_END
828 };
829
830 struct event_constraint intel_glm_pebs_event_constraints[] = {
831         /* Allow all events as PEBS with no flags */
832         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
833         EVENT_CONSTRAINT_END
834 };
835
836 struct event_constraint intel_grt_pebs_event_constraints[] = {
837         /* Allow all events as PEBS with no flags */
838         INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
839         INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
840         EVENT_CONSTRAINT_END
841 };
842
843 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
844         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
845         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
846         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
847         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
848         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
849         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
850         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
851         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
852         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
853         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
854         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
855         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
856         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
857         EVENT_CONSTRAINT_END
858 };
859
860 struct event_constraint intel_westmere_pebs_event_constraints[] = {
861         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
862         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
863         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
864         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
865         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
866         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
867         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
868         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
869         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
870         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
871         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
872         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
873         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
874         EVENT_CONSTRAINT_END
875 };
876
877 struct event_constraint intel_snb_pebs_event_constraints[] = {
878         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
879         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
880         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
881         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
882         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
883         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
884         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
885         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
886         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
887         /* Allow all events as PEBS with no flags */
888         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
889         EVENT_CONSTRAINT_END
890 };
891
892 struct event_constraint intel_ivb_pebs_event_constraints[] = {
893         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
894         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
895         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
896         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
897         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
898         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
899         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
900         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
901         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
902         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
903         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
904         /* Allow all events as PEBS with no flags */
905         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
906         EVENT_CONSTRAINT_END
907 };
908
909 struct event_constraint intel_hsw_pebs_event_constraints[] = {
910         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
911         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
912         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
913         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
914         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
915         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
916         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
917         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
918         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
919         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
920         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
921         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
922         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
923         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
924         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
925         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
926         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
927         /* Allow all events as PEBS with no flags */
928         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
929         EVENT_CONSTRAINT_END
930 };
931
932 struct event_constraint intel_bdw_pebs_event_constraints[] = {
933         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
934         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
935         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
936         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
937         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
938         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
939         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
940         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
941         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
942         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
943         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
944         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
945         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
946         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
947         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
948         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
949         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
950         /* Allow all events as PEBS with no flags */
951         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
952         EVENT_CONSTRAINT_END
953 };
954
955
956 struct event_constraint intel_skl_pebs_event_constraints[] = {
957         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
958         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
959         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
960         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
961         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
962         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
963         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
964         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
965         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
966         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
967         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
968         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
969         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
970         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
971         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
972         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
973         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
974         /* Allow all events as PEBS with no flags */
975         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
976         EVENT_CONSTRAINT_END
977 };
978
979 struct event_constraint intel_icl_pebs_event_constraints[] = {
980         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),  /* old INST_RETIRED.PREC_DIST */
981         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),  /* INST_RETIRED.PREC_DIST */
982         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
983
984         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
985         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
986         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
987         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
988         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
989         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
990         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
991         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
992
993         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
994
995         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
996
997         /*
998          * Everything else is handled by PMU_FL_PEBS_ALL, because we
999          * need the full constraints from the main table.
1000          */
1001
1002         EVENT_CONSTRAINT_END
1003 };
1004
1005 struct event_constraint intel_spr_pebs_event_constraints[] = {
1006         INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
1007         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1008
1009         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1010         INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1011         INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1012         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1013         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),   /* MEM_INST_RETIRED.STLB_MISS_STORES */
1014         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),   /* MEM_INST_RETIRED.LOCK_LOADS */
1015         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_LOADS */
1016         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),   /* MEM_INST_RETIRED.SPLIT_STORES */
1017         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),   /* MEM_INST_RETIRED.ALL_LOADS */
1018         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),   /* MEM_INST_RETIRED.ALL_STORES */
1019
1020         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1021
1022         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1023
1024         /*
1025          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1026          * need the full constraints from the main table.
1027          */
1028
1029         EVENT_CONSTRAINT_END
1030 };
1031
1032 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1033 {
1034         struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1035         struct event_constraint *c;
1036
1037         if (!event->attr.precise_ip)
1038                 return NULL;
1039
1040         if (pebs_constraints) {
1041                 for_each_event_constraint(c, pebs_constraints) {
1042                         if (constraint_match(c, event->hw.config)) {
1043                                 event->hw.flags |= c->flags;
1044                                 return c;
1045                         }
1046                 }
1047         }
1048
1049         /*
1050          * Extended PEBS support
1051          * Makes the PEBS code search the normal constraints.
1052          */
1053         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1054                 return NULL;
1055
1056         return &emptyconstraint;
1057 }
1058
1059 /*
1060  * We need the sched_task callback even for per-cpu events when we use
1061  * the large interrupt threshold, such that we can provide PID and TID
1062  * to PEBS samples.
1063  */
1064 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1065 {
1066         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1067                 return false;
1068
1069         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1070 }
1071
1072 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1073 {
1074         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1075
1076         if (!sched_in && pebs_needs_sched_cb(cpuc))
1077                 intel_pmu_drain_pebs_buffer();
1078 }
1079
1080 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1081 {
1082         struct debug_store *ds = cpuc->ds;
1083         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1084         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1085         u64 threshold;
1086         int reserved;
1087
1088         if (cpuc->n_pebs_via_pt)
1089                 return;
1090
1091         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1092                 reserved = max_pebs_events + num_counters_fixed;
1093         else
1094                 reserved = max_pebs_events;
1095
1096         if (cpuc->n_pebs == cpuc->n_large_pebs) {
1097                 threshold = ds->pebs_absolute_maximum -
1098                         reserved * cpuc->pebs_record_size;
1099         } else {
1100                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1101         }
1102
1103         ds->pebs_interrupt_threshold = threshold;
1104 }
1105
1106 static void adaptive_pebs_record_size_update(void)
1107 {
1108         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1109         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1110         int sz = sizeof(struct pebs_basic);
1111
1112         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1113                 sz += sizeof(struct pebs_meminfo);
1114         if (pebs_data_cfg & PEBS_DATACFG_GP)
1115                 sz += sizeof(struct pebs_gprs);
1116         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1117                 sz += sizeof(struct pebs_xmm);
1118         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1119                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1120
1121         cpuc->pebs_record_size = sz;
1122 }
1123
1124 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1125                                 PERF_SAMPLE_PHYS_ADDR |                      \
1126                                 PERF_SAMPLE_WEIGHT_TYPE |                    \
1127                                 PERF_SAMPLE_TRANSACTION |                    \
1128                                 PERF_SAMPLE_DATA_PAGE_SIZE)
1129
1130 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1131 {
1132         struct perf_event_attr *attr = &event->attr;
1133         u64 sample_type = attr->sample_type;
1134         u64 pebs_data_cfg = 0;
1135         bool gprs, tsx_weight;
1136
1137         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1138             attr->precise_ip > 1)
1139                 return pebs_data_cfg;
1140
1141         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1142                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1143
1144         /*
1145          * We need GPRs when:
1146          * + user requested them
1147          * + precise_ip < 2 for the non event IP
1148          * + For RTM TSX weight we need GPRs for the abort code.
1149          */
1150         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1151                (attr->sample_regs_intr & PEBS_GP_REGS);
1152
1153         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1154                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1155                       x86_pmu.rtm_abort_event);
1156
1157         if (gprs || (attr->precise_ip < 2) || tsx_weight)
1158                 pebs_data_cfg |= PEBS_DATACFG_GP;
1159
1160         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1161             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1162                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1163
1164         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1165                 /*
1166                  * For now always log all LBRs. Could configure this
1167                  * later.
1168                  */
1169                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1170                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1171         }
1172
1173         return pebs_data_cfg;
1174 }
1175
1176 static void
1177 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1178                   struct perf_event *event, bool add)
1179 {
1180         struct pmu *pmu = event->ctx->pmu;
1181         /*
1182          * Make sure we get updated with the first PEBS
1183          * event. It will trigger also during removal, but
1184          * that does not hurt:
1185          */
1186         bool update = cpuc->n_pebs == 1;
1187
1188         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1189                 if (!needed_cb)
1190                         perf_sched_cb_inc(pmu);
1191                 else
1192                         perf_sched_cb_dec(pmu);
1193
1194                 update = true;
1195         }
1196
1197         /*
1198          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1199          * iterating all remaining PEBS events to reconstruct the config.
1200          */
1201         if (x86_pmu.intel_cap.pebs_baseline && add) {
1202                 u64 pebs_data_cfg;
1203
1204                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1205                 if (cpuc->n_pebs == 1) {
1206                         cpuc->pebs_data_cfg = 0;
1207                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1208                 }
1209
1210                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1211
1212                 /* Update pebs_record_size if new event requires more data. */
1213                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1214                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1215                         adaptive_pebs_record_size_update();
1216                         update = true;
1217                 }
1218         }
1219
1220         if (update)
1221                 pebs_update_threshold(cpuc);
1222 }
1223
1224 void intel_pmu_pebs_add(struct perf_event *event)
1225 {
1226         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1227         struct hw_perf_event *hwc = &event->hw;
1228         bool needed_cb = pebs_needs_sched_cb(cpuc);
1229
1230         cpuc->n_pebs++;
1231         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1232                 cpuc->n_large_pebs++;
1233         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1234                 cpuc->n_pebs_via_pt++;
1235
1236         pebs_update_state(needed_cb, cpuc, event, true);
1237 }
1238
1239 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1240 {
1241         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1242
1243         if (!is_pebs_pt(event))
1244                 return;
1245
1246         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1247                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1248 }
1249
1250 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1251 {
1252         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1253         struct hw_perf_event *hwc = &event->hw;
1254         struct debug_store *ds = cpuc->ds;
1255         u64 value = ds->pebs_event_reset[hwc->idx];
1256         u32 base = MSR_RELOAD_PMC0;
1257         unsigned int idx = hwc->idx;
1258
1259         if (!is_pebs_pt(event))
1260                 return;
1261
1262         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1263                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1264
1265         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1266
1267         if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1268                 base = MSR_RELOAD_FIXED_CTR0;
1269                 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1270                 if (x86_pmu.intel_cap.pebs_format < 5)
1271                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1272                 else
1273                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1274         }
1275         wrmsrl(base + idx, value);
1276 }
1277
1278 void intel_pmu_pebs_enable(struct perf_event *event)
1279 {
1280         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1281         struct hw_perf_event *hwc = &event->hw;
1282         struct debug_store *ds = cpuc->ds;
1283         unsigned int idx = hwc->idx;
1284
1285         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1286
1287         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1288
1289         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1290                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1291         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1292                 cpuc->pebs_enabled |= 1ULL << 63;
1293
1294         if (x86_pmu.intel_cap.pebs_baseline) {
1295                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1296                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1297                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1298                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1299                 }
1300         }
1301
1302         if (idx >= INTEL_PMC_IDX_FIXED) {
1303                 if (x86_pmu.intel_cap.pebs_format < 5)
1304                         idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1305                 else
1306                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1307         }
1308
1309         /*
1310          * Use auto-reload if possible to save a MSR write in the PMI.
1311          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1312          */
1313         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1314                 ds->pebs_event_reset[idx] =
1315                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1316         } else {
1317                 ds->pebs_event_reset[idx] = 0;
1318         }
1319
1320         intel_pmu_pebs_via_pt_enable(event);
1321 }
1322
1323 void intel_pmu_pebs_del(struct perf_event *event)
1324 {
1325         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1326         struct hw_perf_event *hwc = &event->hw;
1327         bool needed_cb = pebs_needs_sched_cb(cpuc);
1328
1329         cpuc->n_pebs--;
1330         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1331                 cpuc->n_large_pebs--;
1332         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1333                 cpuc->n_pebs_via_pt--;
1334
1335         pebs_update_state(needed_cb, cpuc, event, false);
1336 }
1337
1338 void intel_pmu_pebs_disable(struct perf_event *event)
1339 {
1340         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1341         struct hw_perf_event *hwc = &event->hw;
1342
1343         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1344             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1345                 intel_pmu_drain_pebs_buffer();
1346
1347         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1348
1349         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1350             (x86_pmu.version < 5))
1351                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1352         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1353                 cpuc->pebs_enabled &= ~(1ULL << 63);
1354
1355         intel_pmu_pebs_via_pt_disable(event);
1356
1357         if (cpuc->enabled)
1358                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1359
1360         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1361 }
1362
1363 void intel_pmu_pebs_enable_all(void)
1364 {
1365         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1366
1367         if (cpuc->pebs_enabled)
1368                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1369 }
1370
1371 void intel_pmu_pebs_disable_all(void)
1372 {
1373         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1374
1375         if (cpuc->pebs_enabled)
1376                 __intel_pmu_pebs_disable_all();
1377 }
1378
1379 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1380 {
1381         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1382         unsigned long from = cpuc->lbr_entries[0].from;
1383         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1384         unsigned long ip = regs->ip;
1385         int is_64bit = 0;
1386         void *kaddr;
1387         int size;
1388
1389         /*
1390          * We don't need to fixup if the PEBS assist is fault like
1391          */
1392         if (!x86_pmu.intel_cap.pebs_trap)
1393                 return 1;
1394
1395         /*
1396          * No LBR entry, no basic block, no rewinding
1397          */
1398         if (!cpuc->lbr_stack.nr || !from || !to)
1399                 return 0;
1400
1401         /*
1402          * Basic blocks should never cross user/kernel boundaries
1403          */
1404         if (kernel_ip(ip) != kernel_ip(to))
1405                 return 0;
1406
1407         /*
1408          * unsigned math, either ip is before the start (impossible) or
1409          * the basic block is larger than 1 page (sanity)
1410          */
1411         if ((ip - to) > PEBS_FIXUP_SIZE)
1412                 return 0;
1413
1414         /*
1415          * We sampled a branch insn, rewind using the LBR stack
1416          */
1417         if (ip == to) {
1418                 set_linear_ip(regs, from);
1419                 return 1;
1420         }
1421
1422         size = ip - to;
1423         if (!kernel_ip(ip)) {
1424                 int bytes;
1425                 u8 *buf = this_cpu_read(insn_buffer);
1426
1427                 /* 'size' must fit our buffer, see above */
1428                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1429                 if (bytes != 0)
1430                         return 0;
1431
1432                 kaddr = buf;
1433         } else {
1434                 kaddr = (void *)to;
1435         }
1436
1437         do {
1438                 struct insn insn;
1439
1440                 old_to = to;
1441
1442 #ifdef CONFIG_X86_64
1443                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1444 #endif
1445                 insn_init(&insn, kaddr, size, is_64bit);
1446
1447                 /*
1448                  * Make sure there was not a problem decoding the instruction.
1449                  * This is doubly important because we have an infinite loop if
1450                  * insn.length=0.
1451                  */
1452                 if (insn_get_length(&insn))
1453                         break;
1454
1455                 to += insn.length;
1456                 kaddr += insn.length;
1457                 size -= insn.length;
1458         } while (to < ip);
1459
1460         if (to == ip) {
1461                 set_linear_ip(regs, old_to);
1462                 return 1;
1463         }
1464
1465         /*
1466          * Even though we decoded the basic block, the instruction stream
1467          * never matched the given IP, either the TO or the IP got corrupted.
1468          */
1469         return 0;
1470 }
1471
1472 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1473 {
1474         if (tsx_tuning) {
1475                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1476                 return tsx.cycles_last_block;
1477         }
1478         return 0;
1479 }
1480
1481 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1482 {
1483         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1484
1485         /* For RTM XABORTs also log the abort code from AX */
1486         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1487                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1488         return txn;
1489 }
1490
1491 static inline u64 get_pebs_status(void *n)
1492 {
1493         if (x86_pmu.intel_cap.pebs_format < 4)
1494                 return ((struct pebs_record_nhm *)n)->status;
1495         return ((struct pebs_basic *)n)->applicable_counters;
1496 }
1497
1498 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1499                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1500                  PERF_X86_EVENT_PEBS_LD_HSW | \
1501                  PERF_X86_EVENT_PEBS_NA_HSW)
1502
1503 static u64 get_data_src(struct perf_event *event, u64 aux)
1504 {
1505         u64 val = PERF_MEM_NA;
1506         int fl = event->hw.flags;
1507         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1508
1509         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1510                 val = load_latency_data(event, aux);
1511         else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1512                 val = store_latency_data(event, aux);
1513         else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1514                 val = x86_pmu.pebs_latency_data(event, aux);
1515         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1516                 val = precise_datala_hsw(event, aux);
1517         else if (fst)
1518                 val = precise_store_data(aux);
1519         return val;
1520 }
1521
1522 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1523                                  PERF_SAMPLE_PHYS_ADDR |        \
1524                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1525
1526 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1527                                    struct pt_regs *iregs, void *__pebs,
1528                                    struct perf_sample_data *data,
1529                                    struct pt_regs *regs)
1530 {
1531         /*
1532          * We cast to the biggest pebs_record but are careful not to
1533          * unconditionally access the 'extra' entries.
1534          */
1535         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1536         struct pebs_record_skl *pebs = __pebs;
1537         u64 sample_type;
1538         int fll;
1539
1540         if (pebs == NULL)
1541                 return;
1542
1543         sample_type = event->attr.sample_type;
1544         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1545
1546         perf_sample_data_init(data, 0, event->hw.last_period);
1547
1548         data->period = event->hw.last_period;
1549
1550         /*
1551          * Use latency for weight (only avail with PEBS-LL)
1552          */
1553         if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1554                 data->weight.full = pebs->lat;
1555                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1556         }
1557
1558         /*
1559          * data.data_src encodes the data source
1560          */
1561         if (sample_type & PERF_SAMPLE_DATA_SRC) {
1562                 data->data_src.val = get_data_src(event, pebs->dse);
1563                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1564         }
1565
1566         /*
1567          * We must however always use iregs for the unwinder to stay sane; the
1568          * record BP,SP,IP can point into thin air when the record is from a
1569          * previous PMI context or an (I)RET happened between the record and
1570          * PMI.
1571          */
1572         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
1573                 data->callchain = perf_callchain(event, iregs);
1574                 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1575         }
1576
1577         /*
1578          * We use the interrupt regs as a base because the PEBS record does not
1579          * contain a full regs set, specifically it seems to lack segment
1580          * descriptors, which get used by things like user_mode().
1581          *
1582          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1583          */
1584         *regs = *iregs;
1585
1586         /*
1587          * Initialize regs_>flags from PEBS,
1588          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1589          * i.e., do not rely on it being zero:
1590          */
1591         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1592
1593         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1594                 regs->ax = pebs->ax;
1595                 regs->bx = pebs->bx;
1596                 regs->cx = pebs->cx;
1597                 regs->dx = pebs->dx;
1598                 regs->si = pebs->si;
1599                 regs->di = pebs->di;
1600
1601                 regs->bp = pebs->bp;
1602                 regs->sp = pebs->sp;
1603
1604 #ifndef CONFIG_X86_32
1605                 regs->r8 = pebs->r8;
1606                 regs->r9 = pebs->r9;
1607                 regs->r10 = pebs->r10;
1608                 regs->r11 = pebs->r11;
1609                 regs->r12 = pebs->r12;
1610                 regs->r13 = pebs->r13;
1611                 regs->r14 = pebs->r14;
1612                 regs->r15 = pebs->r15;
1613 #endif
1614         }
1615
1616         if (event->attr.precise_ip > 1) {
1617                 /*
1618                  * Haswell and later processors have an 'eventing IP'
1619                  * (real IP) which fixes the off-by-1 skid in hardware.
1620                  * Use it when precise_ip >= 2 :
1621                  */
1622                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1623                         set_linear_ip(regs, pebs->real_ip);
1624                         regs->flags |= PERF_EFLAGS_EXACT;
1625                 } else {
1626                         /* Otherwise, use PEBS off-by-1 IP: */
1627                         set_linear_ip(regs, pebs->ip);
1628
1629                         /*
1630                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1631                          * using the LBR. If successful, the fixup function
1632                          * corrects regs->ip and calls set_linear_ip() on regs:
1633                          */
1634                         if (intel_pmu_pebs_fixup_ip(regs))
1635                                 regs->flags |= PERF_EFLAGS_EXACT;
1636                 }
1637         } else {
1638                 /*
1639                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1640                  * no fixup attempted:
1641                  */
1642                 set_linear_ip(regs, pebs->ip);
1643         }
1644
1645
1646         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1647             x86_pmu.intel_cap.pebs_format >= 1) {
1648                 data->addr = pebs->dla;
1649                 data->sample_flags |= PERF_SAMPLE_ADDR;
1650         }
1651
1652         if (x86_pmu.intel_cap.pebs_format >= 2) {
1653                 /* Only set the TSX weight when no memory weight. */
1654                 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1655                         data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1656                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1657                 }
1658                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1659                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1660                                                               pebs->ax);
1661                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1662                 }
1663         }
1664
1665         /*
1666          * v3 supplies an accurate time stamp, so we use that
1667          * for the time stamp.
1668          *
1669          * We can only do this for the default trace clock.
1670          */
1671         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1672                 event->attr.use_clockid == 0) {
1673                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1674                 data->sample_flags |= PERF_SAMPLE_TIME;
1675         }
1676
1677         if (has_branch_stack(event)) {
1678                 data->br_stack = &cpuc->lbr_stack;
1679                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1680         }
1681 }
1682
1683 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1684                                     struct pebs_gprs *gprs)
1685 {
1686         regs->ax = gprs->ax;
1687         regs->bx = gprs->bx;
1688         regs->cx = gprs->cx;
1689         regs->dx = gprs->dx;
1690         regs->si = gprs->si;
1691         regs->di = gprs->di;
1692         regs->bp = gprs->bp;
1693         regs->sp = gprs->sp;
1694 #ifndef CONFIG_X86_32
1695         regs->r8 = gprs->r8;
1696         regs->r9 = gprs->r9;
1697         regs->r10 = gprs->r10;
1698         regs->r11 = gprs->r11;
1699         regs->r12 = gprs->r12;
1700         regs->r13 = gprs->r13;
1701         regs->r14 = gprs->r14;
1702         regs->r15 = gprs->r15;
1703 #endif
1704 }
1705
1706 #define PEBS_LATENCY_MASK                       0xffff
1707 #define PEBS_CACHE_LATENCY_OFFSET               32
1708
1709 /*
1710  * With adaptive PEBS the layout depends on what fields are configured.
1711  */
1712
1713 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1714                                             struct pt_regs *iregs, void *__pebs,
1715                                             struct perf_sample_data *data,
1716                                             struct pt_regs *regs)
1717 {
1718         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1719         struct pebs_basic *basic = __pebs;
1720         void *next_record = basic + 1;
1721         u64 sample_type;
1722         u64 format_size;
1723         struct pebs_meminfo *meminfo = NULL;
1724         struct pebs_gprs *gprs = NULL;
1725         struct x86_perf_regs *perf_regs;
1726
1727         if (basic == NULL)
1728                 return;
1729
1730         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1731         perf_regs->xmm_regs = NULL;
1732
1733         sample_type = event->attr.sample_type;
1734         format_size = basic->format_size;
1735         perf_sample_data_init(data, 0, event->hw.last_period);
1736         data->period = event->hw.last_period;
1737
1738         if (event->attr.use_clockid == 0) {
1739                 data->time = native_sched_clock_from_tsc(basic->tsc);
1740                 data->sample_flags |= PERF_SAMPLE_TIME;
1741         }
1742
1743         /*
1744          * We must however always use iregs for the unwinder to stay sane; the
1745          * record BP,SP,IP can point into thin air when the record is from a
1746          * previous PMI context or an (I)RET happened between the record and
1747          * PMI.
1748          */
1749         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
1750                 data->callchain = perf_callchain(event, iregs);
1751                 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1752         }
1753
1754         *regs = *iregs;
1755         /* The ip in basic is EventingIP */
1756         set_linear_ip(regs, basic->ip);
1757         regs->flags = PERF_EFLAGS_EXACT;
1758
1759         /*
1760          * The record for MEMINFO is in front of GP
1761          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1762          * Save the pointer here but process later.
1763          */
1764         if (format_size & PEBS_DATACFG_MEMINFO) {
1765                 meminfo = next_record;
1766                 next_record = meminfo + 1;
1767         }
1768
1769         if (format_size & PEBS_DATACFG_GP) {
1770                 gprs = next_record;
1771                 next_record = gprs + 1;
1772
1773                 if (event->attr.precise_ip < 2) {
1774                         set_linear_ip(regs, gprs->ip);
1775                         regs->flags &= ~PERF_EFLAGS_EXACT;
1776                 }
1777
1778                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1779                         adaptive_pebs_save_regs(regs, gprs);
1780         }
1781
1782         if (format_size & PEBS_DATACFG_MEMINFO) {
1783                 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1784                         u64 weight = meminfo->latency;
1785
1786                         if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1787                                 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1788                                 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1789                         }
1790
1791                         /*
1792                          * Although meminfo::latency is defined as a u64,
1793                          * only the lower 32 bits include the valid data
1794                          * in practice on Ice Lake and earlier platforms.
1795                          */
1796                         if (sample_type & PERF_SAMPLE_WEIGHT) {
1797                                 data->weight.full = weight ?:
1798                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1799                         } else {
1800                                 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1801                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1802                         }
1803                         data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1804                 }
1805
1806                 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1807                         data->data_src.val = get_data_src(event, meminfo->aux);
1808                         data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1809                 }
1810
1811                 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
1812                         data->addr = meminfo->address;
1813                         data->sample_flags |= PERF_SAMPLE_ADDR;
1814                 }
1815
1816                 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1817                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1818                                                           gprs ? gprs->ax : 0);
1819                         data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1820                 }
1821         }
1822
1823         if (format_size & PEBS_DATACFG_XMMS) {
1824                 struct pebs_xmm *xmm = next_record;
1825
1826                 next_record = xmm + 1;
1827                 perf_regs->xmm_regs = xmm->xmm;
1828         }
1829
1830         if (format_size & PEBS_DATACFG_LBRS) {
1831                 struct lbr_entry *lbr = next_record;
1832                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1833                                         & 0xff) + 1;
1834                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1835
1836                 if (has_branch_stack(event)) {
1837                         intel_pmu_store_pebs_lbrs(lbr);
1838                         data->br_stack = &cpuc->lbr_stack;
1839                         data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1840                 }
1841         }
1842
1843         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1844                         "PEBS record size %llu, expected %llu, config %llx\n",
1845                         format_size >> 48,
1846                         (u64)(next_record - __pebs),
1847                         basic->format_size);
1848 }
1849
1850 static inline void *
1851 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1852 {
1853         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1854         void *at;
1855         u64 pebs_status;
1856
1857         /*
1858          * fmt0 does not have a status bitfield (does not use
1859          * perf_record_nhm format)
1860          */
1861         if (x86_pmu.intel_cap.pebs_format < 1)
1862                 return base;
1863
1864         if (base == NULL)
1865                 return NULL;
1866
1867         for (at = base; at < top; at += cpuc->pebs_record_size) {
1868                 unsigned long status = get_pebs_status(at);
1869
1870                 if (test_bit(bit, (unsigned long *)&status)) {
1871                         /* PEBS v3 has accurate status bits */
1872                         if (x86_pmu.intel_cap.pebs_format >= 3)
1873                                 return at;
1874
1875                         if (status == (1 << bit))
1876                                 return at;
1877
1878                         /* clear non-PEBS bit and re-check */
1879                         pebs_status = status & cpuc->pebs_enabled;
1880                         pebs_status &= PEBS_COUNTER_MASK;
1881                         if (pebs_status == (1 << bit))
1882                                 return at;
1883                 }
1884         }
1885         return NULL;
1886 }
1887
1888 void intel_pmu_auto_reload_read(struct perf_event *event)
1889 {
1890         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1891
1892         perf_pmu_disable(event->pmu);
1893         intel_pmu_drain_pebs_buffer();
1894         perf_pmu_enable(event->pmu);
1895 }
1896
1897 /*
1898  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1899  */
1900 static int
1901 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1902 {
1903         struct hw_perf_event *hwc = &event->hw;
1904         int shift = 64 - x86_pmu.cntval_bits;
1905         u64 period = hwc->sample_period;
1906         u64 prev_raw_count, new_raw_count;
1907         s64 new, old;
1908
1909         WARN_ON(!period);
1910
1911         /*
1912          * drain_pebs() only happens when the PMU is disabled.
1913          */
1914         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1915
1916         prev_raw_count = local64_read(&hwc->prev_count);
1917         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1918         local64_set(&hwc->prev_count, new_raw_count);
1919
1920         /*
1921          * Since the counter increments a negative counter value and
1922          * overflows on the sign switch, giving the interval:
1923          *
1924          *   [-period, 0]
1925          *
1926          * the difference between two consecutive reads is:
1927          *
1928          *   A) value2 - value1;
1929          *      when no overflows have happened in between,
1930          *
1931          *   B) (0 - value1) + (value2 - (-period));
1932          *      when one overflow happened in between,
1933          *
1934          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1935          *      when @n overflows happened in between.
1936          *
1937          * Here A) is the obvious difference, B) is the extension to the
1938          * discrete interval, where the first term is to the top of the
1939          * interval and the second term is from the bottom of the next
1940          * interval and C) the extension to multiple intervals, where the
1941          * middle term is the whole intervals covered.
1942          *
1943          * An equivalent of C, by reduction, is:
1944          *
1945          *   value2 - value1 + n * period
1946          */
1947         new = ((s64)(new_raw_count << shift) >> shift);
1948         old = ((s64)(prev_raw_count << shift) >> shift);
1949         local64_add(new - old + count * period, &event->count);
1950
1951         local64_set(&hwc->period_left, -new);
1952
1953         perf_event_update_userpage(event);
1954
1955         return 0;
1956 }
1957
1958 static __always_inline void
1959 __intel_pmu_pebs_event(struct perf_event *event,
1960                        struct pt_regs *iregs,
1961                        struct perf_sample_data *data,
1962                        void *base, void *top,
1963                        int bit, int count,
1964                        void (*setup_sample)(struct perf_event *,
1965                                             struct pt_regs *,
1966                                             void *,
1967                                             struct perf_sample_data *,
1968                                             struct pt_regs *))
1969 {
1970         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1971         struct hw_perf_event *hwc = &event->hw;
1972         struct x86_perf_regs perf_regs;
1973         struct pt_regs *regs = &perf_regs.regs;
1974         void *at = get_next_pebs_record_by_bit(base, top, bit);
1975         static struct pt_regs dummy_iregs;
1976
1977         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1978                 /*
1979                  * Now, auto-reload is only enabled in fixed period mode.
1980                  * The reload value is always hwc->sample_period.
1981                  * May need to change it, if auto-reload is enabled in
1982                  * freq mode later.
1983                  */
1984                 intel_pmu_save_and_restart_reload(event, count);
1985         } else if (!intel_pmu_save_and_restart(event))
1986                 return;
1987
1988         if (!iregs)
1989                 iregs = &dummy_iregs;
1990
1991         while (count > 1) {
1992                 setup_sample(event, iregs, at, data, regs);
1993                 perf_event_output(event, data, regs);
1994                 at += cpuc->pebs_record_size;
1995                 at = get_next_pebs_record_by_bit(at, top, bit);
1996                 count--;
1997         }
1998
1999         setup_sample(event, iregs, at, data, regs);
2000         if (iregs == &dummy_iregs) {
2001                 /*
2002                  * The PEBS records may be drained in the non-overflow context,
2003                  * e.g., large PEBS + context switch. Perf should treat the
2004                  * last record the same as other PEBS records, and doesn't
2005                  * invoke the generic overflow handler.
2006                  */
2007                 perf_event_output(event, data, regs);
2008         } else {
2009                 /*
2010                  * All but the last records are processed.
2011                  * The last one is left to be able to call the overflow handler.
2012                  */
2013                 if (perf_event_overflow(event, data, regs))
2014                         x86_pmu_stop(event, 0);
2015         }
2016 }
2017
2018 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2019 {
2020         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2021         struct debug_store *ds = cpuc->ds;
2022         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2023         struct pebs_record_core *at, *top;
2024         int n;
2025
2026         if (!x86_pmu.pebs_active)
2027                 return;
2028
2029         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2030         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2031
2032         /*
2033          * Whatever else happens, drain the thing
2034          */
2035         ds->pebs_index = ds->pebs_buffer_base;
2036
2037         if (!test_bit(0, cpuc->active_mask))
2038                 return;
2039
2040         WARN_ON_ONCE(!event);
2041
2042         if (!event->attr.precise_ip)
2043                 return;
2044
2045         n = top - at;
2046         if (n <= 0) {
2047                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2048                         intel_pmu_save_and_restart_reload(event, 0);
2049                 return;
2050         }
2051
2052         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2053                                setup_pebs_fixed_sample_data);
2054 }
2055
2056 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2057 {
2058         struct perf_event *event;
2059         int bit;
2060
2061         /*
2062          * The drain_pebs() could be called twice in a short period
2063          * for auto-reload event in pmu::read(). There are no
2064          * overflows have happened in between.
2065          * It needs to call intel_pmu_save_and_restart_reload() to
2066          * update the event->count for this case.
2067          */
2068         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2069                 event = cpuc->events[bit];
2070                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2071                         intel_pmu_save_and_restart_reload(event, 0);
2072         }
2073 }
2074
2075 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2076 {
2077         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2078         struct debug_store *ds = cpuc->ds;
2079         struct perf_event *event;
2080         void *base, *at, *top;
2081         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2082         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2083         int bit, i, size;
2084         u64 mask;
2085
2086         if (!x86_pmu.pebs_active)
2087                 return;
2088
2089         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2090         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2091
2092         ds->pebs_index = ds->pebs_buffer_base;
2093
2094         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2095         size = x86_pmu.max_pebs_events;
2096         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2097                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2098                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2099         }
2100
2101         if (unlikely(base >= top)) {
2102                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2103                 return;
2104         }
2105
2106         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2107                 struct pebs_record_nhm *p = at;
2108                 u64 pebs_status;
2109
2110                 pebs_status = p->status & cpuc->pebs_enabled;
2111                 pebs_status &= mask;
2112
2113                 /* PEBS v3 has more accurate status bits */
2114                 if (x86_pmu.intel_cap.pebs_format >= 3) {
2115                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2116                                 counts[bit]++;
2117
2118                         continue;
2119                 }
2120
2121                 /*
2122                  * On some CPUs the PEBS status can be zero when PEBS is
2123                  * racing with clearing of GLOBAL_STATUS.
2124                  *
2125                  * Normally we would drop that record, but in the
2126                  * case when there is only a single active PEBS event
2127                  * we can assume it's for that event.
2128                  */
2129                 if (!pebs_status && cpuc->pebs_enabled &&
2130                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2131                         pebs_status = p->status = cpuc->pebs_enabled;
2132
2133                 bit = find_first_bit((unsigned long *)&pebs_status,
2134                                         x86_pmu.max_pebs_events);
2135                 if (bit >= x86_pmu.max_pebs_events)
2136                         continue;
2137
2138                 /*
2139                  * The PEBS hardware does not deal well with the situation
2140                  * when events happen near to each other and multiple bits
2141                  * are set. But it should happen rarely.
2142                  *
2143                  * If these events include one PEBS and multiple non-PEBS
2144                  * events, it doesn't impact PEBS record. The record will
2145                  * be handled normally. (slow path)
2146                  *
2147                  * If these events include two or more PEBS events, the
2148                  * records for the events can be collapsed into a single
2149                  * one, and it's not possible to reconstruct all events
2150                  * that caused the PEBS record. It's called collision.
2151                  * If collision happened, the record will be dropped.
2152                  */
2153                 if (pebs_status != (1ULL << bit)) {
2154                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2155                                 error[i]++;
2156                         continue;
2157                 }
2158
2159                 counts[bit]++;
2160         }
2161
2162         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2163                 if ((counts[bit] == 0) && (error[bit] == 0))
2164                         continue;
2165
2166                 event = cpuc->events[bit];
2167                 if (WARN_ON_ONCE(!event))
2168                         continue;
2169
2170                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2171                         continue;
2172
2173                 /* log dropped samples number */
2174                 if (error[bit]) {
2175                         perf_log_lost_samples(event, error[bit]);
2176
2177                         if (iregs && perf_event_account_interrupt(event))
2178                                 x86_pmu_stop(event, 0);
2179                 }
2180
2181                 if (counts[bit]) {
2182                         __intel_pmu_pebs_event(event, iregs, data, base,
2183                                                top, bit, counts[bit],
2184                                                setup_pebs_fixed_sample_data);
2185                 }
2186         }
2187 }
2188
2189 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2190 {
2191         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2192         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2193         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2194         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2195         struct debug_store *ds = cpuc->ds;
2196         struct perf_event *event;
2197         void *base, *at, *top;
2198         int bit, size;
2199         u64 mask;
2200
2201         if (!x86_pmu.pebs_active)
2202                 return;
2203
2204         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2205         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2206
2207         ds->pebs_index = ds->pebs_buffer_base;
2208
2209         mask = ((1ULL << max_pebs_events) - 1) |
2210                (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2211         size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2212
2213         if (unlikely(base >= top)) {
2214                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2215                 return;
2216         }
2217
2218         for (at = base; at < top; at += cpuc->pebs_record_size) {
2219                 u64 pebs_status;
2220
2221                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2222                 pebs_status &= mask;
2223
2224                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2225                         counts[bit]++;
2226         }
2227
2228         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2229                 if (counts[bit] == 0)
2230                         continue;
2231
2232                 event = cpuc->events[bit];
2233                 if (WARN_ON_ONCE(!event))
2234                         continue;
2235
2236                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2237                         continue;
2238
2239                 __intel_pmu_pebs_event(event, iregs, data, base,
2240                                        top, bit, counts[bit],
2241                                        setup_pebs_adaptive_sample_data);
2242         }
2243 }
2244
2245 /*
2246  * BTS, PEBS probe and setup
2247  */
2248
2249 void __init intel_ds_init(void)
2250 {
2251         /*
2252          * No support for 32bit formats
2253          */
2254         if (!boot_cpu_has(X86_FEATURE_DTES64))
2255                 return;
2256
2257         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2258         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2259         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2260         if (x86_pmu.version <= 4)
2261                 x86_pmu.pebs_no_isolation = 1;
2262
2263         if (x86_pmu.pebs) {
2264                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2265                 char *pebs_qual = "";
2266                 int format = x86_pmu.intel_cap.pebs_format;
2267
2268                 if (format < 4)
2269                         x86_pmu.intel_cap.pebs_baseline = 0;
2270
2271                 switch (format) {
2272                 case 0:
2273                         pr_cont("PEBS fmt0%c, ", pebs_type);
2274                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2275                         /*
2276                          * Using >PAGE_SIZE buffers makes the WRMSR to
2277                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2278                          * mysteriously hang on Core2.
2279                          *
2280                          * As a workaround, we don't do this.
2281                          */
2282                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2283                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2284                         break;
2285
2286                 case 1:
2287                         pr_cont("PEBS fmt1%c, ", pebs_type);
2288                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2289                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2290                         break;
2291
2292                 case 2:
2293                         pr_cont("PEBS fmt2%c, ", pebs_type);
2294                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2295                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2296                         break;
2297
2298                 case 3:
2299                         pr_cont("PEBS fmt3%c, ", pebs_type);
2300                         x86_pmu.pebs_record_size =
2301                                                 sizeof(struct pebs_record_skl);
2302                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2303                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2304                         break;
2305
2306                 case 4:
2307                 case 5:
2308                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2309                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2310                         if (x86_pmu.intel_cap.pebs_baseline) {
2311                                 x86_pmu.large_pebs_flags |=
2312                                         PERF_SAMPLE_BRANCH_STACK |
2313                                         PERF_SAMPLE_TIME;
2314                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2315                                 x86_pmu.pebs_capable = ~0ULL;
2316                                 pebs_qual = "-baseline";
2317                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2318                         } else {
2319                                 /* Only basic record supported */
2320                                 x86_pmu.large_pebs_flags &=
2321                                         ~(PERF_SAMPLE_ADDR |
2322                                           PERF_SAMPLE_TIME |
2323                                           PERF_SAMPLE_DATA_SRC |
2324                                           PERF_SAMPLE_TRANSACTION |
2325                                           PERF_SAMPLE_REGS_USER |
2326                                           PERF_SAMPLE_REGS_INTR);
2327                         }
2328                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2329
2330                         if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2331                                 pr_cont("PEBS-via-PT, ");
2332                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2333                         }
2334
2335                         break;
2336
2337                 default:
2338                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2339                         x86_pmu.pebs = 0;
2340                 }
2341         }
2342 }
2343
2344 void perf_restore_debug_store(void)
2345 {
2346         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2347
2348         if (!x86_pmu.bts && !x86_pmu.pebs)
2349                 return;
2350
2351         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2352 }