perf: Use sample_flags for branch stack
[platform/kernel/linux-starfive.git] / arch / x86 / events / intel / ds.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE         24
19
20 #define PEBS_FIXUP_SIZE         PAGE_SIZE
21
22 /*
23  * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26         u32 flags, ip;
27         u32 ax, bc, cx, dx;
28         u32 si, di, bp, sp;
29 };
30
31  */
32
33 union intel_x86_pebs_dse {
34         u64 val;
35         struct {
36                 unsigned int ld_dse:4;
37                 unsigned int ld_stlb_miss:1;
38                 unsigned int ld_locked:1;
39                 unsigned int ld_data_blk:1;
40                 unsigned int ld_addr_blk:1;
41                 unsigned int ld_reserved:24;
42         };
43         struct {
44                 unsigned int st_l1d_hit:1;
45                 unsigned int st_reserved1:3;
46                 unsigned int st_stlb_miss:1;
47                 unsigned int st_locked:1;
48                 unsigned int st_reserved2:26;
49         };
50         struct {
51                 unsigned int st_lat_dse:4;
52                 unsigned int st_lat_stlb_miss:1;
53                 unsigned int st_lat_locked:1;
54                 unsigned int ld_reserved3:26;
55         };
56 };
57
58
59 /*
60  * Map PEBS Load Latency Data Source encodings to generic
61  * memory data source information
62  */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71         P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72         OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
73         OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74         OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
75         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
76         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
77         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
78         OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
79         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
80         OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
82         OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
83         OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
84         OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85         OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86         OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88
89 /* Patch up minor differences in the bits */
90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92         pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93         pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94         pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96
97 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
98 {
99         u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100
101         data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102         data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103         data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104         data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105         data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107
108 void __init intel_pmu_pebs_data_source_skl(bool pmem)
109 {
110         __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
111 }
112
113 static void __init intel_pmu_pebs_data_source_grt(u64 *data_source)
114 {
115         data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
116         data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
117         data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
118 }
119
120 void __init intel_pmu_pebs_data_source_adl(void)
121 {
122         u64 *data_source;
123
124         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
125         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
126         __intel_pmu_pebs_data_source_skl(false, data_source);
127
128         data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
129         memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
130         intel_pmu_pebs_data_source_grt(data_source);
131 }
132
133 static u64 precise_store_data(u64 status)
134 {
135         union intel_x86_pebs_dse dse;
136         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
137
138         dse.val = status;
139
140         /*
141          * bit 4: TLB access
142          * 1 = stored missed 2nd level TLB
143          *
144          * so it either hit the walker or the OS
145          * otherwise hit 2nd level TLB
146          */
147         if (dse.st_stlb_miss)
148                 val |= P(TLB, MISS);
149         else
150                 val |= P(TLB, HIT);
151
152         /*
153          * bit 0: hit L1 data cache
154          * if not set, then all we know is that
155          * it missed L1D
156          */
157         if (dse.st_l1d_hit)
158                 val |= P(LVL, HIT);
159         else
160                 val |= P(LVL, MISS);
161
162         /*
163          * bit 5: Locked prefix
164          */
165         if (dse.st_locked)
166                 val |= P(LOCK, LOCKED);
167
168         return val;
169 }
170
171 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
172 {
173         union perf_mem_data_src dse;
174
175         dse.val = PERF_MEM_NA;
176
177         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
178                 dse.mem_op = PERF_MEM_OP_STORE;
179         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
180                 dse.mem_op = PERF_MEM_OP_LOAD;
181
182         /*
183          * L1 info only valid for following events:
184          *
185          * MEM_UOPS_RETIRED.STLB_MISS_STORES
186          * MEM_UOPS_RETIRED.LOCK_STORES
187          * MEM_UOPS_RETIRED.SPLIT_STORES
188          * MEM_UOPS_RETIRED.ALL_STORES
189          */
190         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
191                 if (status & 1)
192                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
193                 else
194                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
195         }
196         return dse.val;
197 }
198
199 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
200 {
201         /*
202          * TLB access
203          * 0 = did not miss 2nd level TLB
204          * 1 = missed 2nd level TLB
205          */
206         if (tlb)
207                 *val |= P(TLB, MISS) | P(TLB, L2);
208         else
209                 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
210
211         /* locked prefix */
212         if (lock)
213                 *val |= P(LOCK, LOCKED);
214 }
215
216 /* Retrieve the latency data for e-core of ADL */
217 u64 adl_latency_data_small(struct perf_event *event, u64 status)
218 {
219         union intel_x86_pebs_dse dse;
220         u64 val;
221
222         WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big);
223
224         dse.val = status;
225
226         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
227
228         /*
229          * For the atom core on ADL,
230          * bit 4: lock, bit 5: TLB access.
231          */
232         pebs_set_tlb_lock(&val, dse.ld_locked, dse.ld_stlb_miss);
233
234         if (dse.ld_data_blk)
235                 val |= P(BLK, DATA);
236         else
237                 val |= P(BLK, NA);
238
239         return val;
240 }
241
242 static u64 load_latency_data(struct perf_event *event, u64 status)
243 {
244         union intel_x86_pebs_dse dse;
245         u64 val;
246
247         dse.val = status;
248
249         /*
250          * use the mapping table for bit 0-3
251          */
252         val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
253
254         /*
255          * Nehalem models do not support TLB, Lock infos
256          */
257         if (x86_pmu.pebs_no_tlb) {
258                 val |= P(TLB, NA) | P(LOCK, NA);
259                 return val;
260         }
261
262         pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
263
264         /*
265          * Ice Lake and earlier models do not support block infos.
266          */
267         if (!x86_pmu.pebs_block) {
268                 val |= P(BLK, NA);
269                 return val;
270         }
271         /*
272          * bit 6: load was blocked since its data could not be forwarded
273          *        from a preceding store
274          */
275         if (dse.ld_data_blk)
276                 val |= P(BLK, DATA);
277
278         /*
279          * bit 7: load was blocked due to potential address conflict with
280          *        a preceding store
281          */
282         if (dse.ld_addr_blk)
283                 val |= P(BLK, ADDR);
284
285         if (!dse.ld_data_blk && !dse.ld_addr_blk)
286                 val |= P(BLK, NA);
287
288         return val;
289 }
290
291 static u64 store_latency_data(struct perf_event *event, u64 status)
292 {
293         union intel_x86_pebs_dse dse;
294         u64 val;
295
296         dse.val = status;
297
298         /*
299          * use the mapping table for bit 0-3
300          */
301         val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
302
303         pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
304
305         val |= P(BLK, NA);
306
307         return val;
308 }
309
310 struct pebs_record_core {
311         u64 flags, ip;
312         u64 ax, bx, cx, dx;
313         u64 si, di, bp, sp;
314         u64 r8,  r9,  r10, r11;
315         u64 r12, r13, r14, r15;
316 };
317
318 struct pebs_record_nhm {
319         u64 flags, ip;
320         u64 ax, bx, cx, dx;
321         u64 si, di, bp, sp;
322         u64 r8,  r9,  r10, r11;
323         u64 r12, r13, r14, r15;
324         u64 status, dla, dse, lat;
325 };
326
327 /*
328  * Same as pebs_record_nhm, with two additional fields.
329  */
330 struct pebs_record_hsw {
331         u64 flags, ip;
332         u64 ax, bx, cx, dx;
333         u64 si, di, bp, sp;
334         u64 r8,  r9,  r10, r11;
335         u64 r12, r13, r14, r15;
336         u64 status, dla, dse, lat;
337         u64 real_ip, tsx_tuning;
338 };
339
340 union hsw_tsx_tuning {
341         struct {
342                 u32 cycles_last_block     : 32,
343                     hle_abort             : 1,
344                     rtm_abort             : 1,
345                     instruction_abort     : 1,
346                     non_instruction_abort : 1,
347                     retry                 : 1,
348                     data_conflict         : 1,
349                     capacity_writes       : 1,
350                     capacity_reads        : 1;
351         };
352         u64         value;
353 };
354
355 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
356
357 /* Same as HSW, plus TSC */
358
359 struct pebs_record_skl {
360         u64 flags, ip;
361         u64 ax, bx, cx, dx;
362         u64 si, di, bp, sp;
363         u64 r8,  r9,  r10, r11;
364         u64 r12, r13, r14, r15;
365         u64 status, dla, dse, lat;
366         u64 real_ip, tsx_tuning;
367         u64 tsc;
368 };
369
370 void init_debug_store_on_cpu(int cpu)
371 {
372         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
373
374         if (!ds)
375                 return;
376
377         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
378                      (u32)((u64)(unsigned long)ds),
379                      (u32)((u64)(unsigned long)ds >> 32));
380 }
381
382 void fini_debug_store_on_cpu(int cpu)
383 {
384         if (!per_cpu(cpu_hw_events, cpu).ds)
385                 return;
386
387         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
388 }
389
390 static DEFINE_PER_CPU(void *, insn_buffer);
391
392 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
393 {
394         unsigned long start = (unsigned long)cea;
395         phys_addr_t pa;
396         size_t msz = 0;
397
398         pa = virt_to_phys(addr);
399
400         preempt_disable();
401         for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
402                 cea_set_pte(cea, pa, prot);
403
404         /*
405          * This is a cross-CPU update of the cpu_entry_area, we must shoot down
406          * all TLB entries for it.
407          */
408         flush_tlb_kernel_range(start, start + size);
409         preempt_enable();
410 }
411
412 static void ds_clear_cea(void *cea, size_t size)
413 {
414         unsigned long start = (unsigned long)cea;
415         size_t msz = 0;
416
417         preempt_disable();
418         for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
419                 cea_set_pte(cea, 0, PAGE_NONE);
420
421         flush_tlb_kernel_range(start, start + size);
422         preempt_enable();
423 }
424
425 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
426 {
427         unsigned int order = get_order(size);
428         int node = cpu_to_node(cpu);
429         struct page *page;
430
431         page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
432         return page ? page_address(page) : NULL;
433 }
434
435 static void dsfree_pages(const void *buffer, size_t size)
436 {
437         if (buffer)
438                 free_pages((unsigned long)buffer, get_order(size));
439 }
440
441 static int alloc_pebs_buffer(int cpu)
442 {
443         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
444         struct debug_store *ds = hwev->ds;
445         size_t bsiz = x86_pmu.pebs_buffer_size;
446         int max, node = cpu_to_node(cpu);
447         void *buffer, *insn_buff, *cea;
448
449         if (!x86_pmu.pebs)
450                 return 0;
451
452         buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
453         if (unlikely(!buffer))
454                 return -ENOMEM;
455
456         /*
457          * HSW+ already provides us the eventing ip; no need to allocate this
458          * buffer then.
459          */
460         if (x86_pmu.intel_cap.pebs_format < 2) {
461                 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
462                 if (!insn_buff) {
463                         dsfree_pages(buffer, bsiz);
464                         return -ENOMEM;
465                 }
466                 per_cpu(insn_buffer, cpu) = insn_buff;
467         }
468         hwev->ds_pebs_vaddr = buffer;
469         /* Update the cpu entry area mapping */
470         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
471         ds->pebs_buffer_base = (unsigned long) cea;
472         ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
473         ds->pebs_index = ds->pebs_buffer_base;
474         max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
475         ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
476         return 0;
477 }
478
479 static void release_pebs_buffer(int cpu)
480 {
481         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
482         void *cea;
483
484         if (!x86_pmu.pebs)
485                 return;
486
487         kfree(per_cpu(insn_buffer, cpu));
488         per_cpu(insn_buffer, cpu) = NULL;
489
490         /* Clear the fixmap */
491         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
492         ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
493         dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
494         hwev->ds_pebs_vaddr = NULL;
495 }
496
497 static int alloc_bts_buffer(int cpu)
498 {
499         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
500         struct debug_store *ds = hwev->ds;
501         void *buffer, *cea;
502         int max;
503
504         if (!x86_pmu.bts)
505                 return 0;
506
507         buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
508         if (unlikely(!buffer)) {
509                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
510                 return -ENOMEM;
511         }
512         hwev->ds_bts_vaddr = buffer;
513         /* Update the fixmap */
514         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
515         ds->bts_buffer_base = (unsigned long) cea;
516         ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
517         ds->bts_index = ds->bts_buffer_base;
518         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
519         ds->bts_absolute_maximum = ds->bts_buffer_base +
520                                         max * BTS_RECORD_SIZE;
521         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
522                                         (max / 16) * BTS_RECORD_SIZE;
523         return 0;
524 }
525
526 static void release_bts_buffer(int cpu)
527 {
528         struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
529         void *cea;
530
531         if (!x86_pmu.bts)
532                 return;
533
534         /* Clear the fixmap */
535         cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
536         ds_clear_cea(cea, BTS_BUFFER_SIZE);
537         dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
538         hwev->ds_bts_vaddr = NULL;
539 }
540
541 static int alloc_ds_buffer(int cpu)
542 {
543         struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
544
545         memset(ds, 0, sizeof(*ds));
546         per_cpu(cpu_hw_events, cpu).ds = ds;
547         return 0;
548 }
549
550 static void release_ds_buffer(int cpu)
551 {
552         per_cpu(cpu_hw_events, cpu).ds = NULL;
553 }
554
555 void release_ds_buffers(void)
556 {
557         int cpu;
558
559         if (!x86_pmu.bts && !x86_pmu.pebs)
560                 return;
561
562         for_each_possible_cpu(cpu)
563                 release_ds_buffer(cpu);
564
565         for_each_possible_cpu(cpu) {
566                 /*
567                  * Again, ignore errors from offline CPUs, they will no longer
568                  * observe cpu_hw_events.ds and not program the DS_AREA when
569                  * they come up.
570                  */
571                 fini_debug_store_on_cpu(cpu);
572         }
573
574         for_each_possible_cpu(cpu) {
575                 release_pebs_buffer(cpu);
576                 release_bts_buffer(cpu);
577         }
578 }
579
580 void reserve_ds_buffers(void)
581 {
582         int bts_err = 0, pebs_err = 0;
583         int cpu;
584
585         x86_pmu.bts_active = 0;
586         x86_pmu.pebs_active = 0;
587
588         if (!x86_pmu.bts && !x86_pmu.pebs)
589                 return;
590
591         if (!x86_pmu.bts)
592                 bts_err = 1;
593
594         if (!x86_pmu.pebs)
595                 pebs_err = 1;
596
597         for_each_possible_cpu(cpu) {
598                 if (alloc_ds_buffer(cpu)) {
599                         bts_err = 1;
600                         pebs_err = 1;
601                 }
602
603                 if (!bts_err && alloc_bts_buffer(cpu))
604                         bts_err = 1;
605
606                 if (!pebs_err && alloc_pebs_buffer(cpu))
607                         pebs_err = 1;
608
609                 if (bts_err && pebs_err)
610                         break;
611         }
612
613         if (bts_err) {
614                 for_each_possible_cpu(cpu)
615                         release_bts_buffer(cpu);
616         }
617
618         if (pebs_err) {
619                 for_each_possible_cpu(cpu)
620                         release_pebs_buffer(cpu);
621         }
622
623         if (bts_err && pebs_err) {
624                 for_each_possible_cpu(cpu)
625                         release_ds_buffer(cpu);
626         } else {
627                 if (x86_pmu.bts && !bts_err)
628                         x86_pmu.bts_active = 1;
629
630                 if (x86_pmu.pebs && !pebs_err)
631                         x86_pmu.pebs_active = 1;
632
633                 for_each_possible_cpu(cpu) {
634                         /*
635                          * Ignores wrmsr_on_cpu() errors for offline CPUs they
636                          * will get this call through intel_pmu_cpu_starting().
637                          */
638                         init_debug_store_on_cpu(cpu);
639                 }
640         }
641 }
642
643 /*
644  * BTS
645  */
646
647 struct event_constraint bts_constraint =
648         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
649
650 void intel_pmu_enable_bts(u64 config)
651 {
652         unsigned long debugctlmsr;
653
654         debugctlmsr = get_debugctlmsr();
655
656         debugctlmsr |= DEBUGCTLMSR_TR;
657         debugctlmsr |= DEBUGCTLMSR_BTS;
658         if (config & ARCH_PERFMON_EVENTSEL_INT)
659                 debugctlmsr |= DEBUGCTLMSR_BTINT;
660
661         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
662                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
663
664         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
665                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
666
667         update_debugctlmsr(debugctlmsr);
668 }
669
670 void intel_pmu_disable_bts(void)
671 {
672         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
673         unsigned long debugctlmsr;
674
675         if (!cpuc->ds)
676                 return;
677
678         debugctlmsr = get_debugctlmsr();
679
680         debugctlmsr &=
681                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
682                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
683
684         update_debugctlmsr(debugctlmsr);
685 }
686
687 int intel_pmu_drain_bts_buffer(void)
688 {
689         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
690         struct debug_store *ds = cpuc->ds;
691         struct bts_record {
692                 u64     from;
693                 u64     to;
694                 u64     flags;
695         };
696         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
697         struct bts_record *at, *base, *top;
698         struct perf_output_handle handle;
699         struct perf_event_header header;
700         struct perf_sample_data data;
701         unsigned long skip = 0;
702         struct pt_regs regs;
703
704         if (!event)
705                 return 0;
706
707         if (!x86_pmu.bts_active)
708                 return 0;
709
710         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
711         top  = (struct bts_record *)(unsigned long)ds->bts_index;
712
713         if (top <= base)
714                 return 0;
715
716         memset(&regs, 0, sizeof(regs));
717
718         ds->bts_index = ds->bts_buffer_base;
719
720         perf_sample_data_init(&data, 0, event->hw.last_period);
721
722         /*
723          * BTS leaks kernel addresses in branches across the cpl boundary,
724          * such as traps or system calls, so unless the user is asking for
725          * kernel tracing (and right now it's not possible), we'd need to
726          * filter them out. But first we need to count how many of those we
727          * have in the current batch. This is an extra O(n) pass, however,
728          * it's much faster than the other one especially considering that
729          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
730          * alloc_bts_buffer()).
731          */
732         for (at = base; at < top; at++) {
733                 /*
734                  * Note that right now *this* BTS code only works if
735                  * attr::exclude_kernel is set, but let's keep this extra
736                  * check here in case that changes.
737                  */
738                 if (event->attr.exclude_kernel &&
739                     (kernel_ip(at->from) || kernel_ip(at->to)))
740                         skip++;
741         }
742
743         /*
744          * Prepare a generic sample, i.e. fill in the invariant fields.
745          * We will overwrite the from and to address before we output
746          * the sample.
747          */
748         rcu_read_lock();
749         perf_prepare_sample(&header, &data, event, &regs);
750
751         if (perf_output_begin(&handle, &data, event,
752                               header.size * (top - base - skip)))
753                 goto unlock;
754
755         for (at = base; at < top; at++) {
756                 /* Filter out any records that contain kernel addresses. */
757                 if (event->attr.exclude_kernel &&
758                     (kernel_ip(at->from) || kernel_ip(at->to)))
759                         continue;
760
761                 data.ip         = at->from;
762                 data.addr       = at->to;
763
764                 perf_output_sample(&handle, &header, &data, event);
765         }
766
767         perf_output_end(&handle);
768
769         /* There's new data available. */
770         event->hw.interrupts++;
771         event->pending_kill = POLL_IN;
772 unlock:
773         rcu_read_unlock();
774         return 1;
775 }
776
777 static inline void intel_pmu_drain_pebs_buffer(void)
778 {
779         struct perf_sample_data data;
780
781         x86_pmu.drain_pebs(NULL, &data);
782 }
783
784 /*
785  * PEBS
786  */
787 struct event_constraint intel_core2_pebs_event_constraints[] = {
788         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
789         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
790         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
791         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
792         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
793         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
794         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
795         EVENT_CONSTRAINT_END
796 };
797
798 struct event_constraint intel_atom_pebs_event_constraints[] = {
799         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
800         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
801         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
802         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
803         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
804         /* Allow all events as PEBS with no flags */
805         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
806         EVENT_CONSTRAINT_END
807 };
808
809 struct event_constraint intel_slm_pebs_event_constraints[] = {
810         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
811         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
812         /* Allow all events as PEBS with no flags */
813         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
814         EVENT_CONSTRAINT_END
815 };
816
817 struct event_constraint intel_glm_pebs_event_constraints[] = {
818         /* Allow all events as PEBS with no flags */
819         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
820         EVENT_CONSTRAINT_END
821 };
822
823 struct event_constraint intel_grt_pebs_event_constraints[] = {
824         /* Allow all events as PEBS with no flags */
825         INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0xf),
826         INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
827         EVENT_CONSTRAINT_END
828 };
829
830 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
831         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
832         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
833         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
834         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
835         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
836         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
837         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
838         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
839         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
840         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
841         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
842         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
843         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
844         EVENT_CONSTRAINT_END
845 };
846
847 struct event_constraint intel_westmere_pebs_event_constraints[] = {
848         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
849         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
850         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
851         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
852         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
853         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
854         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
855         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
856         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
857         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
858         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
859         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
860         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
861         EVENT_CONSTRAINT_END
862 };
863
864 struct event_constraint intel_snb_pebs_event_constraints[] = {
865         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
866         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
867         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
868         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
869         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
870         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
871         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
872         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
873         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
874         /* Allow all events as PEBS with no flags */
875         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
876         EVENT_CONSTRAINT_END
877 };
878
879 struct event_constraint intel_ivb_pebs_event_constraints[] = {
880         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
881         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
882         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
883         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
884         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
885         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
886         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
887         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
888         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
889         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
890         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
891         /* Allow all events as PEBS with no flags */
892         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
893         EVENT_CONSTRAINT_END
894 };
895
896 struct event_constraint intel_hsw_pebs_event_constraints[] = {
897         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
898         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
899         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
900         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
901         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
902         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
903         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
904         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
905         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
906         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
907         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
908         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
909         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
910         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
911         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
912         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
913         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
914         /* Allow all events as PEBS with no flags */
915         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
916         EVENT_CONSTRAINT_END
917 };
918
919 struct event_constraint intel_bdw_pebs_event_constraints[] = {
920         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
921         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
922         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
923         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
924         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
925         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
926         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
927         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
928         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
929         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
930         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
931         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
932         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
933         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
934         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
935         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
936         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
937         /* Allow all events as PEBS with no flags */
938         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
939         EVENT_CONSTRAINT_END
940 };
941
942
943 struct event_constraint intel_skl_pebs_event_constraints[] = {
944         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
945         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
946         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
947         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
948         INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
949         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
950         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
951         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
952         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
953         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
954         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
955         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
956         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
957         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
958         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
959         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
960         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
961         /* Allow all events as PEBS with no flags */
962         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
963         EVENT_CONSTRAINT_END
964 };
965
966 struct event_constraint intel_icl_pebs_event_constraints[] = {
967         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),  /* old INST_RETIRED.PREC_DIST */
968         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),  /* INST_RETIRED.PREC_DIST */
969         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),  /* SLOTS */
970
971         INTEL_PLD_CONSTRAINT(0x1cd, 0xff),                      /* MEM_TRANS_RETIRED.LOAD_LATENCY */
972         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),    /* MEM_INST_RETIRED.LOAD */
973         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),    /* MEM_INST_RETIRED.STORE */
974
975         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
976
977         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),                /* MEM_INST_RETIRED.* */
978
979         /*
980          * Everything else is handled by PMU_FL_PEBS_ALL, because we
981          * need the full constraints from the main table.
982          */
983
984         EVENT_CONSTRAINT_END
985 };
986
987 struct event_constraint intel_spr_pebs_event_constraints[] = {
988         INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),   /* INST_RETIRED.PREC_DIST */
989         INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
990
991         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
992         INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
993         INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
994         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
995         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
996
997         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
998
999         INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1000
1001         /*
1002          * Everything else is handled by PMU_FL_PEBS_ALL, because we
1003          * need the full constraints from the main table.
1004          */
1005
1006         EVENT_CONSTRAINT_END
1007 };
1008
1009 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1010 {
1011         struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1012         struct event_constraint *c;
1013
1014         if (!event->attr.precise_ip)
1015                 return NULL;
1016
1017         if (pebs_constraints) {
1018                 for_each_event_constraint(c, pebs_constraints) {
1019                         if (constraint_match(c, event->hw.config)) {
1020                                 event->hw.flags |= c->flags;
1021                                 return c;
1022                         }
1023                 }
1024         }
1025
1026         /*
1027          * Extended PEBS support
1028          * Makes the PEBS code search the normal constraints.
1029          */
1030         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1031                 return NULL;
1032
1033         return &emptyconstraint;
1034 }
1035
1036 /*
1037  * We need the sched_task callback even for per-cpu events when we use
1038  * the large interrupt threshold, such that we can provide PID and TID
1039  * to PEBS samples.
1040  */
1041 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1042 {
1043         if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1044                 return false;
1045
1046         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1047 }
1048
1049 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1050 {
1051         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1052
1053         if (!sched_in && pebs_needs_sched_cb(cpuc))
1054                 intel_pmu_drain_pebs_buffer();
1055 }
1056
1057 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1058 {
1059         struct debug_store *ds = cpuc->ds;
1060         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1061         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1062         u64 threshold;
1063         int reserved;
1064
1065         if (cpuc->n_pebs_via_pt)
1066                 return;
1067
1068         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1069                 reserved = max_pebs_events + num_counters_fixed;
1070         else
1071                 reserved = max_pebs_events;
1072
1073         if (cpuc->n_pebs == cpuc->n_large_pebs) {
1074                 threshold = ds->pebs_absolute_maximum -
1075                         reserved * cpuc->pebs_record_size;
1076         } else {
1077                 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1078         }
1079
1080         ds->pebs_interrupt_threshold = threshold;
1081 }
1082
1083 static void adaptive_pebs_record_size_update(void)
1084 {
1085         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1086         u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1087         int sz = sizeof(struct pebs_basic);
1088
1089         if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1090                 sz += sizeof(struct pebs_meminfo);
1091         if (pebs_data_cfg & PEBS_DATACFG_GP)
1092                 sz += sizeof(struct pebs_gprs);
1093         if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1094                 sz += sizeof(struct pebs_xmm);
1095         if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1096                 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1097
1098         cpuc->pebs_record_size = sz;
1099 }
1100
1101 #define PERF_PEBS_MEMINFO_TYPE  (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1102                                 PERF_SAMPLE_PHYS_ADDR |                      \
1103                                 PERF_SAMPLE_WEIGHT_TYPE |                    \
1104                                 PERF_SAMPLE_TRANSACTION |                    \
1105                                 PERF_SAMPLE_DATA_PAGE_SIZE)
1106
1107 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1108 {
1109         struct perf_event_attr *attr = &event->attr;
1110         u64 sample_type = attr->sample_type;
1111         u64 pebs_data_cfg = 0;
1112         bool gprs, tsx_weight;
1113
1114         if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1115             attr->precise_ip > 1)
1116                 return pebs_data_cfg;
1117
1118         if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1119                 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1120
1121         /*
1122          * We need GPRs when:
1123          * + user requested them
1124          * + precise_ip < 2 for the non event IP
1125          * + For RTM TSX weight we need GPRs for the abort code.
1126          */
1127         gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1128                (attr->sample_regs_intr & PEBS_GP_REGS);
1129
1130         tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1131                      ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1132                       x86_pmu.rtm_abort_event);
1133
1134         if (gprs || (attr->precise_ip < 2) || tsx_weight)
1135                 pebs_data_cfg |= PEBS_DATACFG_GP;
1136
1137         if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1138             (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1139                 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1140
1141         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1142                 /*
1143                  * For now always log all LBRs. Could configure this
1144                  * later.
1145                  */
1146                 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1147                         ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1148         }
1149
1150         return pebs_data_cfg;
1151 }
1152
1153 static void
1154 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1155                   struct perf_event *event, bool add)
1156 {
1157         struct pmu *pmu = event->ctx->pmu;
1158         /*
1159          * Make sure we get updated with the first PEBS
1160          * event. It will trigger also during removal, but
1161          * that does not hurt:
1162          */
1163         bool update = cpuc->n_pebs == 1;
1164
1165         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1166                 if (!needed_cb)
1167                         perf_sched_cb_inc(pmu);
1168                 else
1169                         perf_sched_cb_dec(pmu);
1170
1171                 update = true;
1172         }
1173
1174         /*
1175          * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1176          * iterating all remaining PEBS events to reconstruct the config.
1177          */
1178         if (x86_pmu.intel_cap.pebs_baseline && add) {
1179                 u64 pebs_data_cfg;
1180
1181                 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1182                 if (cpuc->n_pebs == 1) {
1183                         cpuc->pebs_data_cfg = 0;
1184                         cpuc->pebs_record_size = sizeof(struct pebs_basic);
1185                 }
1186
1187                 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1188
1189                 /* Update pebs_record_size if new event requires more data. */
1190                 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1191                         cpuc->pebs_data_cfg |= pebs_data_cfg;
1192                         adaptive_pebs_record_size_update();
1193                         update = true;
1194                 }
1195         }
1196
1197         if (update)
1198                 pebs_update_threshold(cpuc);
1199 }
1200
1201 void intel_pmu_pebs_add(struct perf_event *event)
1202 {
1203         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1204         struct hw_perf_event *hwc = &event->hw;
1205         bool needed_cb = pebs_needs_sched_cb(cpuc);
1206
1207         cpuc->n_pebs++;
1208         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1209                 cpuc->n_large_pebs++;
1210         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1211                 cpuc->n_pebs_via_pt++;
1212
1213         pebs_update_state(needed_cb, cpuc, event, true);
1214 }
1215
1216 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1217 {
1218         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1219
1220         if (!is_pebs_pt(event))
1221                 return;
1222
1223         if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1224                 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1225 }
1226
1227 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1228 {
1229         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1230         struct hw_perf_event *hwc = &event->hw;
1231         struct debug_store *ds = cpuc->ds;
1232         u64 value = ds->pebs_event_reset[hwc->idx];
1233         u32 base = MSR_RELOAD_PMC0;
1234         unsigned int idx = hwc->idx;
1235
1236         if (!is_pebs_pt(event))
1237                 return;
1238
1239         if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1240                 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1241
1242         cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1243
1244         if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1245                 base = MSR_RELOAD_FIXED_CTR0;
1246                 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1247                 if (x86_pmu.intel_cap.pebs_format < 5)
1248                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1249                 else
1250                         value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1251         }
1252         wrmsrl(base + idx, value);
1253 }
1254
1255 void intel_pmu_pebs_enable(struct perf_event *event)
1256 {
1257         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1258         struct hw_perf_event *hwc = &event->hw;
1259         struct debug_store *ds = cpuc->ds;
1260         unsigned int idx = hwc->idx;
1261
1262         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1263
1264         cpuc->pebs_enabled |= 1ULL << hwc->idx;
1265
1266         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1267                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1268         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1269                 cpuc->pebs_enabled |= 1ULL << 63;
1270
1271         if (x86_pmu.intel_cap.pebs_baseline) {
1272                 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1273                 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1274                         wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1275                         cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1276                 }
1277         }
1278
1279         if (idx >= INTEL_PMC_IDX_FIXED) {
1280                 if (x86_pmu.intel_cap.pebs_format < 5)
1281                         idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1282                 else
1283                         idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1284         }
1285
1286         /*
1287          * Use auto-reload if possible to save a MSR write in the PMI.
1288          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1289          */
1290         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1291                 ds->pebs_event_reset[idx] =
1292                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1293         } else {
1294                 ds->pebs_event_reset[idx] = 0;
1295         }
1296
1297         intel_pmu_pebs_via_pt_enable(event);
1298 }
1299
1300 void intel_pmu_pebs_del(struct perf_event *event)
1301 {
1302         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1303         struct hw_perf_event *hwc = &event->hw;
1304         bool needed_cb = pebs_needs_sched_cb(cpuc);
1305
1306         cpuc->n_pebs--;
1307         if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1308                 cpuc->n_large_pebs--;
1309         if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1310                 cpuc->n_pebs_via_pt--;
1311
1312         pebs_update_state(needed_cb, cpuc, event, false);
1313 }
1314
1315 void intel_pmu_pebs_disable(struct perf_event *event)
1316 {
1317         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318         struct hw_perf_event *hwc = &event->hw;
1319
1320         if (cpuc->n_pebs == cpuc->n_large_pebs &&
1321             cpuc->n_pebs != cpuc->n_pebs_via_pt)
1322                 intel_pmu_drain_pebs_buffer();
1323
1324         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1325
1326         if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1327             (x86_pmu.version < 5))
1328                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1329         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1330                 cpuc->pebs_enabled &= ~(1ULL << 63);
1331
1332         intel_pmu_pebs_via_pt_disable(event);
1333
1334         if (cpuc->enabled)
1335                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1336
1337         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1338 }
1339
1340 void intel_pmu_pebs_enable_all(void)
1341 {
1342         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343
1344         if (cpuc->pebs_enabled)
1345                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1346 }
1347
1348 void intel_pmu_pebs_disable_all(void)
1349 {
1350         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1351
1352         if (cpuc->pebs_enabled)
1353                 __intel_pmu_pebs_disable_all();
1354 }
1355
1356 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1357 {
1358         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359         unsigned long from = cpuc->lbr_entries[0].from;
1360         unsigned long old_to, to = cpuc->lbr_entries[0].to;
1361         unsigned long ip = regs->ip;
1362         int is_64bit = 0;
1363         void *kaddr;
1364         int size;
1365
1366         /*
1367          * We don't need to fixup if the PEBS assist is fault like
1368          */
1369         if (!x86_pmu.intel_cap.pebs_trap)
1370                 return 1;
1371
1372         /*
1373          * No LBR entry, no basic block, no rewinding
1374          */
1375         if (!cpuc->lbr_stack.nr || !from || !to)
1376                 return 0;
1377
1378         /*
1379          * Basic blocks should never cross user/kernel boundaries
1380          */
1381         if (kernel_ip(ip) != kernel_ip(to))
1382                 return 0;
1383
1384         /*
1385          * unsigned math, either ip is before the start (impossible) or
1386          * the basic block is larger than 1 page (sanity)
1387          */
1388         if ((ip - to) > PEBS_FIXUP_SIZE)
1389                 return 0;
1390
1391         /*
1392          * We sampled a branch insn, rewind using the LBR stack
1393          */
1394         if (ip == to) {
1395                 set_linear_ip(regs, from);
1396                 return 1;
1397         }
1398
1399         size = ip - to;
1400         if (!kernel_ip(ip)) {
1401                 int bytes;
1402                 u8 *buf = this_cpu_read(insn_buffer);
1403
1404                 /* 'size' must fit our buffer, see above */
1405                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1406                 if (bytes != 0)
1407                         return 0;
1408
1409                 kaddr = buf;
1410         } else {
1411                 kaddr = (void *)to;
1412         }
1413
1414         do {
1415                 struct insn insn;
1416
1417                 old_to = to;
1418
1419 #ifdef CONFIG_X86_64
1420                 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1421 #endif
1422                 insn_init(&insn, kaddr, size, is_64bit);
1423
1424                 /*
1425                  * Make sure there was not a problem decoding the instruction.
1426                  * This is doubly important because we have an infinite loop if
1427                  * insn.length=0.
1428                  */
1429                 if (insn_get_length(&insn))
1430                         break;
1431
1432                 to += insn.length;
1433                 kaddr += insn.length;
1434                 size -= insn.length;
1435         } while (to < ip);
1436
1437         if (to == ip) {
1438                 set_linear_ip(regs, old_to);
1439                 return 1;
1440         }
1441
1442         /*
1443          * Even though we decoded the basic block, the instruction stream
1444          * never matched the given IP, either the TO or the IP got corrupted.
1445          */
1446         return 0;
1447 }
1448
1449 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1450 {
1451         if (tsx_tuning) {
1452                 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1453                 return tsx.cycles_last_block;
1454         }
1455         return 0;
1456 }
1457
1458 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1459 {
1460         u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1461
1462         /* For RTM XABORTs also log the abort code from AX */
1463         if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1464                 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1465         return txn;
1466 }
1467
1468 static inline u64 get_pebs_status(void *n)
1469 {
1470         if (x86_pmu.intel_cap.pebs_format < 4)
1471                 return ((struct pebs_record_nhm *)n)->status;
1472         return ((struct pebs_basic *)n)->applicable_counters;
1473 }
1474
1475 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1476                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1477                  PERF_X86_EVENT_PEBS_LD_HSW | \
1478                  PERF_X86_EVENT_PEBS_NA_HSW)
1479
1480 static u64 get_data_src(struct perf_event *event, u64 aux)
1481 {
1482         u64 val = PERF_MEM_NA;
1483         int fl = event->hw.flags;
1484         bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1485
1486         if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1487                 val = load_latency_data(event, aux);
1488         else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1489                 val = store_latency_data(event, aux);
1490         else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1491                 val = x86_pmu.pebs_latency_data(event, aux);
1492         else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1493                 val = precise_datala_hsw(event, aux);
1494         else if (fst)
1495                 val = precise_store_data(aux);
1496         return val;
1497 }
1498
1499 #define PERF_SAMPLE_ADDR_TYPE   (PERF_SAMPLE_ADDR |             \
1500                                  PERF_SAMPLE_PHYS_ADDR |        \
1501                                  PERF_SAMPLE_DATA_PAGE_SIZE)
1502
1503 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1504                                    struct pt_regs *iregs, void *__pebs,
1505                                    struct perf_sample_data *data,
1506                                    struct pt_regs *regs)
1507 {
1508         /*
1509          * We cast to the biggest pebs_record but are careful not to
1510          * unconditionally access the 'extra' entries.
1511          */
1512         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1513         struct pebs_record_skl *pebs = __pebs;
1514         u64 sample_type;
1515         int fll;
1516
1517         if (pebs == NULL)
1518                 return;
1519
1520         sample_type = event->attr.sample_type;
1521         fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1522
1523         perf_sample_data_init(data, 0, event->hw.last_period);
1524
1525         data->period = event->hw.last_period;
1526
1527         /*
1528          * Use latency for weight (only avail with PEBS-LL)
1529          */
1530         if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1531                 data->weight.full = pebs->lat;
1532
1533         /*
1534          * data.data_src encodes the data source
1535          */
1536         if (sample_type & PERF_SAMPLE_DATA_SRC)
1537                 data->data_src.val = get_data_src(event, pebs->dse);
1538
1539         /*
1540          * We must however always use iregs for the unwinder to stay sane; the
1541          * record BP,SP,IP can point into thin air when the record is from a
1542          * previous PMI context or an (I)RET happened between the record and
1543          * PMI.
1544          */
1545         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1546                 data->callchain = perf_callchain(event, iregs);
1547
1548         /*
1549          * We use the interrupt regs as a base because the PEBS record does not
1550          * contain a full regs set, specifically it seems to lack segment
1551          * descriptors, which get used by things like user_mode().
1552          *
1553          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1554          */
1555         *regs = *iregs;
1556
1557         /*
1558          * Initialize regs_>flags from PEBS,
1559          * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1560          * i.e., do not rely on it being zero:
1561          */
1562         regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1563
1564         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1565                 regs->ax = pebs->ax;
1566                 regs->bx = pebs->bx;
1567                 regs->cx = pebs->cx;
1568                 regs->dx = pebs->dx;
1569                 regs->si = pebs->si;
1570                 regs->di = pebs->di;
1571
1572                 regs->bp = pebs->bp;
1573                 regs->sp = pebs->sp;
1574
1575 #ifndef CONFIG_X86_32
1576                 regs->r8 = pebs->r8;
1577                 regs->r9 = pebs->r9;
1578                 regs->r10 = pebs->r10;
1579                 regs->r11 = pebs->r11;
1580                 regs->r12 = pebs->r12;
1581                 regs->r13 = pebs->r13;
1582                 regs->r14 = pebs->r14;
1583                 regs->r15 = pebs->r15;
1584 #endif
1585         }
1586
1587         if (event->attr.precise_ip > 1) {
1588                 /*
1589                  * Haswell and later processors have an 'eventing IP'
1590                  * (real IP) which fixes the off-by-1 skid in hardware.
1591                  * Use it when precise_ip >= 2 :
1592                  */
1593                 if (x86_pmu.intel_cap.pebs_format >= 2) {
1594                         set_linear_ip(regs, pebs->real_ip);
1595                         regs->flags |= PERF_EFLAGS_EXACT;
1596                 } else {
1597                         /* Otherwise, use PEBS off-by-1 IP: */
1598                         set_linear_ip(regs, pebs->ip);
1599
1600                         /*
1601                          * With precise_ip >= 2, try to fix up the off-by-1 IP
1602                          * using the LBR. If successful, the fixup function
1603                          * corrects regs->ip and calls set_linear_ip() on regs:
1604                          */
1605                         if (intel_pmu_pebs_fixup_ip(regs))
1606                                 regs->flags |= PERF_EFLAGS_EXACT;
1607                 }
1608         } else {
1609                 /*
1610                  * When precise_ip == 1, return the PEBS off-by-1 IP,
1611                  * no fixup attempted:
1612                  */
1613                 set_linear_ip(regs, pebs->ip);
1614         }
1615
1616
1617         if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1618             x86_pmu.intel_cap.pebs_format >= 1)
1619                 data->addr = pebs->dla;
1620
1621         if (x86_pmu.intel_cap.pebs_format >= 2) {
1622                 /* Only set the TSX weight when no memory weight. */
1623                 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1624                         data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1625
1626                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1627                         data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1628                                                               pebs->ax);
1629         }
1630
1631         /*
1632          * v3 supplies an accurate time stamp, so we use that
1633          * for the time stamp.
1634          *
1635          * We can only do this for the default trace clock.
1636          */
1637         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1638                 event->attr.use_clockid == 0) {
1639                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1640                 data->sample_flags |= PERF_SAMPLE_TIME;
1641         }
1642
1643         if (has_branch_stack(event)) {
1644                 data->br_stack = &cpuc->lbr_stack;
1645                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1646         }
1647 }
1648
1649 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1650                                     struct pebs_gprs *gprs)
1651 {
1652         regs->ax = gprs->ax;
1653         regs->bx = gprs->bx;
1654         regs->cx = gprs->cx;
1655         regs->dx = gprs->dx;
1656         regs->si = gprs->si;
1657         regs->di = gprs->di;
1658         regs->bp = gprs->bp;
1659         regs->sp = gprs->sp;
1660 #ifndef CONFIG_X86_32
1661         regs->r8 = gprs->r8;
1662         regs->r9 = gprs->r9;
1663         regs->r10 = gprs->r10;
1664         regs->r11 = gprs->r11;
1665         regs->r12 = gprs->r12;
1666         regs->r13 = gprs->r13;
1667         regs->r14 = gprs->r14;
1668         regs->r15 = gprs->r15;
1669 #endif
1670 }
1671
1672 #define PEBS_LATENCY_MASK                       0xffff
1673 #define PEBS_CACHE_LATENCY_OFFSET               32
1674
1675 /*
1676  * With adaptive PEBS the layout depends on what fields are configured.
1677  */
1678
1679 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1680                                             struct pt_regs *iregs, void *__pebs,
1681                                             struct perf_sample_data *data,
1682                                             struct pt_regs *regs)
1683 {
1684         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1685         struct pebs_basic *basic = __pebs;
1686         void *next_record = basic + 1;
1687         u64 sample_type;
1688         u64 format_size;
1689         struct pebs_meminfo *meminfo = NULL;
1690         struct pebs_gprs *gprs = NULL;
1691         struct x86_perf_regs *perf_regs;
1692
1693         if (basic == NULL)
1694                 return;
1695
1696         perf_regs = container_of(regs, struct x86_perf_regs, regs);
1697         perf_regs->xmm_regs = NULL;
1698
1699         sample_type = event->attr.sample_type;
1700         format_size = basic->format_size;
1701         perf_sample_data_init(data, 0, event->hw.last_period);
1702         data->period = event->hw.last_period;
1703
1704         if (event->attr.use_clockid == 0) {
1705                 data->time = native_sched_clock_from_tsc(basic->tsc);
1706                 data->sample_flags |= PERF_SAMPLE_TIME;
1707         }
1708
1709         /*
1710          * We must however always use iregs for the unwinder to stay sane; the
1711          * record BP,SP,IP can point into thin air when the record is from a
1712          * previous PMI context or an (I)RET happened between the record and
1713          * PMI.
1714          */
1715         if (sample_type & PERF_SAMPLE_CALLCHAIN)
1716                 data->callchain = perf_callchain(event, iregs);
1717
1718         *regs = *iregs;
1719         /* The ip in basic is EventingIP */
1720         set_linear_ip(regs, basic->ip);
1721         regs->flags = PERF_EFLAGS_EXACT;
1722
1723         /*
1724          * The record for MEMINFO is in front of GP
1725          * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1726          * Save the pointer here but process later.
1727          */
1728         if (format_size & PEBS_DATACFG_MEMINFO) {
1729                 meminfo = next_record;
1730                 next_record = meminfo + 1;
1731         }
1732
1733         if (format_size & PEBS_DATACFG_GP) {
1734                 gprs = next_record;
1735                 next_record = gprs + 1;
1736
1737                 if (event->attr.precise_ip < 2) {
1738                         set_linear_ip(regs, gprs->ip);
1739                         regs->flags &= ~PERF_EFLAGS_EXACT;
1740                 }
1741
1742                 if (sample_type & PERF_SAMPLE_REGS_INTR)
1743                         adaptive_pebs_save_regs(regs, gprs);
1744         }
1745
1746         if (format_size & PEBS_DATACFG_MEMINFO) {
1747                 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1748                         u64 weight = meminfo->latency;
1749
1750                         if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1751                                 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1752                                 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1753                         }
1754
1755                         /*
1756                          * Although meminfo::latency is defined as a u64,
1757                          * only the lower 32 bits include the valid data
1758                          * in practice on Ice Lake and earlier platforms.
1759                          */
1760                         if (sample_type & PERF_SAMPLE_WEIGHT) {
1761                                 data->weight.full = weight ?:
1762                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1763                         } else {
1764                                 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1765                                         intel_get_tsx_weight(meminfo->tsx_tuning);
1766                         }
1767                 }
1768
1769                 if (sample_type & PERF_SAMPLE_DATA_SRC)
1770                         data->data_src.val = get_data_src(event, meminfo->aux);
1771
1772                 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1773                         data->addr = meminfo->address;
1774
1775                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1776                         data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1777                                                           gprs ? gprs->ax : 0);
1778         }
1779
1780         if (format_size & PEBS_DATACFG_XMMS) {
1781                 struct pebs_xmm *xmm = next_record;
1782
1783                 next_record = xmm + 1;
1784                 perf_regs->xmm_regs = xmm->xmm;
1785         }
1786
1787         if (format_size & PEBS_DATACFG_LBRS) {
1788                 struct lbr_entry *lbr = next_record;
1789                 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1790                                         & 0xff) + 1;
1791                 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1792
1793                 if (has_branch_stack(event)) {
1794                         intel_pmu_store_pebs_lbrs(lbr);
1795                         data->br_stack = &cpuc->lbr_stack;
1796                         data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1797                 }
1798         }
1799
1800         WARN_ONCE(next_record != __pebs + (format_size >> 48),
1801                         "PEBS record size %llu, expected %llu, config %llx\n",
1802                         format_size >> 48,
1803                         (u64)(next_record - __pebs),
1804                         basic->format_size);
1805 }
1806
1807 static inline void *
1808 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1809 {
1810         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811         void *at;
1812         u64 pebs_status;
1813
1814         /*
1815          * fmt0 does not have a status bitfield (does not use
1816          * perf_record_nhm format)
1817          */
1818         if (x86_pmu.intel_cap.pebs_format < 1)
1819                 return base;
1820
1821         if (base == NULL)
1822                 return NULL;
1823
1824         for (at = base; at < top; at += cpuc->pebs_record_size) {
1825                 unsigned long status = get_pebs_status(at);
1826
1827                 if (test_bit(bit, (unsigned long *)&status)) {
1828                         /* PEBS v3 has accurate status bits */
1829                         if (x86_pmu.intel_cap.pebs_format >= 3)
1830                                 return at;
1831
1832                         if (status == (1 << bit))
1833                                 return at;
1834
1835                         /* clear non-PEBS bit and re-check */
1836                         pebs_status = status & cpuc->pebs_enabled;
1837                         pebs_status &= PEBS_COUNTER_MASK;
1838                         if (pebs_status == (1 << bit))
1839                                 return at;
1840                 }
1841         }
1842         return NULL;
1843 }
1844
1845 void intel_pmu_auto_reload_read(struct perf_event *event)
1846 {
1847         WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1848
1849         perf_pmu_disable(event->pmu);
1850         intel_pmu_drain_pebs_buffer();
1851         perf_pmu_enable(event->pmu);
1852 }
1853
1854 /*
1855  * Special variant of intel_pmu_save_and_restart() for auto-reload.
1856  */
1857 static int
1858 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1859 {
1860         struct hw_perf_event *hwc = &event->hw;
1861         int shift = 64 - x86_pmu.cntval_bits;
1862         u64 period = hwc->sample_period;
1863         u64 prev_raw_count, new_raw_count;
1864         s64 new, old;
1865
1866         WARN_ON(!period);
1867
1868         /*
1869          * drain_pebs() only happens when the PMU is disabled.
1870          */
1871         WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1872
1873         prev_raw_count = local64_read(&hwc->prev_count);
1874         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1875         local64_set(&hwc->prev_count, new_raw_count);
1876
1877         /*
1878          * Since the counter increments a negative counter value and
1879          * overflows on the sign switch, giving the interval:
1880          *
1881          *   [-period, 0]
1882          *
1883          * the difference between two consecutive reads is:
1884          *
1885          *   A) value2 - value1;
1886          *      when no overflows have happened in between,
1887          *
1888          *   B) (0 - value1) + (value2 - (-period));
1889          *      when one overflow happened in between,
1890          *
1891          *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1892          *      when @n overflows happened in between.
1893          *
1894          * Here A) is the obvious difference, B) is the extension to the
1895          * discrete interval, where the first term is to the top of the
1896          * interval and the second term is from the bottom of the next
1897          * interval and C) the extension to multiple intervals, where the
1898          * middle term is the whole intervals covered.
1899          *
1900          * An equivalent of C, by reduction, is:
1901          *
1902          *   value2 - value1 + n * period
1903          */
1904         new = ((s64)(new_raw_count << shift) >> shift);
1905         old = ((s64)(prev_raw_count << shift) >> shift);
1906         local64_add(new - old + count * period, &event->count);
1907
1908         local64_set(&hwc->period_left, -new);
1909
1910         perf_event_update_userpage(event);
1911
1912         return 0;
1913 }
1914
1915 static __always_inline void
1916 __intel_pmu_pebs_event(struct perf_event *event,
1917                        struct pt_regs *iregs,
1918                        struct perf_sample_data *data,
1919                        void *base, void *top,
1920                        int bit, int count,
1921                        void (*setup_sample)(struct perf_event *,
1922                                             struct pt_regs *,
1923                                             void *,
1924                                             struct perf_sample_data *,
1925                                             struct pt_regs *))
1926 {
1927         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1928         struct hw_perf_event *hwc = &event->hw;
1929         struct x86_perf_regs perf_regs;
1930         struct pt_regs *regs = &perf_regs.regs;
1931         void *at = get_next_pebs_record_by_bit(base, top, bit);
1932         static struct pt_regs dummy_iregs;
1933
1934         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1935                 /*
1936                  * Now, auto-reload is only enabled in fixed period mode.
1937                  * The reload value is always hwc->sample_period.
1938                  * May need to change it, if auto-reload is enabled in
1939                  * freq mode later.
1940                  */
1941                 intel_pmu_save_and_restart_reload(event, count);
1942         } else if (!intel_pmu_save_and_restart(event))
1943                 return;
1944
1945         if (!iregs)
1946                 iregs = &dummy_iregs;
1947
1948         while (count > 1) {
1949                 setup_sample(event, iregs, at, data, regs);
1950                 perf_event_output(event, data, regs);
1951                 at += cpuc->pebs_record_size;
1952                 at = get_next_pebs_record_by_bit(at, top, bit);
1953                 count--;
1954         }
1955
1956         setup_sample(event, iregs, at, data, regs);
1957         if (iregs == &dummy_iregs) {
1958                 /*
1959                  * The PEBS records may be drained in the non-overflow context,
1960                  * e.g., large PEBS + context switch. Perf should treat the
1961                  * last record the same as other PEBS records, and doesn't
1962                  * invoke the generic overflow handler.
1963                  */
1964                 perf_event_output(event, data, regs);
1965         } else {
1966                 /*
1967                  * All but the last records are processed.
1968                  * The last one is left to be able to call the overflow handler.
1969                  */
1970                 if (perf_event_overflow(event, data, regs))
1971                         x86_pmu_stop(event, 0);
1972         }
1973 }
1974
1975 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1976 {
1977         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1978         struct debug_store *ds = cpuc->ds;
1979         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1980         struct pebs_record_core *at, *top;
1981         int n;
1982
1983         if (!x86_pmu.pebs_active)
1984                 return;
1985
1986         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1987         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1988
1989         /*
1990          * Whatever else happens, drain the thing
1991          */
1992         ds->pebs_index = ds->pebs_buffer_base;
1993
1994         if (!test_bit(0, cpuc->active_mask))
1995                 return;
1996
1997         WARN_ON_ONCE(!event);
1998
1999         if (!event->attr.precise_ip)
2000                 return;
2001
2002         n = top - at;
2003         if (n <= 0) {
2004                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2005                         intel_pmu_save_and_restart_reload(event, 0);
2006                 return;
2007         }
2008
2009         __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2010                                setup_pebs_fixed_sample_data);
2011 }
2012
2013 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2014 {
2015         struct perf_event *event;
2016         int bit;
2017
2018         /*
2019          * The drain_pebs() could be called twice in a short period
2020          * for auto-reload event in pmu::read(). There are no
2021          * overflows have happened in between.
2022          * It needs to call intel_pmu_save_and_restart_reload() to
2023          * update the event->count for this case.
2024          */
2025         for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2026                 event = cpuc->events[bit];
2027                 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2028                         intel_pmu_save_and_restart_reload(event, 0);
2029         }
2030 }
2031
2032 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2033 {
2034         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2035         struct debug_store *ds = cpuc->ds;
2036         struct perf_event *event;
2037         void *base, *at, *top;
2038         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2039         short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2040         int bit, i, size;
2041         u64 mask;
2042
2043         if (!x86_pmu.pebs_active)
2044                 return;
2045
2046         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2047         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2048
2049         ds->pebs_index = ds->pebs_buffer_base;
2050
2051         mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2052         size = x86_pmu.max_pebs_events;
2053         if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2054                 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2055                 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2056         }
2057
2058         if (unlikely(base >= top)) {
2059                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2060                 return;
2061         }
2062
2063         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2064                 struct pebs_record_nhm *p = at;
2065                 u64 pebs_status;
2066
2067                 pebs_status = p->status & cpuc->pebs_enabled;
2068                 pebs_status &= mask;
2069
2070                 /* PEBS v3 has more accurate status bits */
2071                 if (x86_pmu.intel_cap.pebs_format >= 3) {
2072                         for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2073                                 counts[bit]++;
2074
2075                         continue;
2076                 }
2077
2078                 /*
2079                  * On some CPUs the PEBS status can be zero when PEBS is
2080                  * racing with clearing of GLOBAL_STATUS.
2081                  *
2082                  * Normally we would drop that record, but in the
2083                  * case when there is only a single active PEBS event
2084                  * we can assume it's for that event.
2085                  */
2086                 if (!pebs_status && cpuc->pebs_enabled &&
2087                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2088                         pebs_status = p->status = cpuc->pebs_enabled;
2089
2090                 bit = find_first_bit((unsigned long *)&pebs_status,
2091                                         x86_pmu.max_pebs_events);
2092                 if (bit >= x86_pmu.max_pebs_events)
2093                         continue;
2094
2095                 /*
2096                  * The PEBS hardware does not deal well with the situation
2097                  * when events happen near to each other and multiple bits
2098                  * are set. But it should happen rarely.
2099                  *
2100                  * If these events include one PEBS and multiple non-PEBS
2101                  * events, it doesn't impact PEBS record. The record will
2102                  * be handled normally. (slow path)
2103                  *
2104                  * If these events include two or more PEBS events, the
2105                  * records for the events can be collapsed into a single
2106                  * one, and it's not possible to reconstruct all events
2107                  * that caused the PEBS record. It's called collision.
2108                  * If collision happened, the record will be dropped.
2109                  */
2110                 if (pebs_status != (1ULL << bit)) {
2111                         for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2112                                 error[i]++;
2113                         continue;
2114                 }
2115
2116                 counts[bit]++;
2117         }
2118
2119         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2120                 if ((counts[bit] == 0) && (error[bit] == 0))
2121                         continue;
2122
2123                 event = cpuc->events[bit];
2124                 if (WARN_ON_ONCE(!event))
2125                         continue;
2126
2127                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2128                         continue;
2129
2130                 /* log dropped samples number */
2131                 if (error[bit]) {
2132                         perf_log_lost_samples(event, error[bit]);
2133
2134                         if (iregs && perf_event_account_interrupt(event))
2135                                 x86_pmu_stop(event, 0);
2136                 }
2137
2138                 if (counts[bit]) {
2139                         __intel_pmu_pebs_event(event, iregs, data, base,
2140                                                top, bit, counts[bit],
2141                                                setup_pebs_fixed_sample_data);
2142                 }
2143         }
2144 }
2145
2146 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2147 {
2148         short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2149         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2150         int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2151         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2152         struct debug_store *ds = cpuc->ds;
2153         struct perf_event *event;
2154         void *base, *at, *top;
2155         int bit, size;
2156         u64 mask;
2157
2158         if (!x86_pmu.pebs_active)
2159                 return;
2160
2161         base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2162         top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2163
2164         ds->pebs_index = ds->pebs_buffer_base;
2165
2166         mask = ((1ULL << max_pebs_events) - 1) |
2167                (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2168         size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2169
2170         if (unlikely(base >= top)) {
2171                 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2172                 return;
2173         }
2174
2175         for (at = base; at < top; at += cpuc->pebs_record_size) {
2176                 u64 pebs_status;
2177
2178                 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2179                 pebs_status &= mask;
2180
2181                 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2182                         counts[bit]++;
2183         }
2184
2185         for_each_set_bit(bit, (unsigned long *)&mask, size) {
2186                 if (counts[bit] == 0)
2187                         continue;
2188
2189                 event = cpuc->events[bit];
2190                 if (WARN_ON_ONCE(!event))
2191                         continue;
2192
2193                 if (WARN_ON_ONCE(!event->attr.precise_ip))
2194                         continue;
2195
2196                 __intel_pmu_pebs_event(event, iregs, data, base,
2197                                        top, bit, counts[bit],
2198                                        setup_pebs_adaptive_sample_data);
2199         }
2200 }
2201
2202 /*
2203  * BTS, PEBS probe and setup
2204  */
2205
2206 void __init intel_ds_init(void)
2207 {
2208         /*
2209          * No support for 32bit formats
2210          */
2211         if (!boot_cpu_has(X86_FEATURE_DTES64))
2212                 return;
2213
2214         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2215         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2216         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2217         if (x86_pmu.version <= 4)
2218                 x86_pmu.pebs_no_isolation = 1;
2219
2220         if (x86_pmu.pebs) {
2221                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2222                 char *pebs_qual = "";
2223                 int format = x86_pmu.intel_cap.pebs_format;
2224
2225                 if (format < 4)
2226                         x86_pmu.intel_cap.pebs_baseline = 0;
2227
2228                 switch (format) {
2229                 case 0:
2230                         pr_cont("PEBS fmt0%c, ", pebs_type);
2231                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2232                         /*
2233                          * Using >PAGE_SIZE buffers makes the WRMSR to
2234                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2235                          * mysteriously hang on Core2.
2236                          *
2237                          * As a workaround, we don't do this.
2238                          */
2239                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
2240                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2241                         break;
2242
2243                 case 1:
2244                         pr_cont("PEBS fmt1%c, ", pebs_type);
2245                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2246                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2247                         break;
2248
2249                 case 2:
2250                         pr_cont("PEBS fmt2%c, ", pebs_type);
2251                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2252                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2253                         break;
2254
2255                 case 3:
2256                         pr_cont("PEBS fmt3%c, ", pebs_type);
2257                         x86_pmu.pebs_record_size =
2258                                                 sizeof(struct pebs_record_skl);
2259                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2260                         x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2261                         break;
2262
2263                 case 4:
2264                 case 5:
2265                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2266                         x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2267                         if (x86_pmu.intel_cap.pebs_baseline) {
2268                                 x86_pmu.large_pebs_flags |=
2269                                         PERF_SAMPLE_BRANCH_STACK |
2270                                         PERF_SAMPLE_TIME;
2271                                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2272                                 pebs_qual = "-baseline";
2273                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2274                         } else {
2275                                 /* Only basic record supported */
2276                                 x86_pmu.large_pebs_flags &=
2277                                         ~(PERF_SAMPLE_ADDR |
2278                                           PERF_SAMPLE_TIME |
2279                                           PERF_SAMPLE_DATA_SRC |
2280                                           PERF_SAMPLE_TRANSACTION |
2281                                           PERF_SAMPLE_REGS_USER |
2282                                           PERF_SAMPLE_REGS_INTR);
2283                         }
2284                         pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2285
2286                         if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2287                                 pr_cont("PEBS-via-PT, ");
2288                                 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2289                         }
2290
2291                         break;
2292
2293                 default:
2294                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2295                         x86_pmu.pebs = 0;
2296                 }
2297         }
2298 }
2299
2300 void perf_restore_debug_store(void)
2301 {
2302         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2303
2304         if (!x86_pmu.bts && !x86_pmu.pebs)
2305                 return;
2306
2307         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2308 }