KVM: x86/pmu: fix masking logic for MSR_CORE_PERF_GLOBAL_CTRL
[platform/kernel/linux-starfive.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
34         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
35         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
36         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
37         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
38         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
39         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
40         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51         EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69         EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85         EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93         EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123         /*
124          * When HT is off these events can only run on the bottom 4 counters
125          * When HT is on, they are impacted by the HT bug and require EXCL access
126          */
127         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132         EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151         /*
152          * When HT is off these events can only run on the bottom 4 counters
153          * When HT is on, they are impacted by the HT bug and require EXCL access
154          */
155         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169         EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182         EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191         FIXED_EVENT_CONSTRAINT(0x0500, 4),
192         FIXED_EVENT_CONSTRAINT(0x0600, 5),
193         FIXED_EVENT_CONSTRAINT(0x0700, 6),
194         FIXED_EVENT_CONSTRAINT(0x0800, 7),
195         FIXED_EVENT_CONSTRAINT(0x0900, 8),
196         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202         FIXED_EVENT_CONSTRAINT(0x1000, 15),
203         EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211         EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_skl_event_constraints[] = {
215         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
216         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
217         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
218         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
219
220         /*
221          * when HT is off, these can only run on the bottom 4 counters
222          */
223         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
224         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
225         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
226         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
227         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
228
229         EVENT_CONSTRAINT_END
230 };
231
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235         EVENT_EXTRA_END
236 };
237
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243         EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251         EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258         /*
259          * Note the low 8 bits eventsel code is not a continuous field, containing
260          * some #GPing bits. These are masked out.
261          */
262         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263         EVENT_EXTRA_END
264 };
265
266 static struct event_constraint intel_icl_event_constraints[] = {
267         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
268         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
269         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
270         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
271         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
272         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
273         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
280         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291         EVENT_CONSTRAINT_END
292 };
293
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299         EVENT_EXTRA_END
300 };
301
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309         EVENT_EXTRA_END
310 };
311
312 static struct event_constraint intel_spr_event_constraints[] = {
313         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
314         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
315         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
316         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
317         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
318         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326
327         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329         /*
330          * Generally event codes < 0x90 are restricted to counters 0-3.
331          * The 0x2E and 0x3C are exception, which has no restriction.
332          */
333         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334
335         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343         /*
344          * Generally event codes >= 0x90 are likely to have no restrictions.
345          * The exception are defined as above.
346          */
347         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348
349         EVENT_CONSTRAINT_END
350 };
351
352 static struct extra_reg intel_gnr_extra_regs[] __read_mostly = {
353         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
354         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
355         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
356         INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE),
357         INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
358         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
359         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
360         EVENT_EXTRA_END
361 };
362
363 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
364 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
365 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
366
367 static struct attribute *nhm_mem_events_attrs[] = {
368         EVENT_PTR(mem_ld_nhm),
369         NULL,
370 };
371
372 /*
373  * topdown events for Intel Core CPUs.
374  *
375  * The events are all in slots, which is a free slot in a 4 wide
376  * pipeline. Some events are already reported in slots, for cycle
377  * events we multiply by the pipeline width (4).
378  *
379  * With Hyper Threading on, topdown metrics are either summed or averaged
380  * between the threads of a core: (count_t0 + count_t1).
381  *
382  * For the average case the metric is always scaled to pipeline width,
383  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
384  */
385
386 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
387         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
388         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
389 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
390 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
391         "event=0xe,umask=0x1");                 /* uops_issued.any */
392 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
393         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
394 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
395         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
396 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
397         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
398         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
399 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
400         "4", "2");
401
402 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
403 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
404 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
405 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
406 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
407 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
408 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
409 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
410 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
411
412 static struct attribute *snb_events_attrs[] = {
413         EVENT_PTR(td_slots_issued),
414         EVENT_PTR(td_slots_retired),
415         EVENT_PTR(td_fetch_bubbles),
416         EVENT_PTR(td_total_slots),
417         EVENT_PTR(td_total_slots_scale),
418         EVENT_PTR(td_recovery_bubbles),
419         EVENT_PTR(td_recovery_bubbles_scale),
420         NULL,
421 };
422
423 static struct attribute *snb_mem_events_attrs[] = {
424         EVENT_PTR(mem_ld_snb),
425         EVENT_PTR(mem_st_snb),
426         NULL,
427 };
428
429 static struct event_constraint intel_hsw_event_constraints[] = {
430         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
431         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
432         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
433         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
434         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
435         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
436         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
437         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
438         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
439         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
440         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
441         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
442
443         /*
444          * When HT is off these events can only run on the bottom 4 counters
445          * When HT is on, they are impacted by the HT bug and require EXCL access
446          */
447         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
448         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
449         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
450         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
451
452         EVENT_CONSTRAINT_END
453 };
454
455 static struct event_constraint intel_bdw_event_constraints[] = {
456         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
457         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
458         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
459         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
460         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
461         /*
462          * when HT is off, these can only run on the bottom 4 counters
463          */
464         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
465         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
466         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
467         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
468         EVENT_CONSTRAINT_END
469 };
470
471 static u64 intel_pmu_event_map(int hw_event)
472 {
473         return intel_perfmon_event_map[hw_event];
474 }
475
476 static __initconst const u64 spr_hw_cache_event_ids
477                                 [PERF_COUNT_HW_CACHE_MAX]
478                                 [PERF_COUNT_HW_CACHE_OP_MAX]
479                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
480 {
481  [ C(L1D ) ] = {
482         [ C(OP_READ) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x81d0,
484                 [ C(RESULT_MISS)   ] = 0xe124,
485         },
486         [ C(OP_WRITE) ] = {
487                 [ C(RESULT_ACCESS) ] = 0x82d0,
488         },
489  },
490  [ C(L1I ) ] = {
491         [ C(OP_READ) ] = {
492                 [ C(RESULT_MISS)   ] = 0xe424,
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = -1,
496                 [ C(RESULT_MISS)   ] = -1,
497         },
498  },
499  [ C(LL  ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x12a,
502                 [ C(RESULT_MISS)   ] = 0x12a,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x12a,
506                 [ C(RESULT_MISS)   ] = 0x12a,
507         },
508  },
509  [ C(DTLB) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = 0x81d0,
512                 [ C(RESULT_MISS)   ] = 0xe12,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x82d0,
516                 [ C(RESULT_MISS)   ] = 0xe13,
517         },
518  },
519  [ C(ITLB) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = -1,
522                 [ C(RESULT_MISS)   ] = 0xe11,
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = -1,
526                 [ C(RESULT_MISS)   ] = -1,
527         },
528         [ C(OP_PREFETCH) ] = {
529                 [ C(RESULT_ACCESS) ] = -1,
530                 [ C(RESULT_MISS)   ] = -1,
531         },
532  },
533  [ C(BPU ) ] = {
534         [ C(OP_READ) ] = {
535                 [ C(RESULT_ACCESS) ] = 0x4c4,
536                 [ C(RESULT_MISS)   ] = 0x4c5,
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = -1,
540                 [ C(RESULT_MISS)   ] = -1,
541         },
542         [ C(OP_PREFETCH) ] = {
543                 [ C(RESULT_ACCESS) ] = -1,
544                 [ C(RESULT_MISS)   ] = -1,
545         },
546  },
547  [ C(NODE) ] = {
548         [ C(OP_READ) ] = {
549                 [ C(RESULT_ACCESS) ] = 0x12a,
550                 [ C(RESULT_MISS)   ] = 0x12a,
551         },
552  },
553 };
554
555 static __initconst const u64 spr_hw_cache_extra_regs
556                                 [PERF_COUNT_HW_CACHE_MAX]
557                                 [PERF_COUNT_HW_CACHE_OP_MAX]
558                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
559 {
560  [ C(LL  ) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x10001,
563                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
564         },
565         [ C(OP_WRITE) ] = {
566                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
567                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
568         },
569  },
570  [ C(NODE) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x10c000001,
573                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
574         },
575  },
576 };
577
578 /*
579  * Notes on the events:
580  * - data reads do not include code reads (comparable to earlier tables)
581  * - data counts include speculative execution (except L1 write, dtlb, bpu)
582  * - remote node access includes remote memory, remote cache, remote mmio.
583  * - prefetches are not included in the counts.
584  * - icache miss does not include decoded icache
585  */
586
587 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
588 #define SKL_DEMAND_RFO                  BIT_ULL(1)
589 #define SKL_ANY_RESPONSE                BIT_ULL(16)
590 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
591 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
592 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
593 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
594 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
595 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
596                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
597                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
598                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
599 #define SKL_SPL_HIT                     BIT_ULL(30)
600 #define SKL_SNOOP_NONE                  BIT_ULL(31)
601 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
602 #define SKL_SNOOP_MISS                  BIT_ULL(33)
603 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
604 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
605 #define SKL_SNOOP_HITM                  BIT_ULL(36)
606 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
607 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
608                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
609                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
610                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
611 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
612 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
613                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
614                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
615                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
616 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
617 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
618 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
619                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
620                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
621
622 static __initconst const u64 skl_hw_cache_event_ids
623                                 [PERF_COUNT_HW_CACHE_MAX]
624                                 [PERF_COUNT_HW_CACHE_OP_MAX]
625                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
626 {
627  [ C(L1D ) ] = {
628         [ C(OP_READ) ] = {
629                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
630                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
631         },
632         [ C(OP_WRITE) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
634                 [ C(RESULT_MISS)   ] = 0x0,
635         },
636         [ C(OP_PREFETCH) ] = {
637                 [ C(RESULT_ACCESS) ] = 0x0,
638                 [ C(RESULT_MISS)   ] = 0x0,
639         },
640  },
641  [ C(L1I ) ] = {
642         [ C(OP_READ) ] = {
643                 [ C(RESULT_ACCESS) ] = 0x0,
644                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
645         },
646         [ C(OP_WRITE) ] = {
647                 [ C(RESULT_ACCESS) ] = -1,
648                 [ C(RESULT_MISS)   ] = -1,
649         },
650         [ C(OP_PREFETCH) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x0,
652                 [ C(RESULT_MISS)   ] = 0x0,
653         },
654  },
655  [ C(LL  ) ] = {
656         [ C(OP_READ) ] = {
657                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
658                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
659         },
660         [ C(OP_WRITE) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
662                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
663         },
664         [ C(OP_PREFETCH) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x0,
666                 [ C(RESULT_MISS)   ] = 0x0,
667         },
668  },
669  [ C(DTLB) ] = {
670         [ C(OP_READ) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
672                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
673         },
674         [ C(OP_WRITE) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
676                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
677         },
678         [ C(OP_PREFETCH) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x0,
680                 [ C(RESULT_MISS)   ] = 0x0,
681         },
682  },
683  [ C(ITLB) ] = {
684         [ C(OP_READ) ] = {
685                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
686                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
687         },
688         [ C(OP_WRITE) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692         [ C(OP_PREFETCH) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696  },
697  [ C(BPU ) ] = {
698         [ C(OP_READ) ] = {
699                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
700                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
701         },
702         [ C(OP_WRITE) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706         [ C(OP_PREFETCH) ] = {
707                 [ C(RESULT_ACCESS) ] = -1,
708                 [ C(RESULT_MISS)   ] = -1,
709         },
710  },
711  [ C(NODE) ] = {
712         [ C(OP_READ) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
714                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
715         },
716         [ C(OP_WRITE) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
718                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
719         },
720         [ C(OP_PREFETCH) ] = {
721                 [ C(RESULT_ACCESS) ] = 0x0,
722                 [ C(RESULT_MISS)   ] = 0x0,
723         },
724  },
725 };
726
727 static __initconst const u64 skl_hw_cache_extra_regs
728                                 [PERF_COUNT_HW_CACHE_MAX]
729                                 [PERF_COUNT_HW_CACHE_OP_MAX]
730                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
731 {
732  [ C(LL  ) ] = {
733         [ C(OP_READ) ] = {
734                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
735                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
736                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
737                                        SKL_L3_MISS|SKL_ANY_SNOOP|
738                                        SKL_SUPPLIER_NONE,
739         },
740         [ C(OP_WRITE) ] = {
741                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
742                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
743                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
744                                        SKL_L3_MISS|SKL_ANY_SNOOP|
745                                        SKL_SUPPLIER_NONE,
746         },
747         [ C(OP_PREFETCH) ] = {
748                 [ C(RESULT_ACCESS) ] = 0x0,
749                 [ C(RESULT_MISS)   ] = 0x0,
750         },
751  },
752  [ C(NODE) ] = {
753         [ C(OP_READ) ] = {
754                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
755                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
756                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
757                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
758         },
759         [ C(OP_WRITE) ] = {
760                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
761                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
762                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
763                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
764         },
765         [ C(OP_PREFETCH) ] = {
766                 [ C(RESULT_ACCESS) ] = 0x0,
767                 [ C(RESULT_MISS)   ] = 0x0,
768         },
769  },
770 };
771
772 #define SNB_DMND_DATA_RD        (1ULL << 0)
773 #define SNB_DMND_RFO            (1ULL << 1)
774 #define SNB_DMND_IFETCH         (1ULL << 2)
775 #define SNB_DMND_WB             (1ULL << 3)
776 #define SNB_PF_DATA_RD          (1ULL << 4)
777 #define SNB_PF_RFO              (1ULL << 5)
778 #define SNB_PF_IFETCH           (1ULL << 6)
779 #define SNB_LLC_DATA_RD         (1ULL << 7)
780 #define SNB_LLC_RFO             (1ULL << 8)
781 #define SNB_LLC_IFETCH          (1ULL << 9)
782 #define SNB_BUS_LOCKS           (1ULL << 10)
783 #define SNB_STRM_ST             (1ULL << 11)
784 #define SNB_OTHER               (1ULL << 15)
785 #define SNB_RESP_ANY            (1ULL << 16)
786 #define SNB_NO_SUPP             (1ULL << 17)
787 #define SNB_LLC_HITM            (1ULL << 18)
788 #define SNB_LLC_HITE            (1ULL << 19)
789 #define SNB_LLC_HITS            (1ULL << 20)
790 #define SNB_LLC_HITF            (1ULL << 21)
791 #define SNB_LOCAL               (1ULL << 22)
792 #define SNB_REMOTE              (0xffULL << 23)
793 #define SNB_SNP_NONE            (1ULL << 31)
794 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
795 #define SNB_SNP_MISS            (1ULL << 33)
796 #define SNB_NO_FWD              (1ULL << 34)
797 #define SNB_SNP_FWD             (1ULL << 35)
798 #define SNB_HITM                (1ULL << 36)
799 #define SNB_NON_DRAM            (1ULL << 37)
800
801 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
802 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
803 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
804
805 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
806                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
807                                  SNB_HITM)
808
809 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
810 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
811
812 #define SNB_L3_ACCESS           SNB_RESP_ANY
813 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
814
815 static __initconst const u64 snb_hw_cache_extra_regs
816                                 [PERF_COUNT_HW_CACHE_MAX]
817                                 [PERF_COUNT_HW_CACHE_OP_MAX]
818                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
819 {
820  [ C(LL  ) ] = {
821         [ C(OP_READ) ] = {
822                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
823                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
824         },
825         [ C(OP_WRITE) ] = {
826                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
827                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
828         },
829         [ C(OP_PREFETCH) ] = {
830                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
831                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
832         },
833  },
834  [ C(NODE) ] = {
835         [ C(OP_READ) ] = {
836                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
837                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
838         },
839         [ C(OP_WRITE) ] = {
840                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
841                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
842         },
843         [ C(OP_PREFETCH) ] = {
844                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
845                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
846         },
847  },
848 };
849
850 static __initconst const u64 snb_hw_cache_event_ids
851                                 [PERF_COUNT_HW_CACHE_MAX]
852                                 [PERF_COUNT_HW_CACHE_OP_MAX]
853                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
854 {
855  [ C(L1D) ] = {
856         [ C(OP_READ) ] = {
857                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
858                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
859         },
860         [ C(OP_WRITE) ] = {
861                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
862                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
863         },
864         [ C(OP_PREFETCH) ] = {
865                 [ C(RESULT_ACCESS) ] = 0x0,
866                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
867         },
868  },
869  [ C(L1I ) ] = {
870         [ C(OP_READ) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x0,
872                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
873         },
874         [ C(OP_WRITE) ] = {
875                 [ C(RESULT_ACCESS) ] = -1,
876                 [ C(RESULT_MISS)   ] = -1,
877         },
878         [ C(OP_PREFETCH) ] = {
879                 [ C(RESULT_ACCESS) ] = 0x0,
880                 [ C(RESULT_MISS)   ] = 0x0,
881         },
882  },
883  [ C(LL  ) ] = {
884         [ C(OP_READ) ] = {
885                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
886                 [ C(RESULT_ACCESS) ] = 0x01b7,
887                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
888                 [ C(RESULT_MISS)   ] = 0x01b7,
889         },
890         [ C(OP_WRITE) ] = {
891                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
892                 [ C(RESULT_ACCESS) ] = 0x01b7,
893                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
894                 [ C(RESULT_MISS)   ] = 0x01b7,
895         },
896         [ C(OP_PREFETCH) ] = {
897                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
898                 [ C(RESULT_ACCESS) ] = 0x01b7,
899                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
900                 [ C(RESULT_MISS)   ] = 0x01b7,
901         },
902  },
903  [ C(DTLB) ] = {
904         [ C(OP_READ) ] = {
905                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
906                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
907         },
908         [ C(OP_WRITE) ] = {
909                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
910                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
911         },
912         [ C(OP_PREFETCH) ] = {
913                 [ C(RESULT_ACCESS) ] = 0x0,
914                 [ C(RESULT_MISS)   ] = 0x0,
915         },
916  },
917  [ C(ITLB) ] = {
918         [ C(OP_READ) ] = {
919                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
920                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
921         },
922         [ C(OP_WRITE) ] = {
923                 [ C(RESULT_ACCESS) ] = -1,
924                 [ C(RESULT_MISS)   ] = -1,
925         },
926         [ C(OP_PREFETCH) ] = {
927                 [ C(RESULT_ACCESS) ] = -1,
928                 [ C(RESULT_MISS)   ] = -1,
929         },
930  },
931  [ C(BPU ) ] = {
932         [ C(OP_READ) ] = {
933                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
934                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
935         },
936         [ C(OP_WRITE) ] = {
937                 [ C(RESULT_ACCESS) ] = -1,
938                 [ C(RESULT_MISS)   ] = -1,
939         },
940         [ C(OP_PREFETCH) ] = {
941                 [ C(RESULT_ACCESS) ] = -1,
942                 [ C(RESULT_MISS)   ] = -1,
943         },
944  },
945  [ C(NODE) ] = {
946         [ C(OP_READ) ] = {
947                 [ C(RESULT_ACCESS) ] = 0x01b7,
948                 [ C(RESULT_MISS)   ] = 0x01b7,
949         },
950         [ C(OP_WRITE) ] = {
951                 [ C(RESULT_ACCESS) ] = 0x01b7,
952                 [ C(RESULT_MISS)   ] = 0x01b7,
953         },
954         [ C(OP_PREFETCH) ] = {
955                 [ C(RESULT_ACCESS) ] = 0x01b7,
956                 [ C(RESULT_MISS)   ] = 0x01b7,
957         },
958  },
959
960 };
961
962 /*
963  * Notes on the events:
964  * - data reads do not include code reads (comparable to earlier tables)
965  * - data counts include speculative execution (except L1 write, dtlb, bpu)
966  * - remote node access includes remote memory, remote cache, remote mmio.
967  * - prefetches are not included in the counts because they are not
968  *   reliably counted.
969  */
970
971 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
972 #define HSW_DEMAND_RFO                  BIT_ULL(1)
973 #define HSW_ANY_RESPONSE                BIT_ULL(16)
974 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
975 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
976 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
977 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
978 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
979 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
980                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
981                                          HSW_L3_MISS_REMOTE_HOP2P)
982 #define HSW_SNOOP_NONE                  BIT_ULL(31)
983 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
984 #define HSW_SNOOP_MISS                  BIT_ULL(33)
985 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
986 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
987 #define HSW_SNOOP_HITM                  BIT_ULL(36)
988 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
989 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
990                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
991                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
992                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
993 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
994 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
995 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
996 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
997                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
998 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
999
1000 #define BDW_L3_MISS_LOCAL               BIT(26)
1001 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
1002                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
1003                                          HSW_L3_MISS_REMOTE_HOP2P)
1004
1005
1006 static __initconst const u64 hsw_hw_cache_event_ids
1007                                 [PERF_COUNT_HW_CACHE_MAX]
1008                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1009                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1010 {
1011  [ C(L1D ) ] = {
1012         [ C(OP_READ) ] = {
1013                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1014                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1015         },
1016         [ C(OP_WRITE) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1018                 [ C(RESULT_MISS)   ] = 0x0,
1019         },
1020         [ C(OP_PREFETCH) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x0,
1022                 [ C(RESULT_MISS)   ] = 0x0,
1023         },
1024  },
1025  [ C(L1I ) ] = {
1026         [ C(OP_READ) ] = {
1027                 [ C(RESULT_ACCESS) ] = 0x0,
1028                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1029         },
1030         [ C(OP_WRITE) ] = {
1031                 [ C(RESULT_ACCESS) ] = -1,
1032                 [ C(RESULT_MISS)   ] = -1,
1033         },
1034         [ C(OP_PREFETCH) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x0,
1036                 [ C(RESULT_MISS)   ] = 0x0,
1037         },
1038  },
1039  [ C(LL  ) ] = {
1040         [ C(OP_READ) ] = {
1041                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1042                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1043         },
1044         [ C(OP_WRITE) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1046                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1047         },
1048         [ C(OP_PREFETCH) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x0,
1050                 [ C(RESULT_MISS)   ] = 0x0,
1051         },
1052  },
1053  [ C(DTLB) ] = {
1054         [ C(OP_READ) ] = {
1055                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1056                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1057         },
1058         [ C(OP_WRITE) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1060                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1061         },
1062         [ C(OP_PREFETCH) ] = {
1063                 [ C(RESULT_ACCESS) ] = 0x0,
1064                 [ C(RESULT_MISS)   ] = 0x0,
1065         },
1066  },
1067  [ C(ITLB) ] = {
1068         [ C(OP_READ) ] = {
1069                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1070                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1071         },
1072         [ C(OP_WRITE) ] = {
1073                 [ C(RESULT_ACCESS) ] = -1,
1074                 [ C(RESULT_MISS)   ] = -1,
1075         },
1076         [ C(OP_PREFETCH) ] = {
1077                 [ C(RESULT_ACCESS) ] = -1,
1078                 [ C(RESULT_MISS)   ] = -1,
1079         },
1080  },
1081  [ C(BPU ) ] = {
1082         [ C(OP_READ) ] = {
1083                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1084                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1085         },
1086         [ C(OP_WRITE) ] = {
1087                 [ C(RESULT_ACCESS) ] = -1,
1088                 [ C(RESULT_MISS)   ] = -1,
1089         },
1090         [ C(OP_PREFETCH) ] = {
1091                 [ C(RESULT_ACCESS) ] = -1,
1092                 [ C(RESULT_MISS)   ] = -1,
1093         },
1094  },
1095  [ C(NODE) ] = {
1096         [ C(OP_READ) ] = {
1097                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1098                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1099         },
1100         [ C(OP_WRITE) ] = {
1101                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1102                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1103         },
1104         [ C(OP_PREFETCH) ] = {
1105                 [ C(RESULT_ACCESS) ] = 0x0,
1106                 [ C(RESULT_MISS)   ] = 0x0,
1107         },
1108  },
1109 };
1110
1111 static __initconst const u64 hsw_hw_cache_extra_regs
1112                                 [PERF_COUNT_HW_CACHE_MAX]
1113                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1114                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1115 {
1116  [ C(LL  ) ] = {
1117         [ C(OP_READ) ] = {
1118                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1119                                        HSW_LLC_ACCESS,
1120                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1121                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1122         },
1123         [ C(OP_WRITE) ] = {
1124                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1125                                        HSW_LLC_ACCESS,
1126                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1127                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1128         },
1129         [ C(OP_PREFETCH) ] = {
1130                 [ C(RESULT_ACCESS) ] = 0x0,
1131                 [ C(RESULT_MISS)   ] = 0x0,
1132         },
1133  },
1134  [ C(NODE) ] = {
1135         [ C(OP_READ) ] = {
1136                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1137                                        HSW_L3_MISS_LOCAL_DRAM|
1138                                        HSW_SNOOP_DRAM,
1139                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1140                                        HSW_L3_MISS_REMOTE|
1141                                        HSW_SNOOP_DRAM,
1142         },
1143         [ C(OP_WRITE) ] = {
1144                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1145                                        HSW_L3_MISS_LOCAL_DRAM|
1146                                        HSW_SNOOP_DRAM,
1147                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1148                                        HSW_L3_MISS_REMOTE|
1149                                        HSW_SNOOP_DRAM,
1150         },
1151         [ C(OP_PREFETCH) ] = {
1152                 [ C(RESULT_ACCESS) ] = 0x0,
1153                 [ C(RESULT_MISS)   ] = 0x0,
1154         },
1155  },
1156 };
1157
1158 static __initconst const u64 westmere_hw_cache_event_ids
1159                                 [PERF_COUNT_HW_CACHE_MAX]
1160                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1161                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1162 {
1163  [ C(L1D) ] = {
1164         [ C(OP_READ) ] = {
1165                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1166                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1167         },
1168         [ C(OP_WRITE) ] = {
1169                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1170                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1171         },
1172         [ C(OP_PREFETCH) ] = {
1173                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1174                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1175         },
1176  },
1177  [ C(L1I ) ] = {
1178         [ C(OP_READ) ] = {
1179                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1180                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1181         },
1182         [ C(OP_WRITE) ] = {
1183                 [ C(RESULT_ACCESS) ] = -1,
1184                 [ C(RESULT_MISS)   ] = -1,
1185         },
1186         [ C(OP_PREFETCH) ] = {
1187                 [ C(RESULT_ACCESS) ] = 0x0,
1188                 [ C(RESULT_MISS)   ] = 0x0,
1189         },
1190  },
1191  [ C(LL  ) ] = {
1192         [ C(OP_READ) ] = {
1193                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1194                 [ C(RESULT_ACCESS) ] = 0x01b7,
1195                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1196                 [ C(RESULT_MISS)   ] = 0x01b7,
1197         },
1198         /*
1199          * Use RFO, not WRITEBACK, because a write miss would typically occur
1200          * on RFO.
1201          */
1202         [ C(OP_WRITE) ] = {
1203                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1206                 [ C(RESULT_MISS)   ] = 0x01b7,
1207         },
1208         [ C(OP_PREFETCH) ] = {
1209                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1210                 [ C(RESULT_ACCESS) ] = 0x01b7,
1211                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1212                 [ C(RESULT_MISS)   ] = 0x01b7,
1213         },
1214  },
1215  [ C(DTLB) ] = {
1216         [ C(OP_READ) ] = {
1217                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1218                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1219         },
1220         [ C(OP_WRITE) ] = {
1221                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1222                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1223         },
1224         [ C(OP_PREFETCH) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0,
1226                 [ C(RESULT_MISS)   ] = 0x0,
1227         },
1228  },
1229  [ C(ITLB) ] = {
1230         [ C(OP_READ) ] = {
1231                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1232                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1233         },
1234         [ C(OP_WRITE) ] = {
1235                 [ C(RESULT_ACCESS) ] = -1,
1236                 [ C(RESULT_MISS)   ] = -1,
1237         },
1238         [ C(OP_PREFETCH) ] = {
1239                 [ C(RESULT_ACCESS) ] = -1,
1240                 [ C(RESULT_MISS)   ] = -1,
1241         },
1242  },
1243  [ C(BPU ) ] = {
1244         [ C(OP_READ) ] = {
1245                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1246                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1247         },
1248         [ C(OP_WRITE) ] = {
1249                 [ C(RESULT_ACCESS) ] = -1,
1250                 [ C(RESULT_MISS)   ] = -1,
1251         },
1252         [ C(OP_PREFETCH) ] = {
1253                 [ C(RESULT_ACCESS) ] = -1,
1254                 [ C(RESULT_MISS)   ] = -1,
1255         },
1256  },
1257  [ C(NODE) ] = {
1258         [ C(OP_READ) ] = {
1259                 [ C(RESULT_ACCESS) ] = 0x01b7,
1260                 [ C(RESULT_MISS)   ] = 0x01b7,
1261         },
1262         [ C(OP_WRITE) ] = {
1263                 [ C(RESULT_ACCESS) ] = 0x01b7,
1264                 [ C(RESULT_MISS)   ] = 0x01b7,
1265         },
1266         [ C(OP_PREFETCH) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x01b7,
1268                 [ C(RESULT_MISS)   ] = 0x01b7,
1269         },
1270  },
1271 };
1272
1273 /*
1274  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1275  * See IA32 SDM Vol 3B 30.6.1.3
1276  */
1277
1278 #define NHM_DMND_DATA_RD        (1 << 0)
1279 #define NHM_DMND_RFO            (1 << 1)
1280 #define NHM_DMND_IFETCH         (1 << 2)
1281 #define NHM_DMND_WB             (1 << 3)
1282 #define NHM_PF_DATA_RD          (1 << 4)
1283 #define NHM_PF_DATA_RFO         (1 << 5)
1284 #define NHM_PF_IFETCH           (1 << 6)
1285 #define NHM_OFFCORE_OTHER       (1 << 7)
1286 #define NHM_UNCORE_HIT          (1 << 8)
1287 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1288 #define NHM_OTHER_CORE_HITM     (1 << 10)
1289                                 /* reserved */
1290 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1291 #define NHM_REMOTE_DRAM         (1 << 13)
1292 #define NHM_LOCAL_DRAM          (1 << 14)
1293 #define NHM_NON_DRAM            (1 << 15)
1294
1295 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1296 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1297
1298 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1299 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1300 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1301
1302 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1303 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1304 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1305
1306 static __initconst const u64 nehalem_hw_cache_extra_regs
1307                                 [PERF_COUNT_HW_CACHE_MAX]
1308                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1309                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1310 {
1311  [ C(LL  ) ] = {
1312         [ C(OP_READ) ] = {
1313                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1314                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1315         },
1316         [ C(OP_WRITE) ] = {
1317                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1318                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1319         },
1320         [ C(OP_PREFETCH) ] = {
1321                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1322                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1323         },
1324  },
1325  [ C(NODE) ] = {
1326         [ C(OP_READ) ] = {
1327                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1328                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1329         },
1330         [ C(OP_WRITE) ] = {
1331                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1332                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1333         },
1334         [ C(OP_PREFETCH) ] = {
1335                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1336                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1337         },
1338  },
1339 };
1340
1341 static __initconst const u64 nehalem_hw_cache_event_ids
1342                                 [PERF_COUNT_HW_CACHE_MAX]
1343                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1344                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1345 {
1346  [ C(L1D) ] = {
1347         [ C(OP_READ) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1349                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1350         },
1351         [ C(OP_WRITE) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1353                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1354         },
1355         [ C(OP_PREFETCH) ] = {
1356                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1357                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1358         },
1359  },
1360  [ C(L1I ) ] = {
1361         [ C(OP_READ) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1363                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1364         },
1365         [ C(OP_WRITE) ] = {
1366                 [ C(RESULT_ACCESS) ] = -1,
1367                 [ C(RESULT_MISS)   ] = -1,
1368         },
1369         [ C(OP_PREFETCH) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0x0,
1371                 [ C(RESULT_MISS)   ] = 0x0,
1372         },
1373  },
1374  [ C(LL  ) ] = {
1375         [ C(OP_READ) ] = {
1376                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1377                 [ C(RESULT_ACCESS) ] = 0x01b7,
1378                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1379                 [ C(RESULT_MISS)   ] = 0x01b7,
1380         },
1381         /*
1382          * Use RFO, not WRITEBACK, because a write miss would typically occur
1383          * on RFO.
1384          */
1385         [ C(OP_WRITE) ] = {
1386                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1387                 [ C(RESULT_ACCESS) ] = 0x01b7,
1388                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1389                 [ C(RESULT_MISS)   ] = 0x01b7,
1390         },
1391         [ C(OP_PREFETCH) ] = {
1392                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1393                 [ C(RESULT_ACCESS) ] = 0x01b7,
1394                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1395                 [ C(RESULT_MISS)   ] = 0x01b7,
1396         },
1397  },
1398  [ C(DTLB) ] = {
1399         [ C(OP_READ) ] = {
1400                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1401                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1402         },
1403         [ C(OP_WRITE) ] = {
1404                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1405                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1406         },
1407         [ C(OP_PREFETCH) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x0,
1409                 [ C(RESULT_MISS)   ] = 0x0,
1410         },
1411  },
1412  [ C(ITLB) ] = {
1413         [ C(OP_READ) ] = {
1414                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1415                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1416         },
1417         [ C(OP_WRITE) ] = {
1418                 [ C(RESULT_ACCESS) ] = -1,
1419                 [ C(RESULT_MISS)   ] = -1,
1420         },
1421         [ C(OP_PREFETCH) ] = {
1422                 [ C(RESULT_ACCESS) ] = -1,
1423                 [ C(RESULT_MISS)   ] = -1,
1424         },
1425  },
1426  [ C(BPU ) ] = {
1427         [ C(OP_READ) ] = {
1428                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1429                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1430         },
1431         [ C(OP_WRITE) ] = {
1432                 [ C(RESULT_ACCESS) ] = -1,
1433                 [ C(RESULT_MISS)   ] = -1,
1434         },
1435         [ C(OP_PREFETCH) ] = {
1436                 [ C(RESULT_ACCESS) ] = -1,
1437                 [ C(RESULT_MISS)   ] = -1,
1438         },
1439  },
1440  [ C(NODE) ] = {
1441         [ C(OP_READ) ] = {
1442                 [ C(RESULT_ACCESS) ] = 0x01b7,
1443                 [ C(RESULT_MISS)   ] = 0x01b7,
1444         },
1445         [ C(OP_WRITE) ] = {
1446                 [ C(RESULT_ACCESS) ] = 0x01b7,
1447                 [ C(RESULT_MISS)   ] = 0x01b7,
1448         },
1449         [ C(OP_PREFETCH) ] = {
1450                 [ C(RESULT_ACCESS) ] = 0x01b7,
1451                 [ C(RESULT_MISS)   ] = 0x01b7,
1452         },
1453  },
1454 };
1455
1456 static __initconst const u64 core2_hw_cache_event_ids
1457                                 [PERF_COUNT_HW_CACHE_MAX]
1458                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1459                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1460 {
1461  [ C(L1D) ] = {
1462         [ C(OP_READ) ] = {
1463                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1464                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1465         },
1466         [ C(OP_WRITE) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1468                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1469         },
1470         [ C(OP_PREFETCH) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474  },
1475  [ C(L1I ) ] = {
1476         [ C(OP_READ) ] = {
1477                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1478                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1479         },
1480         [ C(OP_WRITE) ] = {
1481                 [ C(RESULT_ACCESS) ] = -1,
1482                 [ C(RESULT_MISS)   ] = -1,
1483         },
1484         [ C(OP_PREFETCH) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0,
1486                 [ C(RESULT_MISS)   ] = 0,
1487         },
1488  },
1489  [ C(LL  ) ] = {
1490         [ C(OP_READ) ] = {
1491                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1492                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1493         },
1494         [ C(OP_WRITE) ] = {
1495                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1496                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1497         },
1498         [ C(OP_PREFETCH) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0,
1500                 [ C(RESULT_MISS)   ] = 0,
1501         },
1502  },
1503  [ C(DTLB) ] = {
1504         [ C(OP_READ) ] = {
1505                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1506                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1507         },
1508         [ C(OP_WRITE) ] = {
1509                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1510                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1511         },
1512         [ C(OP_PREFETCH) ] = {
1513                 [ C(RESULT_ACCESS) ] = 0,
1514                 [ C(RESULT_MISS)   ] = 0,
1515         },
1516  },
1517  [ C(ITLB) ] = {
1518         [ C(OP_READ) ] = {
1519                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1520                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1521         },
1522         [ C(OP_WRITE) ] = {
1523                 [ C(RESULT_ACCESS) ] = -1,
1524                 [ C(RESULT_MISS)   ] = -1,
1525         },
1526         [ C(OP_PREFETCH) ] = {
1527                 [ C(RESULT_ACCESS) ] = -1,
1528                 [ C(RESULT_MISS)   ] = -1,
1529         },
1530  },
1531  [ C(BPU ) ] = {
1532         [ C(OP_READ) ] = {
1533                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1534                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1535         },
1536         [ C(OP_WRITE) ] = {
1537                 [ C(RESULT_ACCESS) ] = -1,
1538                 [ C(RESULT_MISS)   ] = -1,
1539         },
1540         [ C(OP_PREFETCH) ] = {
1541                 [ C(RESULT_ACCESS) ] = -1,
1542                 [ C(RESULT_MISS)   ] = -1,
1543         },
1544  },
1545 };
1546
1547 static __initconst const u64 atom_hw_cache_event_ids
1548                                 [PERF_COUNT_HW_CACHE_MAX]
1549                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1550                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1551 {
1552  [ C(L1D) ] = {
1553         [ C(OP_READ) ] = {
1554                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1555                 [ C(RESULT_MISS)   ] = 0,
1556         },
1557         [ C(OP_WRITE) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1559                 [ C(RESULT_MISS)   ] = 0,
1560         },
1561         [ C(OP_PREFETCH) ] = {
1562                 [ C(RESULT_ACCESS) ] = 0x0,
1563                 [ C(RESULT_MISS)   ] = 0,
1564         },
1565  },
1566  [ C(L1I ) ] = {
1567         [ C(OP_READ) ] = {
1568                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1569                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1570         },
1571         [ C(OP_WRITE) ] = {
1572                 [ C(RESULT_ACCESS) ] = -1,
1573                 [ C(RESULT_MISS)   ] = -1,
1574         },
1575         [ C(OP_PREFETCH) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0,
1577                 [ C(RESULT_MISS)   ] = 0,
1578         },
1579  },
1580  [ C(LL  ) ] = {
1581         [ C(OP_READ) ] = {
1582                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1583                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1584         },
1585         [ C(OP_WRITE) ] = {
1586                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1587                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1588         },
1589         [ C(OP_PREFETCH) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0,
1591                 [ C(RESULT_MISS)   ] = 0,
1592         },
1593  },
1594  [ C(DTLB) ] = {
1595         [ C(OP_READ) ] = {
1596                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1597                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1598         },
1599         [ C(OP_WRITE) ] = {
1600                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1601                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1602         },
1603         [ C(OP_PREFETCH) ] = {
1604                 [ C(RESULT_ACCESS) ] = 0,
1605                 [ C(RESULT_MISS)   ] = 0,
1606         },
1607  },
1608  [ C(ITLB) ] = {
1609         [ C(OP_READ) ] = {
1610                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1611                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1612         },
1613         [ C(OP_WRITE) ] = {
1614                 [ C(RESULT_ACCESS) ] = -1,
1615                 [ C(RESULT_MISS)   ] = -1,
1616         },
1617         [ C(OP_PREFETCH) ] = {
1618                 [ C(RESULT_ACCESS) ] = -1,
1619                 [ C(RESULT_MISS)   ] = -1,
1620         },
1621  },
1622  [ C(BPU ) ] = {
1623         [ C(OP_READ) ] = {
1624                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1625                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1626         },
1627         [ C(OP_WRITE) ] = {
1628                 [ C(RESULT_ACCESS) ] = -1,
1629                 [ C(RESULT_MISS)   ] = -1,
1630         },
1631         [ C(OP_PREFETCH) ] = {
1632                 [ C(RESULT_ACCESS) ] = -1,
1633                 [ C(RESULT_MISS)   ] = -1,
1634         },
1635  },
1636 };
1637
1638 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1639 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1640 /* no_alloc_cycles.not_delivered */
1641 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1642                "event=0xca,umask=0x50");
1643 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1644 /* uops_retired.all */
1645 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1646                "event=0xc2,umask=0x10");
1647 /* uops_retired.all */
1648 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1649                "event=0xc2,umask=0x10");
1650
1651 static struct attribute *slm_events_attrs[] = {
1652         EVENT_PTR(td_total_slots_slm),
1653         EVENT_PTR(td_total_slots_scale_slm),
1654         EVENT_PTR(td_fetch_bubbles_slm),
1655         EVENT_PTR(td_fetch_bubbles_scale_slm),
1656         EVENT_PTR(td_slots_issued_slm),
1657         EVENT_PTR(td_slots_retired_slm),
1658         NULL
1659 };
1660
1661 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1662 {
1663         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1664         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1665         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1666         EVENT_EXTRA_END
1667 };
1668
1669 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1670 #define SLM_DMND_WRITE          SNB_DMND_RFO
1671 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1672
1673 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1674 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1675 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1676
1677 static __initconst const u64 slm_hw_cache_extra_regs
1678                                 [PERF_COUNT_HW_CACHE_MAX]
1679                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1680                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1681 {
1682  [ C(LL  ) ] = {
1683         [ C(OP_READ) ] = {
1684                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1685                 [ C(RESULT_MISS)   ] = 0,
1686         },
1687         [ C(OP_WRITE) ] = {
1688                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1689                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1690         },
1691         [ C(OP_PREFETCH) ] = {
1692                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1693                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1694         },
1695  },
1696 };
1697
1698 static __initconst const u64 slm_hw_cache_event_ids
1699                                 [PERF_COUNT_HW_CACHE_MAX]
1700                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1701                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1702 {
1703  [ C(L1D) ] = {
1704         [ C(OP_READ) ] = {
1705                 [ C(RESULT_ACCESS) ] = 0,
1706                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1707         },
1708         [ C(OP_WRITE) ] = {
1709                 [ C(RESULT_ACCESS) ] = 0,
1710                 [ C(RESULT_MISS)   ] = 0,
1711         },
1712         [ C(OP_PREFETCH) ] = {
1713                 [ C(RESULT_ACCESS) ] = 0,
1714                 [ C(RESULT_MISS)   ] = 0,
1715         },
1716  },
1717  [ C(L1I ) ] = {
1718         [ C(OP_READ) ] = {
1719                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1720                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1721         },
1722         [ C(OP_WRITE) ] = {
1723                 [ C(RESULT_ACCESS) ] = -1,
1724                 [ C(RESULT_MISS)   ] = -1,
1725         },
1726         [ C(OP_PREFETCH) ] = {
1727                 [ C(RESULT_ACCESS) ] = 0,
1728                 [ C(RESULT_MISS)   ] = 0,
1729         },
1730  },
1731  [ C(LL  ) ] = {
1732         [ C(OP_READ) ] = {
1733                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1734                 [ C(RESULT_ACCESS) ] = 0x01b7,
1735                 [ C(RESULT_MISS)   ] = 0,
1736         },
1737         [ C(OP_WRITE) ] = {
1738                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1739                 [ C(RESULT_ACCESS) ] = 0x01b7,
1740                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1741                 [ C(RESULT_MISS)   ] = 0x01b7,
1742         },
1743         [ C(OP_PREFETCH) ] = {
1744                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1745                 [ C(RESULT_ACCESS) ] = 0x01b7,
1746                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1747                 [ C(RESULT_MISS)   ] = 0x01b7,
1748         },
1749  },
1750  [ C(DTLB) ] = {
1751         [ C(OP_READ) ] = {
1752                 [ C(RESULT_ACCESS) ] = 0,
1753                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1754         },
1755         [ C(OP_WRITE) ] = {
1756                 [ C(RESULT_ACCESS) ] = 0,
1757                 [ C(RESULT_MISS)   ] = 0,
1758         },
1759         [ C(OP_PREFETCH) ] = {
1760                 [ C(RESULT_ACCESS) ] = 0,
1761                 [ C(RESULT_MISS)   ] = 0,
1762         },
1763  },
1764  [ C(ITLB) ] = {
1765         [ C(OP_READ) ] = {
1766                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1767                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1768         },
1769         [ C(OP_WRITE) ] = {
1770                 [ C(RESULT_ACCESS) ] = -1,
1771                 [ C(RESULT_MISS)   ] = -1,
1772         },
1773         [ C(OP_PREFETCH) ] = {
1774                 [ C(RESULT_ACCESS) ] = -1,
1775                 [ C(RESULT_MISS)   ] = -1,
1776         },
1777  },
1778  [ C(BPU ) ] = {
1779         [ C(OP_READ) ] = {
1780                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1781                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1782         },
1783         [ C(OP_WRITE) ] = {
1784                 [ C(RESULT_ACCESS) ] = -1,
1785                 [ C(RESULT_MISS)   ] = -1,
1786         },
1787         [ C(OP_PREFETCH) ] = {
1788                 [ C(RESULT_ACCESS) ] = -1,
1789                 [ C(RESULT_MISS)   ] = -1,
1790         },
1791  },
1792 };
1793
1794 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1795 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1796 /* UOPS_NOT_DELIVERED.ANY */
1797 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1798 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1799 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1800 /* UOPS_RETIRED.ANY */
1801 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1802 /* UOPS_ISSUED.ANY */
1803 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1804
1805 static struct attribute *glm_events_attrs[] = {
1806         EVENT_PTR(td_total_slots_glm),
1807         EVENT_PTR(td_total_slots_scale_glm),
1808         EVENT_PTR(td_fetch_bubbles_glm),
1809         EVENT_PTR(td_recovery_bubbles_glm),
1810         EVENT_PTR(td_slots_issued_glm),
1811         EVENT_PTR(td_slots_retired_glm),
1812         NULL
1813 };
1814
1815 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1816         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1817         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1818         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1819         EVENT_EXTRA_END
1820 };
1821
1822 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1823 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1824 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1825 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1826 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1827 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1828 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1829 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1830 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1831 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1832
1833 static __initconst const u64 glm_hw_cache_event_ids
1834                                 [PERF_COUNT_HW_CACHE_MAX]
1835                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1836                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1837         [C(L1D)] = {
1838                 [C(OP_READ)] = {
1839                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1840                         [C(RESULT_MISS)]        = 0x0,
1841                 },
1842                 [C(OP_WRITE)] = {
1843                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1844                         [C(RESULT_MISS)]        = 0x0,
1845                 },
1846                 [C(OP_PREFETCH)] = {
1847                         [C(RESULT_ACCESS)]      = 0x0,
1848                         [C(RESULT_MISS)]        = 0x0,
1849                 },
1850         },
1851         [C(L1I)] = {
1852                 [C(OP_READ)] = {
1853                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1854                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1855                 },
1856                 [C(OP_WRITE)] = {
1857                         [C(RESULT_ACCESS)]      = -1,
1858                         [C(RESULT_MISS)]        = -1,
1859                 },
1860                 [C(OP_PREFETCH)] = {
1861                         [C(RESULT_ACCESS)]      = 0x0,
1862                         [C(RESULT_MISS)]        = 0x0,
1863                 },
1864         },
1865         [C(LL)] = {
1866                 [C(OP_READ)] = {
1867                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1868                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1869                 },
1870                 [C(OP_WRITE)] = {
1871                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1872                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1873                 },
1874                 [C(OP_PREFETCH)] = {
1875                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1876                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1877                 },
1878         },
1879         [C(DTLB)] = {
1880                 [C(OP_READ)] = {
1881                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1882                         [C(RESULT_MISS)]        = 0x0,
1883                 },
1884                 [C(OP_WRITE)] = {
1885                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1886                         [C(RESULT_MISS)]        = 0x0,
1887                 },
1888                 [C(OP_PREFETCH)] = {
1889                         [C(RESULT_ACCESS)]      = 0x0,
1890                         [C(RESULT_MISS)]        = 0x0,
1891                 },
1892         },
1893         [C(ITLB)] = {
1894                 [C(OP_READ)] = {
1895                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1896                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1897                 },
1898                 [C(OP_WRITE)] = {
1899                         [C(RESULT_ACCESS)]      = -1,
1900                         [C(RESULT_MISS)]        = -1,
1901                 },
1902                 [C(OP_PREFETCH)] = {
1903                         [C(RESULT_ACCESS)]      = -1,
1904                         [C(RESULT_MISS)]        = -1,
1905                 },
1906         },
1907         [C(BPU)] = {
1908                 [C(OP_READ)] = {
1909                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1910                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1911                 },
1912                 [C(OP_WRITE)] = {
1913                         [C(RESULT_ACCESS)]      = -1,
1914                         [C(RESULT_MISS)]        = -1,
1915                 },
1916                 [C(OP_PREFETCH)] = {
1917                         [C(RESULT_ACCESS)]      = -1,
1918                         [C(RESULT_MISS)]        = -1,
1919                 },
1920         },
1921 };
1922
1923 static __initconst const u64 glm_hw_cache_extra_regs
1924                                 [PERF_COUNT_HW_CACHE_MAX]
1925                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1926                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1927         [C(LL)] = {
1928                 [C(OP_READ)] = {
1929                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1930                                                   GLM_LLC_ACCESS,
1931                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1932                                                   GLM_LLC_MISS,
1933                 },
1934                 [C(OP_WRITE)] = {
1935                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1936                                                   GLM_LLC_ACCESS,
1937                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1938                                                   GLM_LLC_MISS,
1939                 },
1940                 [C(OP_PREFETCH)] = {
1941                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1942                                                   GLM_LLC_ACCESS,
1943                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1944                                                   GLM_LLC_MISS,
1945                 },
1946         },
1947 };
1948
1949 static __initconst const u64 glp_hw_cache_event_ids
1950                                 [PERF_COUNT_HW_CACHE_MAX]
1951                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1952                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1953         [C(L1D)] = {
1954                 [C(OP_READ)] = {
1955                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1956                         [C(RESULT_MISS)]        = 0x0,
1957                 },
1958                 [C(OP_WRITE)] = {
1959                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1960                         [C(RESULT_MISS)]        = 0x0,
1961                 },
1962                 [C(OP_PREFETCH)] = {
1963                         [C(RESULT_ACCESS)]      = 0x0,
1964                         [C(RESULT_MISS)]        = 0x0,
1965                 },
1966         },
1967         [C(L1I)] = {
1968                 [C(OP_READ)] = {
1969                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1970                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1971                 },
1972                 [C(OP_WRITE)] = {
1973                         [C(RESULT_ACCESS)]      = -1,
1974                         [C(RESULT_MISS)]        = -1,
1975                 },
1976                 [C(OP_PREFETCH)] = {
1977                         [C(RESULT_ACCESS)]      = 0x0,
1978                         [C(RESULT_MISS)]        = 0x0,
1979                 },
1980         },
1981         [C(LL)] = {
1982                 [C(OP_READ)] = {
1983                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1984                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1985                 },
1986                 [C(OP_WRITE)] = {
1987                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1988                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1989                 },
1990                 [C(OP_PREFETCH)] = {
1991                         [C(RESULT_ACCESS)]      = 0x0,
1992                         [C(RESULT_MISS)]        = 0x0,
1993                 },
1994         },
1995         [C(DTLB)] = {
1996                 [C(OP_READ)] = {
1997                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1998                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1999                 },
2000                 [C(OP_WRITE)] = {
2001                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
2002                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
2003                 },
2004                 [C(OP_PREFETCH)] = {
2005                         [C(RESULT_ACCESS)]      = 0x0,
2006                         [C(RESULT_MISS)]        = 0x0,
2007                 },
2008         },
2009         [C(ITLB)] = {
2010                 [C(OP_READ)] = {
2011                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2012                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2013                 },
2014                 [C(OP_WRITE)] = {
2015                         [C(RESULT_ACCESS)]      = -1,
2016                         [C(RESULT_MISS)]        = -1,
2017                 },
2018                 [C(OP_PREFETCH)] = {
2019                         [C(RESULT_ACCESS)]      = -1,
2020                         [C(RESULT_MISS)]        = -1,
2021                 },
2022         },
2023         [C(BPU)] = {
2024                 [C(OP_READ)] = {
2025                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2026                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2027                 },
2028                 [C(OP_WRITE)] = {
2029                         [C(RESULT_ACCESS)]      = -1,
2030                         [C(RESULT_MISS)]        = -1,
2031                 },
2032                 [C(OP_PREFETCH)] = {
2033                         [C(RESULT_ACCESS)]      = -1,
2034                         [C(RESULT_MISS)]        = -1,
2035                 },
2036         },
2037 };
2038
2039 static __initconst const u64 glp_hw_cache_extra_regs
2040                                 [PERF_COUNT_HW_CACHE_MAX]
2041                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2042                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043         [C(LL)] = {
2044                 [C(OP_READ)] = {
2045                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2046                                                   GLM_LLC_ACCESS,
2047                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2048                                                   GLM_LLC_MISS,
2049                 },
2050                 [C(OP_WRITE)] = {
2051                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2052                                                   GLM_LLC_ACCESS,
2053                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2054                                                   GLM_LLC_MISS,
2055                 },
2056                 [C(OP_PREFETCH)] = {
2057                         [C(RESULT_ACCESS)]      = 0x0,
2058                         [C(RESULT_MISS)]        = 0x0,
2059                 },
2060         },
2061 };
2062
2063 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2064 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2065 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2066 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2067 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2068                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2069 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2070
2071 static __initconst const u64 tnt_hw_cache_extra_regs
2072                                 [PERF_COUNT_HW_CACHE_MAX]
2073                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2074                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2075         [C(LL)] = {
2076                 [C(OP_READ)] = {
2077                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2078                                                   TNT_LLC_ACCESS,
2079                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2080                                                   TNT_LLC_MISS,
2081                 },
2082                 [C(OP_WRITE)] = {
2083                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2084                                                   TNT_LLC_ACCESS,
2085                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2086                                                   TNT_LLC_MISS,
2087                 },
2088                 [C(OP_PREFETCH)] = {
2089                         [C(RESULT_ACCESS)]      = 0x0,
2090                         [C(RESULT_MISS)]        = 0x0,
2091                 },
2092         },
2093 };
2094
2095 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2096 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2097 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2098 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2099
2100 static struct attribute *tnt_events_attrs[] = {
2101         EVENT_PTR(td_fe_bound_tnt),
2102         EVENT_PTR(td_retiring_tnt),
2103         EVENT_PTR(td_bad_spec_tnt),
2104         EVENT_PTR(td_be_bound_tnt),
2105         NULL,
2106 };
2107
2108 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2109         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2110         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2111         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2112         EVENT_EXTRA_END
2113 };
2114
2115 EVENT_ATTR_STR(mem-loads,       mem_ld_grt,     "event=0xd0,umask=0x5,ldlat=3");
2116 EVENT_ATTR_STR(mem-stores,      mem_st_grt,     "event=0xd0,umask=0x6");
2117
2118 static struct attribute *grt_mem_attrs[] = {
2119         EVENT_PTR(mem_ld_grt),
2120         EVENT_PTR(mem_st_grt),
2121         NULL
2122 };
2123
2124 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2125         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2126         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2127         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2128         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2129         EVENT_EXTRA_END
2130 };
2131
2132 EVENT_ATTR_STR(topdown-retiring,       td_retiring_cmt,        "event=0x72,umask=0x0");
2133 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_cmt,        "event=0x73,umask=0x0");
2134
2135 static struct attribute *cmt_events_attrs[] = {
2136         EVENT_PTR(td_fe_bound_tnt),
2137         EVENT_PTR(td_retiring_cmt),
2138         EVENT_PTR(td_bad_spec_cmt),
2139         EVENT_PTR(td_be_bound_tnt),
2140         NULL
2141 };
2142
2143 static struct extra_reg intel_cmt_extra_regs[] __read_mostly = {
2144         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2145         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0),
2146         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1),
2147         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2148         INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0),
2149         INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1),
2150         EVENT_EXTRA_END
2151 };
2152
2153 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2154 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2155 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2156 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2157 #define KNL_DDR_LOCAL           BIT_ULL(23)
2158 #define KNL_DDR_FAR             BIT_ULL(24)
2159 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2160                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2161 #define KNL_L2_READ             SLM_DMND_READ
2162 #define KNL_L2_WRITE            SLM_DMND_WRITE
2163 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2164 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2165 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2166                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2167                                                   SNB_NON_DRAM)
2168
2169 static __initconst const u64 knl_hw_cache_extra_regs
2170                                 [PERF_COUNT_HW_CACHE_MAX]
2171                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2172                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2173         [C(LL)] = {
2174                 [C(OP_READ)] = {
2175                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2176                         [C(RESULT_MISS)]   = 0,
2177                 },
2178                 [C(OP_WRITE)] = {
2179                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2180                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2181                 },
2182                 [C(OP_PREFETCH)] = {
2183                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2184                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2185                 },
2186         },
2187 };
2188
2189 /*
2190  * Used from PMIs where the LBRs are already disabled.
2191  *
2192  * This function could be called consecutively. It is required to remain in
2193  * disabled state if called consecutively.
2194  *
2195  * During consecutive calls, the same disable value will be written to related
2196  * registers, so the PMU state remains unchanged.
2197  *
2198  * intel_bts events don't coexist with intel PMU's BTS events because of
2199  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2200  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2201  *
2202  * Avoid PEBS_ENABLE MSR access in PMIs.
2203  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2204  * It doesn't matter if the PEBS is enabled or not.
2205  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2206  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2207  * However, there are some cases which may change PEBS status, e.g. PMI
2208  * throttle. The PEBS_ENABLE should be updated where the status changes.
2209  */
2210 static __always_inline void __intel_pmu_disable_all(bool bts)
2211 {
2212         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2213
2214         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2215
2216         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2217                 intel_pmu_disable_bts();
2218 }
2219
2220 static __always_inline void intel_pmu_disable_all(void)
2221 {
2222         __intel_pmu_disable_all(true);
2223         intel_pmu_pebs_disable_all();
2224         intel_pmu_lbr_disable_all();
2225 }
2226
2227 static void __intel_pmu_enable_all(int added, bool pmi)
2228 {
2229         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2230         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2231
2232         intel_pmu_lbr_enable_all(pmi);
2233
2234         if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) {
2235                 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val);
2236                 cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val;
2237         }
2238
2239         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2240                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2241
2242         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2243                 struct perf_event *event =
2244                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2245
2246                 if (WARN_ON_ONCE(!event))
2247                         return;
2248
2249                 intel_pmu_enable_bts(event->hw.config);
2250         }
2251 }
2252
2253 static void intel_pmu_enable_all(int added)
2254 {
2255         intel_pmu_pebs_enable_all();
2256         __intel_pmu_enable_all(added, false);
2257 }
2258
2259 static noinline int
2260 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2261                                   unsigned int cnt, unsigned long flags)
2262 {
2263         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2264
2265         intel_pmu_lbr_read();
2266         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2267
2268         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2269         intel_pmu_enable_all(0);
2270         local_irq_restore(flags);
2271         return cnt;
2272 }
2273
2274 static int
2275 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2276 {
2277         unsigned long flags;
2278
2279         /* must not have branches... */
2280         local_irq_save(flags);
2281         __intel_pmu_disable_all(false); /* we don't care about BTS */
2282         __intel_pmu_lbr_disable();
2283         /*            ... until here */
2284         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2285 }
2286
2287 static int
2288 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2289 {
2290         unsigned long flags;
2291
2292         /* must not have branches... */
2293         local_irq_save(flags);
2294         __intel_pmu_disable_all(false); /* we don't care about BTS */
2295         __intel_pmu_arch_lbr_disable();
2296         /*            ... until here */
2297         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2298 }
2299
2300 /*
2301  * Workaround for:
2302  *   Intel Errata AAK100 (model 26)
2303  *   Intel Errata AAP53  (model 30)
2304  *   Intel Errata BD53   (model 44)
2305  *
2306  * The official story:
2307  *   These chips need to be 'reset' when adding counters by programming the
2308  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2309  *   in sequence on the same PMC or on different PMCs.
2310  *
2311  * In practice it appears some of these events do in fact count, and
2312  * we need to program all 4 events.
2313  */
2314 static void intel_pmu_nhm_workaround(void)
2315 {
2316         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2317         static const unsigned long nhm_magic[4] = {
2318                 0x4300B5,
2319                 0x4300D2,
2320                 0x4300B1,
2321                 0x4300B1
2322         };
2323         struct perf_event *event;
2324         int i;
2325
2326         /*
2327          * The Errata requires below steps:
2328          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2329          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2330          *    the corresponding PMCx;
2331          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2332          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2333          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2334          */
2335
2336         /*
2337          * The real steps we choose are a little different from above.
2338          * A) To reduce MSR operations, we don't run step 1) as they
2339          *    are already cleared before this function is called;
2340          * B) Call x86_perf_event_update to save PMCx before configuring
2341          *    PERFEVTSELx with magic number;
2342          * C) With step 5), we do clear only when the PERFEVTSELx is
2343          *    not used currently.
2344          * D) Call x86_perf_event_set_period to restore PMCx;
2345          */
2346
2347         /* We always operate 4 pairs of PERF Counters */
2348         for (i = 0; i < 4; i++) {
2349                 event = cpuc->events[i];
2350                 if (event)
2351                         static_call(x86_pmu_update)(event);
2352         }
2353
2354         for (i = 0; i < 4; i++) {
2355                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2356                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2357         }
2358
2359         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2360         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2361
2362         for (i = 0; i < 4; i++) {
2363                 event = cpuc->events[i];
2364
2365                 if (event) {
2366                         static_call(x86_pmu_set_period)(event);
2367                         __x86_pmu_enable_event(&event->hw,
2368                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2369                 } else
2370                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2371         }
2372 }
2373
2374 static void intel_pmu_nhm_enable_all(int added)
2375 {
2376         if (added)
2377                 intel_pmu_nhm_workaround();
2378         intel_pmu_enable_all(added);
2379 }
2380
2381 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2382 {
2383         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2384
2385         if (cpuc->tfa_shadow != val) {
2386                 cpuc->tfa_shadow = val;
2387                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2388         }
2389 }
2390
2391 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2392 {
2393         /*
2394          * We're going to use PMC3, make sure TFA is set before we touch it.
2395          */
2396         if (cntr == 3)
2397                 intel_set_tfa(cpuc, true);
2398 }
2399
2400 static void intel_tfa_pmu_enable_all(int added)
2401 {
2402         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2403
2404         /*
2405          * If we find PMC3 is no longer used when we enable the PMU, we can
2406          * clear TFA.
2407          */
2408         if (!test_bit(3, cpuc->active_mask))
2409                 intel_set_tfa(cpuc, false);
2410
2411         intel_pmu_enable_all(added);
2412 }
2413
2414 static inline u64 intel_pmu_get_status(void)
2415 {
2416         u64 status;
2417
2418         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2419
2420         return status;
2421 }
2422
2423 static inline void intel_pmu_ack_status(u64 ack)
2424 {
2425         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2426 }
2427
2428 static inline bool event_is_checkpointed(struct perf_event *event)
2429 {
2430         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2431 }
2432
2433 static inline void intel_set_masks(struct perf_event *event, int idx)
2434 {
2435         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2436
2437         if (event->attr.exclude_host)
2438                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2439         if (event->attr.exclude_guest)
2440                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2441         if (event_is_checkpointed(event))
2442                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2443 }
2444
2445 static inline void intel_clear_masks(struct perf_event *event, int idx)
2446 {
2447         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2448
2449         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2450         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2451         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2452 }
2453
2454 static void intel_pmu_disable_fixed(struct perf_event *event)
2455 {
2456         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2457         struct hw_perf_event *hwc = &event->hw;
2458         int idx = hwc->idx;
2459         u64 mask;
2460
2461         if (is_topdown_idx(idx)) {
2462                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2463
2464                 /*
2465                  * When there are other active TopDown events,
2466                  * don't disable the fixed counter 3.
2467                  */
2468                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2469                         return;
2470                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2471         }
2472
2473         intel_clear_masks(event, idx);
2474
2475         mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK);
2476         cpuc->fixed_ctrl_val &= ~mask;
2477 }
2478
2479 static void intel_pmu_disable_event(struct perf_event *event)
2480 {
2481         struct hw_perf_event *hwc = &event->hw;
2482         int idx = hwc->idx;
2483
2484         switch (idx) {
2485         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2486                 intel_clear_masks(event, idx);
2487                 x86_pmu_disable_event(event);
2488                 break;
2489         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2490         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2491                 intel_pmu_disable_fixed(event);
2492                 break;
2493         case INTEL_PMC_IDX_FIXED_BTS:
2494                 intel_pmu_disable_bts();
2495                 intel_pmu_drain_bts_buffer();
2496                 return;
2497         case INTEL_PMC_IDX_FIXED_VLBR:
2498                 intel_clear_masks(event, idx);
2499                 break;
2500         default:
2501                 intel_clear_masks(event, idx);
2502                 pr_warn("Failed to disable the event with invalid index %d\n",
2503                         idx);
2504                 return;
2505         }
2506
2507         /*
2508          * Needs to be called after x86_pmu_disable_event,
2509          * so we don't trigger the event without PEBS bit set.
2510          */
2511         if (unlikely(event->attr.precise_ip))
2512                 intel_pmu_pebs_disable(event);
2513 }
2514
2515 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2516 {
2517         if (is_pebs_pt(event))
2518                 perf_report_aux_output_id(event, idx);
2519 }
2520
2521 static void intel_pmu_del_event(struct perf_event *event)
2522 {
2523         if (needs_branch_stack(event))
2524                 intel_pmu_lbr_del(event);
2525         if (event->attr.precise_ip)
2526                 intel_pmu_pebs_del(event);
2527 }
2528
2529 static int icl_set_topdown_event_period(struct perf_event *event)
2530 {
2531         struct hw_perf_event *hwc = &event->hw;
2532         s64 left = local64_read(&hwc->period_left);
2533
2534         /*
2535          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2536          * Software should start both registers, PERF_METRICS and fixed
2537          * counter 3, from zero.
2538          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2539          * After that, both MSRs will be cleared for each read.
2540          * Don't need to clear them again.
2541          */
2542         if (left == x86_pmu.max_period) {
2543                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2544                 wrmsrl(MSR_PERF_METRICS, 0);
2545                 hwc->saved_slots = 0;
2546                 hwc->saved_metric = 0;
2547         }
2548
2549         if ((hwc->saved_slots) && is_slots_event(event)) {
2550                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2551                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2552         }
2553
2554         perf_event_update_userpage(event);
2555
2556         return 0;
2557 }
2558
2559 static int adl_set_topdown_event_period(struct perf_event *event)
2560 {
2561         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2562
2563         if (pmu->cpu_type != hybrid_big)
2564                 return 0;
2565
2566         return icl_set_topdown_event_period(event);
2567 }
2568
2569 DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period);
2570
2571 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2572 {
2573         u32 val;
2574
2575         /*
2576          * The metric is reported as an 8bit integer fraction
2577          * summing up to 0xff.
2578          * slots-in-metric = (Metric / 0xff) * slots
2579          */
2580         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2581         return  mul_u64_u32_div(slots, val, 0xff);
2582 }
2583
2584 static u64 icl_get_topdown_value(struct perf_event *event,
2585                                        u64 slots, u64 metrics)
2586 {
2587         int idx = event->hw.idx;
2588         u64 delta;
2589
2590         if (is_metric_idx(idx))
2591                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2592         else
2593                 delta = slots;
2594
2595         return delta;
2596 }
2597
2598 static void __icl_update_topdown_event(struct perf_event *event,
2599                                        u64 slots, u64 metrics,
2600                                        u64 last_slots, u64 last_metrics)
2601 {
2602         u64 delta, last = 0;
2603
2604         delta = icl_get_topdown_value(event, slots, metrics);
2605         if (last_slots)
2606                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2607
2608         /*
2609          * The 8bit integer fraction of metric may be not accurate,
2610          * especially when the changes is very small.
2611          * For example, if only a few bad_spec happens, the fraction
2612          * may be reduced from 1 to 0. If so, the bad_spec event value
2613          * will be 0 which is definitely less than the last value.
2614          * Avoid update event->count for this case.
2615          */
2616         if (delta > last) {
2617                 delta -= last;
2618                 local64_add(delta, &event->count);
2619         }
2620 }
2621
2622 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2623                                       u64 metrics, int metric_end)
2624 {
2625         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2626         struct perf_event *other;
2627         int idx;
2628
2629         event->hw.saved_slots = slots;
2630         event->hw.saved_metric = metrics;
2631
2632         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2633                 if (!is_topdown_idx(idx))
2634                         continue;
2635                 other = cpuc->events[idx];
2636                 other->hw.saved_slots = slots;
2637                 other->hw.saved_metric = metrics;
2638         }
2639 }
2640
2641 /*
2642  * Update all active Topdown events.
2643  *
2644  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2645  * modify by a NMI. PMU has to be disabled before calling this function.
2646  */
2647
2648 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2649 {
2650         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2651         struct perf_event *other;
2652         u64 slots, metrics;
2653         bool reset = true;
2654         int idx;
2655
2656         /* read Fixed counter 3 */
2657         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2658         if (!slots)
2659                 return 0;
2660
2661         /* read PERF_METRICS */
2662         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2663
2664         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2665                 if (!is_topdown_idx(idx))
2666                         continue;
2667                 other = cpuc->events[idx];
2668                 __icl_update_topdown_event(other, slots, metrics,
2669                                            event ? event->hw.saved_slots : 0,
2670                                            event ? event->hw.saved_metric : 0);
2671         }
2672
2673         /*
2674          * Check and update this event, which may have been cleared
2675          * in active_mask e.g. x86_pmu_stop()
2676          */
2677         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2678                 __icl_update_topdown_event(event, slots, metrics,
2679                                            event->hw.saved_slots,
2680                                            event->hw.saved_metric);
2681
2682                 /*
2683                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2684                  * then drain the delta, which indicates context switch for
2685                  * counting.
2686                  * Save metric and slots for context switch.
2687                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2688                  * Because the values will be restored in next schedule in.
2689                  */
2690                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2691                 reset = false;
2692         }
2693
2694         if (reset) {
2695                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2696                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2697                 wrmsrl(MSR_PERF_METRICS, 0);
2698                 if (event)
2699                         update_saved_topdown_regs(event, 0, 0, metric_end);
2700         }
2701
2702         return slots;
2703 }
2704
2705 static u64 icl_update_topdown_event(struct perf_event *event)
2706 {
2707         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2708                                                  x86_pmu.num_topdown_events - 1);
2709 }
2710
2711 static u64 adl_update_topdown_event(struct perf_event *event)
2712 {
2713         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2714
2715         if (pmu->cpu_type != hybrid_big)
2716                 return 0;
2717
2718         return icl_update_topdown_event(event);
2719 }
2720
2721 DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update);
2722
2723 static void intel_pmu_read_topdown_event(struct perf_event *event)
2724 {
2725         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2726
2727         /* Only need to call update_topdown_event() once for group read. */
2728         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2729             !is_slots_event(event))
2730                 return;
2731
2732         perf_pmu_disable(event->pmu);
2733         static_call(intel_pmu_update_topdown_event)(event);
2734         perf_pmu_enable(event->pmu);
2735 }
2736
2737 static void intel_pmu_read_event(struct perf_event *event)
2738 {
2739         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2740                 intel_pmu_auto_reload_read(event);
2741         else if (is_topdown_count(event))
2742                 intel_pmu_read_topdown_event(event);
2743         else
2744                 x86_perf_event_update(event);
2745 }
2746
2747 static void intel_pmu_enable_fixed(struct perf_event *event)
2748 {
2749         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2750         struct hw_perf_event *hwc = &event->hw;
2751         u64 mask, bits = 0;
2752         int idx = hwc->idx;
2753
2754         if (is_topdown_idx(idx)) {
2755                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2756                 /*
2757                  * When there are other active TopDown events,
2758                  * don't enable the fixed counter 3 again.
2759                  */
2760                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2761                         return;
2762
2763                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2764         }
2765
2766         intel_set_masks(event, idx);
2767
2768         /*
2769          * Enable IRQ generation (0x8), if not PEBS,
2770          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2771          * if requested:
2772          */
2773         if (!event->attr.precise_ip)
2774                 bits |= INTEL_FIXED_0_ENABLE_PMI;
2775         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2776                 bits |= INTEL_FIXED_0_USER;
2777         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2778                 bits |= INTEL_FIXED_0_KERNEL;
2779
2780         /*
2781          * ANY bit is supported in v3 and up
2782          */
2783         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2784                 bits |= INTEL_FIXED_0_ANYTHREAD;
2785
2786         idx -= INTEL_PMC_IDX_FIXED;
2787         bits = intel_fixed_bits_by_idx(idx, bits);
2788         mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK);
2789
2790         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2791                 bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2792                 mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE);
2793         }
2794
2795         cpuc->fixed_ctrl_val &= ~mask;
2796         cpuc->fixed_ctrl_val |= bits;
2797 }
2798
2799 static void intel_pmu_enable_event(struct perf_event *event)
2800 {
2801         struct hw_perf_event *hwc = &event->hw;
2802         int idx = hwc->idx;
2803
2804         if (unlikely(event->attr.precise_ip))
2805                 intel_pmu_pebs_enable(event);
2806
2807         switch (idx) {
2808         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2809                 intel_set_masks(event, idx);
2810                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2811                 break;
2812         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2813         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2814                 intel_pmu_enable_fixed(event);
2815                 break;
2816         case INTEL_PMC_IDX_FIXED_BTS:
2817                 if (!__this_cpu_read(cpu_hw_events.enabled))
2818                         return;
2819                 intel_pmu_enable_bts(hwc->config);
2820                 break;
2821         case INTEL_PMC_IDX_FIXED_VLBR:
2822                 intel_set_masks(event, idx);
2823                 break;
2824         default:
2825                 pr_warn("Failed to enable the event with invalid index %d\n",
2826                         idx);
2827         }
2828 }
2829
2830 static void intel_pmu_add_event(struct perf_event *event)
2831 {
2832         if (event->attr.precise_ip)
2833                 intel_pmu_pebs_add(event);
2834         if (needs_branch_stack(event))
2835                 intel_pmu_lbr_add(event);
2836 }
2837
2838 /*
2839  * Save and restart an expired event. Called by NMI contexts,
2840  * so it has to be careful about preempting normal event ops:
2841  */
2842 int intel_pmu_save_and_restart(struct perf_event *event)
2843 {
2844         static_call(x86_pmu_update)(event);
2845         /*
2846          * For a checkpointed counter always reset back to 0.  This
2847          * avoids a situation where the counter overflows, aborts the
2848          * transaction and is then set back to shortly before the
2849          * overflow, and overflows and aborts again.
2850          */
2851         if (unlikely(event_is_checkpointed(event))) {
2852                 /* No race with NMIs because the counter should not be armed */
2853                 wrmsrl(event->hw.event_base, 0);
2854                 local64_set(&event->hw.prev_count, 0);
2855         }
2856         return static_call(x86_pmu_set_period)(event);
2857 }
2858
2859 static int intel_pmu_set_period(struct perf_event *event)
2860 {
2861         if (unlikely(is_topdown_count(event)))
2862                 return static_call(intel_pmu_set_topdown_event_period)(event);
2863
2864         return x86_perf_event_set_period(event);
2865 }
2866
2867 static u64 intel_pmu_update(struct perf_event *event)
2868 {
2869         if (unlikely(is_topdown_count(event)))
2870                 return static_call(intel_pmu_update_topdown_event)(event);
2871
2872         return x86_perf_event_update(event);
2873 }
2874
2875 static void intel_pmu_reset(void)
2876 {
2877         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2878         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2879         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2880         int num_counters = hybrid(cpuc->pmu, num_counters);
2881         unsigned long flags;
2882         int idx;
2883
2884         if (!num_counters)
2885                 return;
2886
2887         local_irq_save(flags);
2888
2889         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2890
2891         for (idx = 0; idx < num_counters; idx++) {
2892                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2893                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2894         }
2895         for (idx = 0; idx < num_counters_fixed; idx++) {
2896                 if (fixed_counter_disabled(idx, cpuc->pmu))
2897                         continue;
2898                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2899         }
2900
2901         if (ds)
2902                 ds->bts_index = ds->bts_buffer_base;
2903
2904         /* Ack all overflows and disable fixed counters */
2905         if (x86_pmu.version >= 2) {
2906                 intel_pmu_ack_status(intel_pmu_get_status());
2907                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2908         }
2909
2910         /* Reset LBRs and LBR freezing */
2911         if (x86_pmu.lbr_nr) {
2912                 update_debugctlmsr(get_debugctlmsr() &
2913                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2914         }
2915
2916         local_irq_restore(flags);
2917 }
2918
2919 /*
2920  * We may be running with guest PEBS events created by KVM, and the
2921  * PEBS records are logged into the guest's DS and invisible to host.
2922  *
2923  * In the case of guest PEBS overflow, we only trigger a fake event
2924  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2925  * The guest will then vm-entry and check the guest DS area to read
2926  * the guest PEBS records.
2927  *
2928  * The contents and other behavior of the guest event do not matter.
2929  */
2930 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2931                                       struct perf_sample_data *data)
2932 {
2933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2934         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2935         struct perf_event *event = NULL;
2936         int bit;
2937
2938         if (!unlikely(perf_guest_state()))
2939                 return;
2940
2941         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2942             !guest_pebs_idxs)
2943                 return;
2944
2945         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2946                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2947                 event = cpuc->events[bit];
2948                 if (!event->attr.precise_ip)
2949                         continue;
2950
2951                 perf_sample_data_init(data, 0, event->hw.last_period);
2952                 if (perf_event_overflow(event, data, regs))
2953                         x86_pmu_stop(event, 0);
2954
2955                 /* Inject one fake event is enough. */
2956                 break;
2957         }
2958 }
2959
2960 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2961 {
2962         struct perf_sample_data data;
2963         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2964         int bit;
2965         int handled = 0;
2966         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2967
2968         inc_irq_stat(apic_perf_irqs);
2969
2970         /*
2971          * Ignore a range of extra bits in status that do not indicate
2972          * overflow by themselves.
2973          */
2974         status &= ~(GLOBAL_STATUS_COND_CHG |
2975                     GLOBAL_STATUS_ASIF |
2976                     GLOBAL_STATUS_LBRS_FROZEN);
2977         if (!status)
2978                 return 0;
2979         /*
2980          * In case multiple PEBS events are sampled at the same time,
2981          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2982          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2983          * having their bits set in the status register. This is a sign
2984          * that there was at least one PEBS record pending at the time
2985          * of the PMU interrupt. PEBS counters must only be processed
2986          * via the drain_pebs() calls and not via the regular sample
2987          * processing loop coming after that the function, otherwise
2988          * phony regular samples may be generated in the sampling buffer
2989          * not marked with the EXACT tag. Another possibility is to have
2990          * one PEBS event and at least one non-PEBS event which overflows
2991          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2992          * not be set, yet the overflow status bit for the PEBS counter will
2993          * be on Skylake.
2994          *
2995          * To avoid this problem, we systematically ignore the PEBS-enabled
2996          * counters from the GLOBAL_STATUS mask and we always process PEBS
2997          * events via drain_pebs().
2998          */
2999         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
3000
3001         /*
3002          * PEBS overflow sets bit 62 in the global status register
3003          */
3004         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
3005                 u64 pebs_enabled = cpuc->pebs_enabled;
3006
3007                 handled++;
3008                 x86_pmu_handle_guest_pebs(regs, &data);
3009                 x86_pmu.drain_pebs(regs, &data);
3010                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
3011
3012                 /*
3013                  * PMI throttle may be triggered, which stops the PEBS event.
3014                  * Although cpuc->pebs_enabled is updated accordingly, the
3015                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
3016                  * cpuc->enabled has been forced to 0 in PMI.
3017                  * Update the MSR if pebs_enabled is changed.
3018                  */
3019                 if (pebs_enabled != cpuc->pebs_enabled)
3020                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
3021         }
3022
3023         /*
3024          * Intel PT
3025          */
3026         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
3027                 handled++;
3028                 if (!perf_guest_handle_intel_pt_intr())
3029                         intel_pt_interrupt();
3030         }
3031
3032         /*
3033          * Intel Perf metrics
3034          */
3035         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
3036                 handled++;
3037                 static_call(intel_pmu_update_topdown_event)(NULL);
3038         }
3039
3040         /*
3041          * Checkpointed counters can lead to 'spurious' PMIs because the
3042          * rollback caused by the PMI will have cleared the overflow status
3043          * bit. Therefore always force probe these counters.
3044          */
3045         status |= cpuc->intel_cp_status;
3046
3047         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
3048                 struct perf_event *event = cpuc->events[bit];
3049
3050                 handled++;
3051
3052                 if (!test_bit(bit, cpuc->active_mask))
3053                         continue;
3054
3055                 if (!intel_pmu_save_and_restart(event))
3056                         continue;
3057
3058                 perf_sample_data_init(&data, 0, event->hw.last_period);
3059
3060                 if (has_branch_stack(event))
3061                         perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
3062
3063                 if (perf_event_overflow(event, &data, regs))
3064                         x86_pmu_stop(event, 0);
3065         }
3066
3067         return handled;
3068 }
3069
3070 /*
3071  * This handler is triggered by the local APIC, so the APIC IRQ handling
3072  * rules apply:
3073  */
3074 static int intel_pmu_handle_irq(struct pt_regs *regs)
3075 {
3076         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3077         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3078         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3079         int loops;
3080         u64 status;
3081         int handled;
3082         int pmu_enabled;
3083
3084         /*
3085          * Save the PMU state.
3086          * It needs to be restored when leaving the handler.
3087          */
3088         pmu_enabled = cpuc->enabled;
3089         /*
3090          * In general, the early ACK is only applied for old platforms.
3091          * For the big core starts from Haswell, the late ACK should be
3092          * applied.
3093          * For the small core after Tremont, we have to do the ACK right
3094          * before re-enabling counters, which is in the middle of the
3095          * NMI handler.
3096          */
3097         if (!late_ack && !mid_ack)
3098                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3099         intel_bts_disable_local();
3100         cpuc->enabled = 0;
3101         __intel_pmu_disable_all(true);
3102         handled = intel_pmu_drain_bts_buffer();
3103         handled += intel_bts_interrupt();
3104         status = intel_pmu_get_status();
3105         if (!status)
3106                 goto done;
3107
3108         loops = 0;
3109 again:
3110         intel_pmu_lbr_read();
3111         intel_pmu_ack_status(status);
3112         if (++loops > 100) {
3113                 static bool warned;
3114
3115                 if (!warned) {
3116                         WARN(1, "perfevents: irq loop stuck!\n");
3117                         perf_event_print_debug();
3118                         warned = true;
3119                 }
3120                 intel_pmu_reset();
3121                 goto done;
3122         }
3123
3124         handled += handle_pmi_common(regs, status);
3125
3126         /*
3127          * Repeat if there is more work to be done:
3128          */
3129         status = intel_pmu_get_status();
3130         if (status)
3131                 goto again;
3132
3133 done:
3134         if (mid_ack)
3135                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3136         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3137         cpuc->enabled = pmu_enabled;
3138         if (pmu_enabled)
3139                 __intel_pmu_enable_all(0, true);
3140         intel_bts_enable_local();
3141
3142         /*
3143          * Only unmask the NMI after the overflow counters
3144          * have been reset. This avoids spurious NMIs on
3145          * Haswell CPUs.
3146          */
3147         if (late_ack)
3148                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3149         return handled;
3150 }
3151
3152 static struct event_constraint *
3153 intel_bts_constraints(struct perf_event *event)
3154 {
3155         if (unlikely(intel_pmu_has_bts(event)))
3156                 return &bts_constraint;
3157
3158         return NULL;
3159 }
3160
3161 /*
3162  * Note: matches a fake event, like Fixed2.
3163  */
3164 static struct event_constraint *
3165 intel_vlbr_constraints(struct perf_event *event)
3166 {
3167         struct event_constraint *c = &vlbr_constraint;
3168
3169         if (unlikely(constraint_match(c, event->hw.config))) {
3170                 event->hw.flags |= c->flags;
3171                 return c;
3172         }
3173
3174         return NULL;
3175 }
3176
3177 static int intel_alt_er(struct cpu_hw_events *cpuc,
3178                         int idx, u64 config)
3179 {
3180         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3181         int alt_idx = idx;
3182
3183         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3184                 return idx;
3185
3186         if (idx == EXTRA_REG_RSP_0)
3187                 alt_idx = EXTRA_REG_RSP_1;
3188
3189         if (idx == EXTRA_REG_RSP_1)
3190                 alt_idx = EXTRA_REG_RSP_0;
3191
3192         if (config & ~extra_regs[alt_idx].valid_mask)
3193                 return idx;
3194
3195         return alt_idx;
3196 }
3197
3198 static void intel_fixup_er(struct perf_event *event, int idx)
3199 {
3200         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3201         event->hw.extra_reg.idx = idx;
3202
3203         if (idx == EXTRA_REG_RSP_0) {
3204                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3205                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3206                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3207         } else if (idx == EXTRA_REG_RSP_1) {
3208                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3209                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3210                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3211         }
3212 }
3213
3214 /*
3215  * manage allocation of shared extra msr for certain events
3216  *
3217  * sharing can be:
3218  * per-cpu: to be shared between the various events on a single PMU
3219  * per-core: per-cpu + shared by HT threads
3220  */
3221 static struct event_constraint *
3222 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3223                                    struct perf_event *event,
3224                                    struct hw_perf_event_extra *reg)
3225 {
3226         struct event_constraint *c = &emptyconstraint;
3227         struct er_account *era;
3228         unsigned long flags;
3229         int idx = reg->idx;
3230
3231         /*
3232          * reg->alloc can be set due to existing state, so for fake cpuc we
3233          * need to ignore this, otherwise we might fail to allocate proper fake
3234          * state for this extra reg constraint. Also see the comment below.
3235          */
3236         if (reg->alloc && !cpuc->is_fake)
3237                 return NULL; /* call x86_get_event_constraint() */
3238
3239 again:
3240         era = &cpuc->shared_regs->regs[idx];
3241         /*
3242          * we use spin_lock_irqsave() to avoid lockdep issues when
3243          * passing a fake cpuc
3244          */
3245         raw_spin_lock_irqsave(&era->lock, flags);
3246
3247         if (!atomic_read(&era->ref) || era->config == reg->config) {
3248
3249                 /*
3250                  * If its a fake cpuc -- as per validate_{group,event}() we
3251                  * shouldn't touch event state and we can avoid doing so
3252                  * since both will only call get_event_constraints() once
3253                  * on each event, this avoids the need for reg->alloc.
3254                  *
3255                  * Not doing the ER fixup will only result in era->reg being
3256                  * wrong, but since we won't actually try and program hardware
3257                  * this isn't a problem either.
3258                  */
3259                 if (!cpuc->is_fake) {
3260                         if (idx != reg->idx)
3261                                 intel_fixup_er(event, idx);
3262
3263                         /*
3264                          * x86_schedule_events() can call get_event_constraints()
3265                          * multiple times on events in the case of incremental
3266                          * scheduling(). reg->alloc ensures we only do the ER
3267                          * allocation once.
3268                          */
3269                         reg->alloc = 1;
3270                 }
3271
3272                 /* lock in msr value */
3273                 era->config = reg->config;
3274                 era->reg = reg->reg;
3275
3276                 /* one more user */
3277                 atomic_inc(&era->ref);
3278
3279                 /*
3280                  * need to call x86_get_event_constraint()
3281                  * to check if associated event has constraints
3282                  */
3283                 c = NULL;
3284         } else {
3285                 idx = intel_alt_er(cpuc, idx, reg->config);
3286                 if (idx != reg->idx) {
3287                         raw_spin_unlock_irqrestore(&era->lock, flags);
3288                         goto again;
3289                 }
3290         }
3291         raw_spin_unlock_irqrestore(&era->lock, flags);
3292
3293         return c;
3294 }
3295
3296 static void
3297 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3298                                    struct hw_perf_event_extra *reg)
3299 {
3300         struct er_account *era;
3301
3302         /*
3303          * Only put constraint if extra reg was actually allocated. Also takes
3304          * care of event which do not use an extra shared reg.
3305          *
3306          * Also, if this is a fake cpuc we shouldn't touch any event state
3307          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3308          * either since it'll be thrown out.
3309          */
3310         if (!reg->alloc || cpuc->is_fake)
3311                 return;
3312
3313         era = &cpuc->shared_regs->regs[reg->idx];
3314
3315         /* one fewer user */
3316         atomic_dec(&era->ref);
3317
3318         /* allocate again next time */
3319         reg->alloc = 0;
3320 }
3321
3322 static struct event_constraint *
3323 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3324                               struct perf_event *event)
3325 {
3326         struct event_constraint *c = NULL, *d;
3327         struct hw_perf_event_extra *xreg, *breg;
3328
3329         xreg = &event->hw.extra_reg;
3330         if (xreg->idx != EXTRA_REG_NONE) {
3331                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3332                 if (c == &emptyconstraint)
3333                         return c;
3334         }
3335         breg = &event->hw.branch_reg;
3336         if (breg->idx != EXTRA_REG_NONE) {
3337                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3338                 if (d == &emptyconstraint) {
3339                         __intel_shared_reg_put_constraints(cpuc, xreg);
3340                         c = d;
3341                 }
3342         }
3343         return c;
3344 }
3345
3346 struct event_constraint *
3347 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3348                           struct perf_event *event)
3349 {
3350         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3351         struct event_constraint *c;
3352
3353         if (event_constraints) {
3354                 for_each_event_constraint(c, event_constraints) {
3355                         if (constraint_match(c, event->hw.config)) {
3356                                 event->hw.flags |= c->flags;
3357                                 return c;
3358                         }
3359                 }
3360         }
3361
3362         return &hybrid_var(cpuc->pmu, unconstrained);
3363 }
3364
3365 static struct event_constraint *
3366 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3367                             struct perf_event *event)
3368 {
3369         struct event_constraint *c;
3370
3371         c = intel_vlbr_constraints(event);
3372         if (c)
3373                 return c;
3374
3375         c = intel_bts_constraints(event);
3376         if (c)
3377                 return c;
3378
3379         c = intel_shared_regs_constraints(cpuc, event);
3380         if (c)
3381                 return c;
3382
3383         c = intel_pebs_constraints(event);
3384         if (c)
3385                 return c;
3386
3387         return x86_get_event_constraints(cpuc, idx, event);
3388 }
3389
3390 static void
3391 intel_start_scheduling(struct cpu_hw_events *cpuc)
3392 {
3393         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3394         struct intel_excl_states *xl;
3395         int tid = cpuc->excl_thread_id;
3396
3397         /*
3398          * nothing needed if in group validation mode
3399          */
3400         if (cpuc->is_fake || !is_ht_workaround_enabled())
3401                 return;
3402
3403         /*
3404          * no exclusion needed
3405          */
3406         if (WARN_ON_ONCE(!excl_cntrs))
3407                 return;
3408
3409         xl = &excl_cntrs->states[tid];
3410
3411         xl->sched_started = true;
3412         /*
3413          * lock shared state until we are done scheduling
3414          * in stop_event_scheduling()
3415          * makes scheduling appear as a transaction
3416          */
3417         raw_spin_lock(&excl_cntrs->lock);
3418 }
3419
3420 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3421 {
3422         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3423         struct event_constraint *c = cpuc->event_constraint[idx];
3424         struct intel_excl_states *xl;
3425         int tid = cpuc->excl_thread_id;
3426
3427         if (cpuc->is_fake || !is_ht_workaround_enabled())
3428                 return;
3429
3430         if (WARN_ON_ONCE(!excl_cntrs))
3431                 return;
3432
3433         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3434                 return;
3435
3436         xl = &excl_cntrs->states[tid];
3437
3438         lockdep_assert_held(&excl_cntrs->lock);
3439
3440         if (c->flags & PERF_X86_EVENT_EXCL)
3441                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3442         else
3443                 xl->state[cntr] = INTEL_EXCL_SHARED;
3444 }
3445
3446 static void
3447 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3448 {
3449         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3450         struct intel_excl_states *xl;
3451         int tid = cpuc->excl_thread_id;
3452
3453         /*
3454          * nothing needed if in group validation mode
3455          */
3456         if (cpuc->is_fake || !is_ht_workaround_enabled())
3457                 return;
3458         /*
3459          * no exclusion needed
3460          */
3461         if (WARN_ON_ONCE(!excl_cntrs))
3462                 return;
3463
3464         xl = &excl_cntrs->states[tid];
3465
3466         xl->sched_started = false;
3467         /*
3468          * release shared state lock (acquired in intel_start_scheduling())
3469          */
3470         raw_spin_unlock(&excl_cntrs->lock);
3471 }
3472
3473 static struct event_constraint *
3474 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3475 {
3476         WARN_ON_ONCE(!cpuc->constraint_list);
3477
3478         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3479                 struct event_constraint *cx;
3480
3481                 /*
3482                  * grab pre-allocated constraint entry
3483                  */
3484                 cx = &cpuc->constraint_list[idx];
3485
3486                 /*
3487                  * initialize dynamic constraint
3488                  * with static constraint
3489                  */
3490                 *cx = *c;
3491
3492                 /*
3493                  * mark constraint as dynamic
3494                  */
3495                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3496                 c = cx;
3497         }
3498
3499         return c;
3500 }
3501
3502 static struct event_constraint *
3503 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3504                            int idx, struct event_constraint *c)
3505 {
3506         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3507         struct intel_excl_states *xlo;
3508         int tid = cpuc->excl_thread_id;
3509         int is_excl, i, w;
3510
3511         /*
3512          * validating a group does not require
3513          * enforcing cross-thread  exclusion
3514          */
3515         if (cpuc->is_fake || !is_ht_workaround_enabled())
3516                 return c;
3517
3518         /*
3519          * no exclusion needed
3520          */
3521         if (WARN_ON_ONCE(!excl_cntrs))
3522                 return c;
3523
3524         /*
3525          * because we modify the constraint, we need
3526          * to make a copy. Static constraints come
3527          * from static const tables.
3528          *
3529          * only needed when constraint has not yet
3530          * been cloned (marked dynamic)
3531          */
3532         c = dyn_constraint(cpuc, c, idx);
3533
3534         /*
3535          * From here on, the constraint is dynamic.
3536          * Either it was just allocated above, or it
3537          * was allocated during a earlier invocation
3538          * of this function
3539          */
3540
3541         /*
3542          * state of sibling HT
3543          */
3544         xlo = &excl_cntrs->states[tid ^ 1];
3545
3546         /*
3547          * event requires exclusive counter access
3548          * across HT threads
3549          */
3550         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3551         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3552                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3553                 if (!cpuc->n_excl++)
3554                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3555         }
3556
3557         /*
3558          * Modify static constraint with current dynamic
3559          * state of thread
3560          *
3561          * EXCLUSIVE: sibling counter measuring exclusive event
3562          * SHARED   : sibling counter measuring non-exclusive event
3563          * UNUSED   : sibling counter unused
3564          */
3565         w = c->weight;
3566         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3567                 /*
3568                  * exclusive event in sibling counter
3569                  * our corresponding counter cannot be used
3570                  * regardless of our event
3571                  */
3572                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3573                         __clear_bit(i, c->idxmsk);
3574                         w--;
3575                         continue;
3576                 }
3577                 /*
3578                  * if measuring an exclusive event, sibling
3579                  * measuring non-exclusive, then counter cannot
3580                  * be used
3581                  */
3582                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3583                         __clear_bit(i, c->idxmsk);
3584                         w--;
3585                         continue;
3586                 }
3587         }
3588
3589         /*
3590          * if we return an empty mask, then switch
3591          * back to static empty constraint to avoid
3592          * the cost of freeing later on
3593          */
3594         if (!w)
3595                 c = &emptyconstraint;
3596
3597         c->weight = w;
3598
3599         return c;
3600 }
3601
3602 static struct event_constraint *
3603 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3604                             struct perf_event *event)
3605 {
3606         struct event_constraint *c1, *c2;
3607
3608         c1 = cpuc->event_constraint[idx];
3609
3610         /*
3611          * first time only
3612          * - static constraint: no change across incremental scheduling calls
3613          * - dynamic constraint: handled by intel_get_excl_constraints()
3614          */
3615         c2 = __intel_get_event_constraints(cpuc, idx, event);
3616         if (c1) {
3617                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3618                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3619                 c1->weight = c2->weight;
3620                 c2 = c1;
3621         }
3622
3623         if (cpuc->excl_cntrs)
3624                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3625
3626         return c2;
3627 }
3628
3629 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3630                 struct perf_event *event)
3631 {
3632         struct hw_perf_event *hwc = &event->hw;
3633         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3634         int tid = cpuc->excl_thread_id;
3635         struct intel_excl_states *xl;
3636
3637         /*
3638          * nothing needed if in group validation mode
3639          */
3640         if (cpuc->is_fake)
3641                 return;
3642
3643         if (WARN_ON_ONCE(!excl_cntrs))
3644                 return;
3645
3646         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3647                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3648                 if (!--cpuc->n_excl)
3649                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3650         }
3651
3652         /*
3653          * If event was actually assigned, then mark the counter state as
3654          * unused now.
3655          */
3656         if (hwc->idx >= 0) {
3657                 xl = &excl_cntrs->states[tid];
3658
3659                 /*
3660                  * put_constraint may be called from x86_schedule_events()
3661                  * which already has the lock held so here make locking
3662                  * conditional.
3663                  */
3664                 if (!xl->sched_started)
3665                         raw_spin_lock(&excl_cntrs->lock);
3666
3667                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3668
3669                 if (!xl->sched_started)
3670                         raw_spin_unlock(&excl_cntrs->lock);
3671         }
3672 }
3673
3674 static void
3675 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3676                                         struct perf_event *event)
3677 {
3678         struct hw_perf_event_extra *reg;
3679
3680         reg = &event->hw.extra_reg;
3681         if (reg->idx != EXTRA_REG_NONE)
3682                 __intel_shared_reg_put_constraints(cpuc, reg);
3683
3684         reg = &event->hw.branch_reg;
3685         if (reg->idx != EXTRA_REG_NONE)
3686                 __intel_shared_reg_put_constraints(cpuc, reg);
3687 }
3688
3689 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3690                                         struct perf_event *event)
3691 {
3692         intel_put_shared_regs_event_constraints(cpuc, event);
3693
3694         /*
3695          * is PMU has exclusive counter restrictions, then
3696          * all events are subject to and must call the
3697          * put_excl_constraints() routine
3698          */
3699         if (cpuc->excl_cntrs)
3700                 intel_put_excl_constraints(cpuc, event);
3701 }
3702
3703 static void intel_pebs_aliases_core2(struct perf_event *event)
3704 {
3705         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3706                 /*
3707                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3708                  * (0x003c) so that we can use it with PEBS.
3709                  *
3710                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3711                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3712                  * (0x00c0), which is a PEBS capable event, to get the same
3713                  * count.
3714                  *
3715                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3716                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3717                  * larger than the maximum number of instructions that can be
3718                  * retired per cycle (4) and then inverting the condition, we
3719                  * count all cycles that retire 16 or less instructions, which
3720                  * is every cycle.
3721                  *
3722                  * Thereby we gain a PEBS capable cycle counter.
3723                  */
3724                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3725
3726                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3727                 event->hw.config = alt_config;
3728         }
3729 }
3730
3731 static void intel_pebs_aliases_snb(struct perf_event *event)
3732 {
3733         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3734                 /*
3735                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3736                  * (0x003c) so that we can use it with PEBS.
3737                  *
3738                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3739                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3740                  * (0x01c2), which is a PEBS capable event, to get the same
3741                  * count.
3742                  *
3743                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3744                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3745                  * larger than the maximum number of micro-ops that can be
3746                  * retired per cycle (4) and then inverting the condition, we
3747                  * count all cycles that retire 16 or less micro-ops, which
3748                  * is every cycle.
3749                  *
3750                  * Thereby we gain a PEBS capable cycle counter.
3751                  */
3752                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3753
3754                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3755                 event->hw.config = alt_config;
3756         }
3757 }
3758
3759 static void intel_pebs_aliases_precdist(struct perf_event *event)
3760 {
3761         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3762                 /*
3763                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3764                  * (0x003c) so that we can use it with PEBS.
3765                  *
3766                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3767                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3768                  * (0x01c0), which is a PEBS capable event, to get the same
3769                  * count.
3770                  *
3771                  * The PREC_DIST event has special support to minimize sample
3772                  * shadowing effects. One drawback is that it can be
3773                  * only programmed on counter 1, but that seems like an
3774                  * acceptable trade off.
3775                  */
3776                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3777
3778                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3779                 event->hw.config = alt_config;
3780         }
3781 }
3782
3783 static void intel_pebs_aliases_ivb(struct perf_event *event)
3784 {
3785         if (event->attr.precise_ip < 3)
3786                 return intel_pebs_aliases_snb(event);
3787         return intel_pebs_aliases_precdist(event);
3788 }
3789
3790 static void intel_pebs_aliases_skl(struct perf_event *event)
3791 {
3792         if (event->attr.precise_ip < 3)
3793                 return intel_pebs_aliases_core2(event);
3794         return intel_pebs_aliases_precdist(event);
3795 }
3796
3797 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3798 {
3799         unsigned long flags = x86_pmu.large_pebs_flags;
3800
3801         if (event->attr.use_clockid)
3802                 flags &= ~PERF_SAMPLE_TIME;
3803         if (!event->attr.exclude_kernel)
3804                 flags &= ~PERF_SAMPLE_REGS_USER;
3805         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3806                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3807         return flags;
3808 }
3809
3810 static int intel_pmu_bts_config(struct perf_event *event)
3811 {
3812         struct perf_event_attr *attr = &event->attr;
3813
3814         if (unlikely(intel_pmu_has_bts(event))) {
3815                 /* BTS is not supported by this architecture. */
3816                 if (!x86_pmu.bts_active)
3817                         return -EOPNOTSUPP;
3818
3819                 /* BTS is currently only allowed for user-mode. */
3820                 if (!attr->exclude_kernel)
3821                         return -EOPNOTSUPP;
3822
3823                 /* BTS is not allowed for precise events. */
3824                 if (attr->precise_ip)
3825                         return -EOPNOTSUPP;
3826
3827                 /* disallow bts if conflicting events are present */
3828                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3829                         return -EBUSY;
3830
3831                 event->destroy = hw_perf_lbr_event_destroy;
3832         }
3833
3834         return 0;
3835 }
3836
3837 static int core_pmu_hw_config(struct perf_event *event)
3838 {
3839         int ret = x86_pmu_hw_config(event);
3840
3841         if (ret)
3842                 return ret;
3843
3844         return intel_pmu_bts_config(event);
3845 }
3846
3847 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3848                                          ((x86_pmu.num_topdown_events - 1) << 8))
3849
3850 static bool is_available_metric_event(struct perf_event *event)
3851 {
3852         return is_metric_event(event) &&
3853                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3854 }
3855
3856 static inline bool is_mem_loads_event(struct perf_event *event)
3857 {
3858         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3859 }
3860
3861 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3862 {
3863         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3864 }
3865
3866 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3867 {
3868         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3869                 return false;
3870
3871         if (is_hybrid())
3872                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3873
3874         return true;
3875 }
3876
3877 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3878 {
3879         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3880
3881         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3882 }
3883
3884 static int intel_pmu_hw_config(struct perf_event *event)
3885 {
3886         int ret = x86_pmu_hw_config(event);
3887
3888         if (ret)
3889                 return ret;
3890
3891         ret = intel_pmu_bts_config(event);
3892         if (ret)
3893                 return ret;
3894
3895         if (event->attr.precise_ip) {
3896                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3897                         return -EINVAL;
3898
3899                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3900                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3901                         if (!(event->attr.sample_type &
3902                               ~intel_pmu_large_pebs_flags(event))) {
3903                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3904                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3905                         }
3906                 }
3907                 if (x86_pmu.pebs_aliases)
3908                         x86_pmu.pebs_aliases(event);
3909         }
3910
3911         if (needs_branch_stack(event)) {
3912                 ret = intel_pmu_setup_lbr_filter(event);
3913                 if (ret)
3914                         return ret;
3915                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3916
3917                 /*
3918                  * BTS is set up earlier in this path, so don't account twice
3919                  */
3920                 if (!unlikely(intel_pmu_has_bts(event))) {
3921                         /* disallow lbr if conflicting events are present */
3922                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3923                                 return -EBUSY;
3924
3925                         event->destroy = hw_perf_lbr_event_destroy;
3926                 }
3927         }
3928
3929         if (event->attr.aux_output) {
3930                 if (!event->attr.precise_ip)
3931                         return -EINVAL;
3932
3933                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3934         }
3935
3936         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3937             (event->attr.type == PERF_TYPE_HW_CACHE))
3938                 return 0;
3939
3940         /*
3941          * Config Topdown slots and metric events
3942          *
3943          * The slots event on Fixed Counter 3 can support sampling,
3944          * which will be handled normally in x86_perf_event_update().
3945          *
3946          * Metric events don't support sampling and require being paired
3947          * with a slots event as group leader. When the slots event
3948          * is used in a metrics group, it too cannot support sampling.
3949          */
3950         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3951                 if (event->attr.config1 || event->attr.config2)
3952                         return -EINVAL;
3953
3954                 /*
3955                  * The TopDown metrics events and slots event don't
3956                  * support any filters.
3957                  */
3958                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3959                         return -EINVAL;
3960
3961                 if (is_available_metric_event(event)) {
3962                         struct perf_event *leader = event->group_leader;
3963
3964                         /* The metric events don't support sampling. */
3965                         if (is_sampling_event(event))
3966                                 return -EINVAL;
3967
3968                         /* The metric events require a slots group leader. */
3969                         if (!is_slots_event(leader))
3970                                 return -EINVAL;
3971
3972                         /*
3973                          * The leader/SLOTS must not be a sampling event for
3974                          * metric use; hardware requires it starts at 0 when used
3975                          * in conjunction with MSR_PERF_METRICS.
3976                          */
3977                         if (is_sampling_event(leader))
3978                                 return -EINVAL;
3979
3980                         event->event_caps |= PERF_EV_CAP_SIBLING;
3981                         /*
3982                          * Only once we have a METRICs sibling do we
3983                          * need TopDown magic.
3984                          */
3985                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3986                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3987                 }
3988         }
3989
3990         /*
3991          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3992          * doesn't function quite right. As a work-around it needs to always be
3993          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3994          * The actual count of this second event is irrelevant it just needs
3995          * to be active to make the first event function correctly.
3996          *
3997          * In a group, the auxiliary event must be in front of the load latency
3998          * event. The rule is to simplify the implementation of the check.
3999          * That's because perf cannot have a complete group at the moment.
4000          */
4001         if (require_mem_loads_aux_event(event) &&
4002             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
4003             is_mem_loads_event(event)) {
4004                 struct perf_event *leader = event->group_leader;
4005                 struct perf_event *sibling = NULL;
4006
4007                 /*
4008                  * When this memload event is also the first event (no group
4009                  * exists yet), then there is no aux event before it.
4010                  */
4011                 if (leader == event)
4012                         return -ENODATA;
4013
4014                 if (!is_mem_loads_aux_event(leader)) {
4015                         for_each_sibling_event(sibling, leader) {
4016                                 if (is_mem_loads_aux_event(sibling))
4017                                         break;
4018                         }
4019                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
4020                                 return -ENODATA;
4021                 }
4022         }
4023
4024         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
4025                 return 0;
4026
4027         if (x86_pmu.version < 3)
4028                 return -EINVAL;
4029
4030         ret = perf_allow_cpu(&event->attr);
4031         if (ret)
4032                 return ret;
4033
4034         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
4035
4036         return 0;
4037 }
4038
4039 /*
4040  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
4041  * The host perf conext helps to prepare the values of the real hardware for
4042  * a set of msrs that need to be switched atomically in a vmx transaction.
4043  *
4044  * For example, the pseudocode needed to add a new msr should look like:
4045  *
4046  * arr[(*nr)++] = (struct perf_guest_switch_msr){
4047  *      .msr = the hardware msr address,
4048  *      .host = the value the hardware has when it doesn't run a guest,
4049  *      .guest = the value the hardware has when it runs a guest,
4050  * };
4051  *
4052  * These values have nothing to do with the emulated values the guest sees
4053  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
4054  * specifically in the intel_pmu_{get,set}_msr().
4055  */
4056 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
4057 {
4058         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4059         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4060         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
4061         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
4062         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
4063         int global_ctrl, pebs_enable;
4064
4065         /*
4066          * In addition to obeying exclude_guest/exclude_host, remove bits being
4067          * used for PEBS when running a guest, because PEBS writes to virtual
4068          * addresses (not physical addresses).
4069          */
4070         *nr = 0;
4071         global_ctrl = (*nr)++;
4072         arr[global_ctrl] = (struct perf_guest_switch_msr){
4073                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4074                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4075                 .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask,
4076         };
4077
4078         if (!x86_pmu.pebs)
4079                 return arr;
4080
4081         /*
4082          * If PMU counter has PEBS enabled it is not enough to
4083          * disable counter on a guest entry since PEBS memory
4084          * write can overshoot guest entry and corrupt guest
4085          * memory. Disabling PEBS solves the problem.
4086          *
4087          * Don't do this if the CPU already enforces it.
4088          */
4089         if (x86_pmu.pebs_no_isolation) {
4090                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4091                         .msr = MSR_IA32_PEBS_ENABLE,
4092                         .host = cpuc->pebs_enabled,
4093                         .guest = 0,
4094                 };
4095                 return arr;
4096         }
4097
4098         if (!kvm_pmu || !x86_pmu.pebs_ept)
4099                 return arr;
4100
4101         arr[(*nr)++] = (struct perf_guest_switch_msr){
4102                 .msr = MSR_IA32_DS_AREA,
4103                 .host = (unsigned long)cpuc->ds,
4104                 .guest = kvm_pmu->ds_area,
4105         };
4106
4107         if (x86_pmu.intel_cap.pebs_baseline) {
4108                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4109                         .msr = MSR_PEBS_DATA_CFG,
4110                         .host = cpuc->active_pebs_data_cfg,
4111                         .guest = kvm_pmu->pebs_data_cfg,
4112                 };
4113         }
4114
4115         pebs_enable = (*nr)++;
4116         arr[pebs_enable] = (struct perf_guest_switch_msr){
4117                 .msr = MSR_IA32_PEBS_ENABLE,
4118                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4119                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4120         };
4121
4122         if (arr[pebs_enable].host) {
4123                 /* Disable guest PEBS if host PEBS is enabled. */
4124                 arr[pebs_enable].guest = 0;
4125         } else {
4126                 /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */
4127                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4128                 arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask;
4129                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4130                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4131         }
4132
4133         return arr;
4134 }
4135
4136 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4137 {
4138         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4139         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4140         int idx;
4141
4142         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4143                 struct perf_event *event = cpuc->events[idx];
4144
4145                 arr[idx].msr = x86_pmu_config_addr(idx);
4146                 arr[idx].host = arr[idx].guest = 0;
4147
4148                 if (!test_bit(idx, cpuc->active_mask))
4149                         continue;
4150
4151                 arr[idx].host = arr[idx].guest =
4152                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4153
4154                 if (event->attr.exclude_host)
4155                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4156                 else if (event->attr.exclude_guest)
4157                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4158         }
4159
4160         *nr = x86_pmu.num_counters;
4161         return arr;
4162 }
4163
4164 static void core_pmu_enable_event(struct perf_event *event)
4165 {
4166         if (!event->attr.exclude_host)
4167                 x86_pmu_enable_event(event);
4168 }
4169
4170 static void core_pmu_enable_all(int added)
4171 {
4172         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4173         int idx;
4174
4175         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4176                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4177
4178                 if (!test_bit(idx, cpuc->active_mask) ||
4179                                 cpuc->events[idx]->attr.exclude_host)
4180                         continue;
4181
4182                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4183         }
4184 }
4185
4186 static int hsw_hw_config(struct perf_event *event)
4187 {
4188         int ret = intel_pmu_hw_config(event);
4189
4190         if (ret)
4191                 return ret;
4192         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4193                 return 0;
4194         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4195
4196         /*
4197          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4198          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4199          * this combination.
4200          */
4201         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4202              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4203               event->attr.precise_ip > 0))
4204                 return -EOPNOTSUPP;
4205
4206         if (event_is_checkpointed(event)) {
4207                 /*
4208                  * Sampling of checkpointed events can cause situations where
4209                  * the CPU constantly aborts because of a overflow, which is
4210                  * then checkpointed back and ignored. Forbid checkpointing
4211                  * for sampling.
4212                  *
4213                  * But still allow a long sampling period, so that perf stat
4214                  * from KVM works.
4215                  */
4216                 if (event->attr.sample_period > 0 &&
4217                     event->attr.sample_period < 0x7fffffff)
4218                         return -EOPNOTSUPP;
4219         }
4220         return 0;
4221 }
4222
4223 static struct event_constraint counter0_constraint =
4224                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4225
4226 static struct event_constraint counter1_constraint =
4227                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x2);
4228
4229 static struct event_constraint counter0_1_constraint =
4230                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x3);
4231
4232 static struct event_constraint counter2_constraint =
4233                         EVENT_CONSTRAINT(0, 0x4, 0);
4234
4235 static struct event_constraint fixed0_constraint =
4236                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4237
4238 static struct event_constraint fixed0_counter0_constraint =
4239                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4240
4241 static struct event_constraint fixed0_counter0_1_constraint =
4242                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL);
4243
4244 static struct event_constraint counters_1_7_constraint =
4245                         INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL);
4246
4247 static struct event_constraint *
4248 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4249                           struct perf_event *event)
4250 {
4251         struct event_constraint *c;
4252
4253         c = intel_get_event_constraints(cpuc, idx, event);
4254
4255         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4256         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4257                 if (c->idxmsk64 & (1U << 2))
4258                         return &counter2_constraint;
4259                 return &emptyconstraint;
4260         }
4261
4262         return c;
4263 }
4264
4265 static struct event_constraint *
4266 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4267                           struct perf_event *event)
4268 {
4269         /*
4270          * Fixed counter 0 has less skid.
4271          * Force instruction:ppp in Fixed counter 0
4272          */
4273         if ((event->attr.precise_ip == 3) &&
4274             constraint_match(&fixed0_constraint, event->hw.config))
4275                 return &fixed0_constraint;
4276
4277         return hsw_get_event_constraints(cpuc, idx, event);
4278 }
4279
4280 static struct event_constraint *
4281 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4282                           struct perf_event *event)
4283 {
4284         struct event_constraint *c;
4285
4286         c = icl_get_event_constraints(cpuc, idx, event);
4287
4288         /*
4289          * The :ppp indicates the Precise Distribution (PDist) facility, which
4290          * is only supported on the GP counter 0. If a :ppp event which is not
4291          * available on the GP counter 0, error out.
4292          * Exception: Instruction PDIR is only available on the fixed counter 0.
4293          */
4294         if ((event->attr.precise_ip == 3) &&
4295             !constraint_match(&fixed0_constraint, event->hw.config)) {
4296                 if (c->idxmsk64 & BIT_ULL(0))
4297                         return &counter0_constraint;
4298
4299                 return &emptyconstraint;
4300         }
4301
4302         return c;
4303 }
4304
4305 static struct event_constraint *
4306 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4307                           struct perf_event *event)
4308 {
4309         struct event_constraint *c;
4310
4311         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4312         if (event->attr.precise_ip == 3)
4313                 return &counter0_constraint;
4314
4315         c = intel_get_event_constraints(cpuc, idx, event);
4316
4317         return c;
4318 }
4319
4320 static struct event_constraint *
4321 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4322                           struct perf_event *event)
4323 {
4324         struct event_constraint *c;
4325
4326         c = intel_get_event_constraints(cpuc, idx, event);
4327
4328         /*
4329          * :ppp means to do reduced skid PEBS,
4330          * which is available on PMC0 and fixed counter 0.
4331          */
4332         if (event->attr.precise_ip == 3) {
4333                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4334                 if (constraint_match(&fixed0_constraint, event->hw.config))
4335                         return &fixed0_counter0_constraint;
4336
4337                 return &counter0_constraint;
4338         }
4339
4340         return c;
4341 }
4342
4343 static bool allow_tsx_force_abort = true;
4344
4345 static struct event_constraint *
4346 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4347                           struct perf_event *event)
4348 {
4349         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4350
4351         /*
4352          * Without TFA we must not use PMC3.
4353          */
4354         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4355                 c = dyn_constraint(cpuc, c, idx);
4356                 c->idxmsk64 &= ~(1ULL << 3);
4357                 c->weight--;
4358         }
4359
4360         return c;
4361 }
4362
4363 static struct event_constraint *
4364 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4365                           struct perf_event *event)
4366 {
4367         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4368
4369         if (pmu->cpu_type == hybrid_big)
4370                 return spr_get_event_constraints(cpuc, idx, event);
4371         else if (pmu->cpu_type == hybrid_small)
4372                 return tnt_get_event_constraints(cpuc, idx, event);
4373
4374         WARN_ON(1);
4375         return &emptyconstraint;
4376 }
4377
4378 static struct event_constraint *
4379 cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4380                           struct perf_event *event)
4381 {
4382         struct event_constraint *c;
4383
4384         c = intel_get_event_constraints(cpuc, idx, event);
4385
4386         /*
4387          * The :ppp indicates the Precise Distribution (PDist) facility, which
4388          * is only supported on the GP counter 0 & 1 and Fixed counter 0.
4389          * If a :ppp event which is not available on the above eligible counters,
4390          * error out.
4391          */
4392         if (event->attr.precise_ip == 3) {
4393                 /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */
4394                 if (constraint_match(&fixed0_constraint, event->hw.config))
4395                         return &fixed0_counter0_1_constraint;
4396
4397                 switch (c->idxmsk64 & 0x3ull) {
4398                 case 0x1:
4399                         return &counter0_constraint;
4400                 case 0x2:
4401                         return &counter1_constraint;
4402                 case 0x3:
4403                         return &counter0_1_constraint;
4404                 }
4405                 return &emptyconstraint;
4406         }
4407
4408         return c;
4409 }
4410
4411 static struct event_constraint *
4412 rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4413                           struct perf_event *event)
4414 {
4415         struct event_constraint *c;
4416
4417         c = spr_get_event_constraints(cpuc, idx, event);
4418
4419         /* The Retire Latency is not supported by the fixed counter 0. */
4420         if (event->attr.precise_ip &&
4421             (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
4422             constraint_match(&fixed0_constraint, event->hw.config)) {
4423                 /*
4424                  * The Instruction PDIR is only available
4425                  * on the fixed counter 0. Error out for this case.
4426                  */
4427                 if (event->attr.precise_ip == 3)
4428                         return &emptyconstraint;
4429                 return &counters_1_7_constraint;
4430         }
4431
4432         return c;
4433 }
4434
4435 static struct event_constraint *
4436 mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4437                           struct perf_event *event)
4438 {
4439         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4440
4441         if (pmu->cpu_type == hybrid_big)
4442                 return rwc_get_event_constraints(cpuc, idx, event);
4443         if (pmu->cpu_type == hybrid_small)
4444                 return cmt_get_event_constraints(cpuc, idx, event);
4445
4446         WARN_ON(1);
4447         return &emptyconstraint;
4448 }
4449
4450 static int adl_hw_config(struct perf_event *event)
4451 {
4452         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4453
4454         if (pmu->cpu_type == hybrid_big)
4455                 return hsw_hw_config(event);
4456         else if (pmu->cpu_type == hybrid_small)
4457                 return intel_pmu_hw_config(event);
4458
4459         WARN_ON(1);
4460         return -EOPNOTSUPP;
4461 }
4462
4463 static u8 adl_get_hybrid_cpu_type(void)
4464 {
4465         return hybrid_big;
4466 }
4467
4468 /*
4469  * Broadwell:
4470  *
4471  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4472  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4473  * the two to enforce a minimum period of 128 (the smallest value that has bits
4474  * 0-5 cleared and >= 100).
4475  *
4476  * Because of how the code in x86_perf_event_set_period() works, the truncation
4477  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4478  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4479  *
4480  * Therefore the effective (average) period matches the requested period,
4481  * despite coarser hardware granularity.
4482  */
4483 static void bdw_limit_period(struct perf_event *event, s64 *left)
4484 {
4485         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4486                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4487                 if (*left < 128)
4488                         *left = 128;
4489                 *left &= ~0x3fULL;
4490         }
4491 }
4492
4493 static void nhm_limit_period(struct perf_event *event, s64 *left)
4494 {
4495         *left = max(*left, 32LL);
4496 }
4497
4498 static void spr_limit_period(struct perf_event *event, s64 *left)
4499 {
4500         if (event->attr.precise_ip == 3)
4501                 *left = max(*left, 128LL);
4502 }
4503
4504 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4505 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4506 PMU_FORMAT_ATTR(edge,   "config:18"     );
4507 PMU_FORMAT_ATTR(pc,     "config:19"     );
4508 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4509 PMU_FORMAT_ATTR(inv,    "config:23"     );
4510 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4511 PMU_FORMAT_ATTR(in_tx,  "config:32");
4512 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4513
4514 static struct attribute *intel_arch_formats_attr[] = {
4515         &format_attr_event.attr,
4516         &format_attr_umask.attr,
4517         &format_attr_edge.attr,
4518         &format_attr_pc.attr,
4519         &format_attr_inv.attr,
4520         &format_attr_cmask.attr,
4521         NULL,
4522 };
4523
4524 ssize_t intel_event_sysfs_show(char *page, u64 config)
4525 {
4526         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4527
4528         return x86_event_sysfs_show(page, config, event);
4529 }
4530
4531 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4532 {
4533         struct intel_shared_regs *regs;
4534         int i;
4535
4536         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4537                             GFP_KERNEL, cpu_to_node(cpu));
4538         if (regs) {
4539                 /*
4540                  * initialize the locks to keep lockdep happy
4541                  */
4542                 for (i = 0; i < EXTRA_REG_MAX; i++)
4543                         raw_spin_lock_init(&regs->regs[i].lock);
4544
4545                 regs->core_id = -1;
4546         }
4547         return regs;
4548 }
4549
4550 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4551 {
4552         struct intel_excl_cntrs *c;
4553
4554         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4555                          GFP_KERNEL, cpu_to_node(cpu));
4556         if (c) {
4557                 raw_spin_lock_init(&c->lock);
4558                 c->core_id = -1;
4559         }
4560         return c;
4561 }
4562
4563
4564 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4565 {
4566         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4567
4568         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4569                 cpuc->shared_regs = allocate_shared_regs(cpu);
4570                 if (!cpuc->shared_regs)
4571                         goto err;
4572         }
4573
4574         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4575                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4576
4577                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4578                 if (!cpuc->constraint_list)
4579                         goto err_shared_regs;
4580         }
4581
4582         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4583                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4584                 if (!cpuc->excl_cntrs)
4585                         goto err_constraint_list;
4586
4587                 cpuc->excl_thread_id = 0;
4588         }
4589
4590         return 0;
4591
4592 err_constraint_list:
4593         kfree(cpuc->constraint_list);
4594         cpuc->constraint_list = NULL;
4595
4596 err_shared_regs:
4597         kfree(cpuc->shared_regs);
4598         cpuc->shared_regs = NULL;
4599
4600 err:
4601         return -ENOMEM;
4602 }
4603
4604 static int intel_pmu_cpu_prepare(int cpu)
4605 {
4606         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4607 }
4608
4609 static void flip_smm_bit(void *data)
4610 {
4611         unsigned long set = *(unsigned long *)data;
4612
4613         if (set > 0) {
4614                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4615                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4616         } else {
4617                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4618                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4619         }
4620 }
4621
4622 static void intel_pmu_check_num_counters(int *num_counters,
4623                                          int *num_counters_fixed,
4624                                          u64 *intel_ctrl, u64 fixed_mask);
4625
4626 static void update_pmu_cap(struct x86_hybrid_pmu *pmu)
4627 {
4628         unsigned int sub_bitmaps = cpuid_eax(ARCH_PERFMON_EXT_LEAF);
4629         unsigned int eax, ebx, ecx, edx;
4630
4631         if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) {
4632                 cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF,
4633                             &eax, &ebx, &ecx, &edx);
4634                 pmu->num_counters = fls(eax);
4635                 pmu->num_counters_fixed = fls(ebx);
4636                 intel_pmu_check_num_counters(&pmu->num_counters, &pmu->num_counters_fixed,
4637                                              &pmu->intel_ctrl, ebx);
4638         }
4639 }
4640
4641 static bool init_hybrid_pmu(int cpu)
4642 {
4643         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4644         u8 cpu_type = get_this_hybrid_cpu_type();
4645         struct x86_hybrid_pmu *pmu = NULL;
4646         int i;
4647
4648         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4649                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4650
4651         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4652                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4653                         pmu = &x86_pmu.hybrid_pmu[i];
4654                         break;
4655                 }
4656         }
4657         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4658                 cpuc->pmu = NULL;
4659                 return false;
4660         }
4661
4662         /* Only check and dump the PMU information for the first CPU */
4663         if (!cpumask_empty(&pmu->supported_cpus))
4664                 goto end;
4665
4666         if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT))
4667                 update_pmu_cap(pmu);
4668
4669         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4670                 return false;
4671
4672         pr_info("%s PMU driver: ", pmu->name);
4673
4674         if (pmu->intel_cap.pebs_output_pt_available)
4675                 pr_cont("PEBS-via-PT ");
4676
4677         pr_cont("\n");
4678
4679         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4680                              pmu->intel_ctrl);
4681
4682 end:
4683         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4684         cpuc->pmu = &pmu->pmu;
4685
4686         return true;
4687 }
4688
4689 static void intel_pmu_cpu_starting(int cpu)
4690 {
4691         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4692         int core_id = topology_core_id(cpu);
4693         int i;
4694
4695         if (is_hybrid() && !init_hybrid_pmu(cpu))
4696                 return;
4697
4698         init_debug_store_on_cpu(cpu);
4699         /*
4700          * Deal with CPUs that don't clear their LBRs on power-up.
4701          */
4702         intel_pmu_lbr_reset();
4703
4704         cpuc->lbr_sel = NULL;
4705
4706         if (x86_pmu.flags & PMU_FL_TFA) {
4707                 WARN_ON_ONCE(cpuc->tfa_shadow);
4708                 cpuc->tfa_shadow = ~0ULL;
4709                 intel_set_tfa(cpuc, false);
4710         }
4711
4712         if (x86_pmu.version > 1)
4713                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4714
4715         /*
4716          * Disable perf metrics if any added CPU doesn't support it.
4717          *
4718          * Turn off the check for a hybrid architecture, because the
4719          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4720          * the architecture features. The perf metrics is a model-specific
4721          * feature for now. The corresponding bit should always be 0 on
4722          * a hybrid platform, e.g., Alder Lake.
4723          */
4724         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4725                 union perf_capabilities perf_cap;
4726
4727                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4728                 if (!perf_cap.perf_metrics) {
4729                         x86_pmu.intel_cap.perf_metrics = 0;
4730                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4731                 }
4732         }
4733
4734         if (!cpuc->shared_regs)
4735                 return;
4736
4737         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4738                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4739                         struct intel_shared_regs *pc;
4740
4741                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4742                         if (pc && pc->core_id == core_id) {
4743                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4744                                 cpuc->shared_regs = pc;
4745                                 break;
4746                         }
4747                 }
4748                 cpuc->shared_regs->core_id = core_id;
4749                 cpuc->shared_regs->refcnt++;
4750         }
4751
4752         if (x86_pmu.lbr_sel_map)
4753                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4754
4755         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4756                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4757                         struct cpu_hw_events *sibling;
4758                         struct intel_excl_cntrs *c;
4759
4760                         sibling = &per_cpu(cpu_hw_events, i);
4761                         c = sibling->excl_cntrs;
4762                         if (c && c->core_id == core_id) {
4763                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4764                                 cpuc->excl_cntrs = c;
4765                                 if (!sibling->excl_thread_id)
4766                                         cpuc->excl_thread_id = 1;
4767                                 break;
4768                         }
4769                 }
4770                 cpuc->excl_cntrs->core_id = core_id;
4771                 cpuc->excl_cntrs->refcnt++;
4772         }
4773 }
4774
4775 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4776 {
4777         struct intel_excl_cntrs *c;
4778
4779         c = cpuc->excl_cntrs;
4780         if (c) {
4781                 if (c->core_id == -1 || --c->refcnt == 0)
4782                         kfree(c);
4783                 cpuc->excl_cntrs = NULL;
4784         }
4785
4786         kfree(cpuc->constraint_list);
4787         cpuc->constraint_list = NULL;
4788 }
4789
4790 static void intel_pmu_cpu_dying(int cpu)
4791 {
4792         fini_debug_store_on_cpu(cpu);
4793 }
4794
4795 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4796 {
4797         struct intel_shared_regs *pc;
4798
4799         pc = cpuc->shared_regs;
4800         if (pc) {
4801                 if (pc->core_id == -1 || --pc->refcnt == 0)
4802                         kfree(pc);
4803                 cpuc->shared_regs = NULL;
4804         }
4805
4806         free_excl_cntrs(cpuc);
4807 }
4808
4809 static void intel_pmu_cpu_dead(int cpu)
4810 {
4811         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4812
4813         intel_cpuc_finish(cpuc);
4814
4815         if (is_hybrid() && cpuc->pmu)
4816                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4817 }
4818
4819 static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
4820                                  bool sched_in)
4821 {
4822         intel_pmu_pebs_sched_task(pmu_ctx, sched_in);
4823         intel_pmu_lbr_sched_task(pmu_ctx, sched_in);
4824 }
4825
4826 static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
4827                                     struct perf_event_pmu_context *next_epc)
4828 {
4829         intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc);
4830 }
4831
4832 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4833 {
4834         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4835 }
4836
4837 static void intel_aux_output_init(void)
4838 {
4839         /* Refer also intel_pmu_aux_output_match() */
4840         if (x86_pmu.intel_cap.pebs_output_pt_available)
4841                 x86_pmu.assign = intel_pmu_assign_event;
4842 }
4843
4844 static int intel_pmu_aux_output_match(struct perf_event *event)
4845 {
4846         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4847         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4848                 return 0;
4849
4850         return is_intel_pt_event(event);
4851 }
4852
4853 static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret)
4854 {
4855         struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu);
4856
4857         *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus);
4858 }
4859
4860 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4861
4862 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4863
4864 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4865
4866 PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63");
4867
4868 static struct attribute *intel_arch3_formats_attr[] = {
4869         &format_attr_event.attr,
4870         &format_attr_umask.attr,
4871         &format_attr_edge.attr,
4872         &format_attr_pc.attr,
4873         &format_attr_any.attr,
4874         &format_attr_inv.attr,
4875         &format_attr_cmask.attr,
4876         NULL,
4877 };
4878
4879 static struct attribute *hsw_format_attr[] = {
4880         &format_attr_in_tx.attr,
4881         &format_attr_in_tx_cp.attr,
4882         &format_attr_offcore_rsp.attr,
4883         &format_attr_ldlat.attr,
4884         NULL
4885 };
4886
4887 static struct attribute *nhm_format_attr[] = {
4888         &format_attr_offcore_rsp.attr,
4889         &format_attr_ldlat.attr,
4890         NULL
4891 };
4892
4893 static struct attribute *slm_format_attr[] = {
4894         &format_attr_offcore_rsp.attr,
4895         NULL
4896 };
4897
4898 static struct attribute *cmt_format_attr[] = {
4899         &format_attr_offcore_rsp.attr,
4900         &format_attr_ldlat.attr,
4901         &format_attr_snoop_rsp.attr,
4902         NULL
4903 };
4904
4905 static struct attribute *skl_format_attr[] = {
4906         &format_attr_frontend.attr,
4907         NULL,
4908 };
4909
4910 static __initconst const struct x86_pmu core_pmu = {
4911         .name                   = "core",
4912         .handle_irq             = x86_pmu_handle_irq,
4913         .disable_all            = x86_pmu_disable_all,
4914         .enable_all             = core_pmu_enable_all,
4915         .enable                 = core_pmu_enable_event,
4916         .disable                = x86_pmu_disable_event,
4917         .hw_config              = core_pmu_hw_config,
4918         .schedule_events        = x86_schedule_events,
4919         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4920         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4921         .event_map              = intel_pmu_event_map,
4922         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4923         .apic                   = 1,
4924         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4925
4926         /*
4927          * Intel PMCs cannot be accessed sanely above 32-bit width,
4928          * so we install an artificial 1<<31 period regardless of
4929          * the generic event period:
4930          */
4931         .max_period             = (1ULL<<31) - 1,
4932         .get_event_constraints  = intel_get_event_constraints,
4933         .put_event_constraints  = intel_put_event_constraints,
4934         .event_constraints      = intel_core_event_constraints,
4935         .guest_get_msrs         = core_guest_get_msrs,
4936         .format_attrs           = intel_arch_formats_attr,
4937         .events_sysfs_show      = intel_event_sysfs_show,
4938
4939         /*
4940          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4941          * together with PMU version 1 and thus be using core_pmu with
4942          * shared_regs. We need following callbacks here to allocate
4943          * it properly.
4944          */
4945         .cpu_prepare            = intel_pmu_cpu_prepare,
4946         .cpu_starting           = intel_pmu_cpu_starting,
4947         .cpu_dying              = intel_pmu_cpu_dying,
4948         .cpu_dead               = intel_pmu_cpu_dead,
4949
4950         .check_period           = intel_pmu_check_period,
4951
4952         .lbr_reset              = intel_pmu_lbr_reset_64,
4953         .lbr_read               = intel_pmu_lbr_read_64,
4954         .lbr_save               = intel_pmu_lbr_save,
4955         .lbr_restore            = intel_pmu_lbr_restore,
4956 };
4957
4958 static __initconst const struct x86_pmu intel_pmu = {
4959         .name                   = "Intel",
4960         .handle_irq             = intel_pmu_handle_irq,
4961         .disable_all            = intel_pmu_disable_all,
4962         .enable_all             = intel_pmu_enable_all,
4963         .enable                 = intel_pmu_enable_event,
4964         .disable                = intel_pmu_disable_event,
4965         .add                    = intel_pmu_add_event,
4966         .del                    = intel_pmu_del_event,
4967         .read                   = intel_pmu_read_event,
4968         .set_period             = intel_pmu_set_period,
4969         .update                 = intel_pmu_update,
4970         .hw_config              = intel_pmu_hw_config,
4971         .schedule_events        = x86_schedule_events,
4972         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4973         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4974         .event_map              = intel_pmu_event_map,
4975         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4976         .apic                   = 1,
4977         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4978         /*
4979          * Intel PMCs cannot be accessed sanely above 32 bit width,
4980          * so we install an artificial 1<<31 period regardless of
4981          * the generic event period:
4982          */
4983         .max_period             = (1ULL << 31) - 1,
4984         .get_event_constraints  = intel_get_event_constraints,
4985         .put_event_constraints  = intel_put_event_constraints,
4986         .pebs_aliases           = intel_pebs_aliases_core2,
4987
4988         .format_attrs           = intel_arch3_formats_attr,
4989         .events_sysfs_show      = intel_event_sysfs_show,
4990
4991         .cpu_prepare            = intel_pmu_cpu_prepare,
4992         .cpu_starting           = intel_pmu_cpu_starting,
4993         .cpu_dying              = intel_pmu_cpu_dying,
4994         .cpu_dead               = intel_pmu_cpu_dead,
4995
4996         .guest_get_msrs         = intel_guest_get_msrs,
4997         .sched_task             = intel_pmu_sched_task,
4998         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4999
5000         .check_period           = intel_pmu_check_period,
5001
5002         .aux_output_match       = intel_pmu_aux_output_match,
5003
5004         .lbr_reset              = intel_pmu_lbr_reset_64,
5005         .lbr_read               = intel_pmu_lbr_read_64,
5006         .lbr_save               = intel_pmu_lbr_save,
5007         .lbr_restore            = intel_pmu_lbr_restore,
5008
5009         /*
5010          * SMM has access to all 4 rings and while traditionally SMM code only
5011          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
5012          *
5013          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
5014          * between SMM or not, this results in what should be pure userspace
5015          * counters including SMM data.
5016          *
5017          * This is a clear privilege issue, therefore globally disable
5018          * counting SMM by default.
5019          */
5020         .attr_freeze_on_smi     = 1,
5021 };
5022
5023 static __init void intel_clovertown_quirk(void)
5024 {
5025         /*
5026          * PEBS is unreliable due to:
5027          *
5028          *   AJ67  - PEBS may experience CPL leaks
5029          *   AJ68  - PEBS PMI may be delayed by one event
5030          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
5031          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
5032          *
5033          * AJ67 could be worked around by restricting the OS/USR flags.
5034          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
5035          *
5036          * AJ106 could possibly be worked around by not allowing LBR
5037          *       usage from PEBS, including the fixup.
5038          * AJ68  could possibly be worked around by always programming
5039          *       a pebs_event_reset[0] value and coping with the lost events.
5040          *
5041          * But taken together it might just make sense to not enable PEBS on
5042          * these chips.
5043          */
5044         pr_warn("PEBS disabled due to CPU errata\n");
5045         x86_pmu.pebs = 0;
5046         x86_pmu.pebs_constraints = NULL;
5047 }
5048
5049 static const struct x86_cpu_desc isolation_ucodes[] = {
5050         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
5051         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
5052         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
5053         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
5054         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
5055         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
5056         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
5057         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
5058         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
5059         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
5060         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
5061         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
5062         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
5063         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
5064         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
5065         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
5066         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
5067         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,            11, 0x00000000),
5068         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
5069         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
5070         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
5071         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
5072         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
5073         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
5074         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
5075         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
5076         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
5077         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
5078         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
5079         {}
5080 };
5081
5082 static void intel_check_pebs_isolation(void)
5083 {
5084         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
5085 }
5086
5087 static __init void intel_pebs_isolation_quirk(void)
5088 {
5089         WARN_ON_ONCE(x86_pmu.check_microcode);
5090         x86_pmu.check_microcode = intel_check_pebs_isolation;
5091         intel_check_pebs_isolation();
5092 }
5093
5094 static const struct x86_cpu_desc pebs_ucodes[] = {
5095         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
5096         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
5097         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
5098         {}
5099 };
5100
5101 static bool intel_snb_pebs_broken(void)
5102 {
5103         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
5104 }
5105
5106 static void intel_snb_check_microcode(void)
5107 {
5108         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
5109                 return;
5110
5111         /*
5112          * Serialized by the microcode lock..
5113          */
5114         if (x86_pmu.pebs_broken) {
5115                 pr_info("PEBS enabled due to microcode update\n");
5116                 x86_pmu.pebs_broken = 0;
5117         } else {
5118                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
5119                 x86_pmu.pebs_broken = 1;
5120         }
5121 }
5122
5123 static bool is_lbr_from(unsigned long msr)
5124 {
5125         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
5126
5127         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
5128 }
5129
5130 /*
5131  * Under certain circumstances, access certain MSR may cause #GP.
5132  * The function tests if the input MSR can be safely accessed.
5133  */
5134 static bool check_msr(unsigned long msr, u64 mask)
5135 {
5136         u64 val_old, val_new, val_tmp;
5137
5138         /*
5139          * Disable the check for real HW, so we don't
5140          * mess with potentially enabled registers:
5141          */
5142         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
5143                 return true;
5144
5145         /*
5146          * Read the current value, change it and read it back to see if it
5147          * matches, this is needed to detect certain hardware emulators
5148          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
5149          */
5150         if (rdmsrl_safe(msr, &val_old))
5151                 return false;
5152
5153         /*
5154          * Only change the bits which can be updated by wrmsrl.
5155          */
5156         val_tmp = val_old ^ mask;
5157
5158         if (is_lbr_from(msr))
5159                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
5160
5161         if (wrmsrl_safe(msr, val_tmp) ||
5162             rdmsrl_safe(msr, &val_new))
5163                 return false;
5164
5165         /*
5166          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
5167          * should equal rdmsrl()'s even with the quirk.
5168          */
5169         if (val_new != val_tmp)
5170                 return false;
5171
5172         if (is_lbr_from(msr))
5173                 val_old = lbr_from_signext_quirk_wr(val_old);
5174
5175         /* Here it's sure that the MSR can be safely accessed.
5176          * Restore the old value and return.
5177          */
5178         wrmsrl(msr, val_old);
5179
5180         return true;
5181 }
5182
5183 static __init void intel_sandybridge_quirk(void)
5184 {
5185         x86_pmu.check_microcode = intel_snb_check_microcode;
5186         cpus_read_lock();
5187         intel_snb_check_microcode();
5188         cpus_read_unlock();
5189 }
5190
5191 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5192         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5193         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5194         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5195         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5196         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5197         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5198         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5199 };
5200
5201 static __init void intel_arch_events_quirk(void)
5202 {
5203         int bit;
5204
5205         /* disable event that reported as not present by cpuid */
5206         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5207                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5208                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5209                         intel_arch_events_map[bit].name);
5210         }
5211 }
5212
5213 static __init void intel_nehalem_quirk(void)
5214 {
5215         union cpuid10_ebx ebx;
5216
5217         ebx.full = x86_pmu.events_maskl;
5218         if (ebx.split.no_branch_misses_retired) {
5219                 /*
5220                  * Erratum AAJ80 detected, we work it around by using
5221                  * the BR_MISP_EXEC.ANY event. This will over-count
5222                  * branch-misses, but it's still much better than the
5223                  * architectural event which is often completely bogus:
5224                  */
5225                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5226                 ebx.split.no_branch_misses_retired = 0;
5227                 x86_pmu.events_maskl = ebx.full;
5228                 pr_info("CPU erratum AAJ80 worked around\n");
5229         }
5230 }
5231
5232 /*
5233  * enable software workaround for errata:
5234  * SNB: BJ122
5235  * IVB: BV98
5236  * HSW: HSD29
5237  *
5238  * Only needed when HT is enabled. However detecting
5239  * if HT is enabled is difficult (model specific). So instead,
5240  * we enable the workaround in the early boot, and verify if
5241  * it is needed in a later initcall phase once we have valid
5242  * topology information to check if HT is actually enabled
5243  */
5244 static __init void intel_ht_bug(void)
5245 {
5246         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5247
5248         x86_pmu.start_scheduling = intel_start_scheduling;
5249         x86_pmu.commit_scheduling = intel_commit_scheduling;
5250         x86_pmu.stop_scheduling = intel_stop_scheduling;
5251 }
5252
5253 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5254 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5255
5256 /* Haswell special events */
5257 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5258 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5259 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5260 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5261 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5262 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5263 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5264 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5265 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5266 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5267 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5268 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5269
5270 static struct attribute *hsw_events_attrs[] = {
5271         EVENT_PTR(td_slots_issued),
5272         EVENT_PTR(td_slots_retired),
5273         EVENT_PTR(td_fetch_bubbles),
5274         EVENT_PTR(td_total_slots),
5275         EVENT_PTR(td_total_slots_scale),
5276         EVENT_PTR(td_recovery_bubbles),
5277         EVENT_PTR(td_recovery_bubbles_scale),
5278         NULL
5279 };
5280
5281 static struct attribute *hsw_mem_events_attrs[] = {
5282         EVENT_PTR(mem_ld_hsw),
5283         EVENT_PTR(mem_st_hsw),
5284         NULL,
5285 };
5286
5287 static struct attribute *hsw_tsx_events_attrs[] = {
5288         EVENT_PTR(tx_start),
5289         EVENT_PTR(tx_commit),
5290         EVENT_PTR(tx_abort),
5291         EVENT_PTR(tx_capacity),
5292         EVENT_PTR(tx_conflict),
5293         EVENT_PTR(el_start),
5294         EVENT_PTR(el_commit),
5295         EVENT_PTR(el_abort),
5296         EVENT_PTR(el_capacity),
5297         EVENT_PTR(el_conflict),
5298         EVENT_PTR(cycles_t),
5299         EVENT_PTR(cycles_ct),
5300         NULL
5301 };
5302
5303 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5304 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5305 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5306 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5307
5308 static struct attribute *icl_events_attrs[] = {
5309         EVENT_PTR(mem_ld_hsw),
5310         EVENT_PTR(mem_st_hsw),
5311         NULL,
5312 };
5313
5314 static struct attribute *icl_td_events_attrs[] = {
5315         EVENT_PTR(slots),
5316         EVENT_PTR(td_retiring),
5317         EVENT_PTR(td_bad_spec),
5318         EVENT_PTR(td_fe_bound),
5319         EVENT_PTR(td_be_bound),
5320         NULL,
5321 };
5322
5323 static struct attribute *icl_tsx_events_attrs[] = {
5324         EVENT_PTR(tx_start),
5325         EVENT_PTR(tx_abort),
5326         EVENT_PTR(tx_commit),
5327         EVENT_PTR(tx_capacity_read),
5328         EVENT_PTR(tx_capacity_write),
5329         EVENT_PTR(tx_conflict),
5330         EVENT_PTR(el_start),
5331         EVENT_PTR(el_abort),
5332         EVENT_PTR(el_commit),
5333         EVENT_PTR(el_capacity_read),
5334         EVENT_PTR(el_capacity_write),
5335         EVENT_PTR(el_conflict),
5336         EVENT_PTR(cycles_t),
5337         EVENT_PTR(cycles_ct),
5338         NULL,
5339 };
5340
5341
5342 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5343 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5344
5345 static struct attribute *spr_events_attrs[] = {
5346         EVENT_PTR(mem_ld_hsw),
5347         EVENT_PTR(mem_st_spr),
5348         EVENT_PTR(mem_ld_aux),
5349         NULL,
5350 };
5351
5352 static struct attribute *spr_td_events_attrs[] = {
5353         EVENT_PTR(slots),
5354         EVENT_PTR(td_retiring),
5355         EVENT_PTR(td_bad_spec),
5356         EVENT_PTR(td_fe_bound),
5357         EVENT_PTR(td_be_bound),
5358         EVENT_PTR(td_heavy_ops),
5359         EVENT_PTR(td_br_mispredict),
5360         EVENT_PTR(td_fetch_lat),
5361         EVENT_PTR(td_mem_bound),
5362         NULL,
5363 };
5364
5365 static struct attribute *spr_tsx_events_attrs[] = {
5366         EVENT_PTR(tx_start),
5367         EVENT_PTR(tx_abort),
5368         EVENT_PTR(tx_commit),
5369         EVENT_PTR(tx_capacity_read),
5370         EVENT_PTR(tx_capacity_write),
5371         EVENT_PTR(tx_conflict),
5372         EVENT_PTR(cycles_t),
5373         EVENT_PTR(cycles_ct),
5374         NULL,
5375 };
5376
5377 static ssize_t freeze_on_smi_show(struct device *cdev,
5378                                   struct device_attribute *attr,
5379                                   char *buf)
5380 {
5381         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5382 }
5383
5384 static DEFINE_MUTEX(freeze_on_smi_mutex);
5385
5386 static ssize_t freeze_on_smi_store(struct device *cdev,
5387                                    struct device_attribute *attr,
5388                                    const char *buf, size_t count)
5389 {
5390         unsigned long val;
5391         ssize_t ret;
5392
5393         ret = kstrtoul(buf, 0, &val);
5394         if (ret)
5395                 return ret;
5396
5397         if (val > 1)
5398                 return -EINVAL;
5399
5400         mutex_lock(&freeze_on_smi_mutex);
5401
5402         if (x86_pmu.attr_freeze_on_smi == val)
5403                 goto done;
5404
5405         x86_pmu.attr_freeze_on_smi = val;
5406
5407         cpus_read_lock();
5408         on_each_cpu(flip_smm_bit, &val, 1);
5409         cpus_read_unlock();
5410 done:
5411         mutex_unlock(&freeze_on_smi_mutex);
5412
5413         return count;
5414 }
5415
5416 static void update_tfa_sched(void *ignored)
5417 {
5418         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5419
5420         /*
5421          * check if PMC3 is used
5422          * and if so force schedule out for all event types all contexts
5423          */
5424         if (test_bit(3, cpuc->active_mask))
5425                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5426 }
5427
5428 static ssize_t show_sysctl_tfa(struct device *cdev,
5429                               struct device_attribute *attr,
5430                               char *buf)
5431 {
5432         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5433 }
5434
5435 static ssize_t set_sysctl_tfa(struct device *cdev,
5436                               struct device_attribute *attr,
5437                               const char *buf, size_t count)
5438 {
5439         bool val;
5440         ssize_t ret;
5441
5442         ret = kstrtobool(buf, &val);
5443         if (ret)
5444                 return ret;
5445
5446         /* no change */
5447         if (val == allow_tsx_force_abort)
5448                 return count;
5449
5450         allow_tsx_force_abort = val;
5451
5452         cpus_read_lock();
5453         on_each_cpu(update_tfa_sched, NULL, 1);
5454         cpus_read_unlock();
5455
5456         return count;
5457 }
5458
5459
5460 static DEVICE_ATTR_RW(freeze_on_smi);
5461
5462 static ssize_t branches_show(struct device *cdev,
5463                              struct device_attribute *attr,
5464                              char *buf)
5465 {
5466         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5467 }
5468
5469 static DEVICE_ATTR_RO(branches);
5470
5471 static struct attribute *lbr_attrs[] = {
5472         &dev_attr_branches.attr,
5473         NULL
5474 };
5475
5476 static char pmu_name_str[30];
5477
5478 static ssize_t pmu_name_show(struct device *cdev,
5479                              struct device_attribute *attr,
5480                              char *buf)
5481 {
5482         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5483 }
5484
5485 static DEVICE_ATTR_RO(pmu_name);
5486
5487 static struct attribute *intel_pmu_caps_attrs[] = {
5488        &dev_attr_pmu_name.attr,
5489        NULL
5490 };
5491
5492 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5493                    show_sysctl_tfa,
5494                    set_sysctl_tfa);
5495
5496 static struct attribute *intel_pmu_attrs[] = {
5497         &dev_attr_freeze_on_smi.attr,
5498         &dev_attr_allow_tsx_force_abort.attr,
5499         NULL,
5500 };
5501
5502 static umode_t
5503 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5504 {
5505         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5506 }
5507
5508 static umode_t
5509 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5510 {
5511         return x86_pmu.pebs ? attr->mode : 0;
5512 }
5513
5514 static umode_t
5515 mem_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5516 {
5517         if (attr == &event_attr_mem_ld_aux.attr.attr)
5518                 return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0;
5519
5520         return pebs_is_visible(kobj, attr, i);
5521 }
5522
5523 static umode_t
5524 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5525 {
5526         return x86_pmu.lbr_nr ? attr->mode : 0;
5527 }
5528
5529 static umode_t
5530 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5531 {
5532         return x86_pmu.version >= 2 ? attr->mode : 0;
5533 }
5534
5535 static umode_t
5536 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5537 {
5538         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5539                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5540
5541         return attr->mode;
5542 }
5543
5544 static struct attribute_group group_events_td  = {
5545         .name = "events",
5546 };
5547
5548 static struct attribute_group group_events_mem = {
5549         .name       = "events",
5550         .is_visible = mem_is_visible,
5551 };
5552
5553 static struct attribute_group group_events_tsx = {
5554         .name       = "events",
5555         .is_visible = tsx_is_visible,
5556 };
5557
5558 static struct attribute_group group_caps_gen = {
5559         .name  = "caps",
5560         .attrs = intel_pmu_caps_attrs,
5561 };
5562
5563 static struct attribute_group group_caps_lbr = {
5564         .name       = "caps",
5565         .attrs      = lbr_attrs,
5566         .is_visible = lbr_is_visible,
5567 };
5568
5569 static struct attribute_group group_format_extra = {
5570         .name       = "format",
5571         .is_visible = exra_is_visible,
5572 };
5573
5574 static struct attribute_group group_format_extra_skl = {
5575         .name       = "format",
5576         .is_visible = exra_is_visible,
5577 };
5578
5579 static struct attribute_group group_default = {
5580         .attrs      = intel_pmu_attrs,
5581         .is_visible = default_is_visible,
5582 };
5583
5584 static const struct attribute_group *attr_update[] = {
5585         &group_events_td,
5586         &group_events_mem,
5587         &group_events_tsx,
5588         &group_caps_gen,
5589         &group_caps_lbr,
5590         &group_format_extra,
5591         &group_format_extra_skl,
5592         &group_default,
5593         NULL,
5594 };
5595
5596 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5597 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5598 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5599 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5600 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5601 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5602 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5603 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5604 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5605
5606 static struct attribute *adl_hybrid_events_attrs[] = {
5607         EVENT_PTR(slots_adl),
5608         EVENT_PTR(td_retiring_adl),
5609         EVENT_PTR(td_bad_spec_adl),
5610         EVENT_PTR(td_fe_bound_adl),
5611         EVENT_PTR(td_be_bound_adl),
5612         EVENT_PTR(td_heavy_ops_adl),
5613         EVENT_PTR(td_br_mis_adl),
5614         EVENT_PTR(td_fetch_lat_adl),
5615         EVENT_PTR(td_mem_bound_adl),
5616         NULL,
5617 };
5618
5619 /* Must be in IDX order */
5620 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5621 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5622 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5623
5624 static struct attribute *adl_hybrid_mem_attrs[] = {
5625         EVENT_PTR(mem_ld_adl),
5626         EVENT_PTR(mem_st_adl),
5627         EVENT_PTR(mem_ld_aux_adl),
5628         NULL,
5629 };
5630
5631 static struct attribute *mtl_hybrid_mem_attrs[] = {
5632         EVENT_PTR(mem_ld_adl),
5633         EVENT_PTR(mem_st_adl),
5634         NULL
5635 };
5636
5637 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5638 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5639 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5640 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5641 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5642 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5643 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5644 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5645
5646 static struct attribute *adl_hybrid_tsx_attrs[] = {
5647         EVENT_PTR(tx_start_adl),
5648         EVENT_PTR(tx_abort_adl),
5649         EVENT_PTR(tx_commit_adl),
5650         EVENT_PTR(tx_capacity_read_adl),
5651         EVENT_PTR(tx_capacity_write_adl),
5652         EVENT_PTR(tx_conflict_adl),
5653         EVENT_PTR(cycles_t_adl),
5654         EVENT_PTR(cycles_ct_adl),
5655         NULL,
5656 };
5657
5658 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5659 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5660 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5661 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5662 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5663
5664 #define ADL_HYBRID_RTM_FORMAT_ATTR      \
5665         FORMAT_HYBRID_PTR(in_tx),       \
5666         FORMAT_HYBRID_PTR(in_tx_cp)
5667
5668 #define ADL_HYBRID_FORMAT_ATTR          \
5669         FORMAT_HYBRID_PTR(offcore_rsp), \
5670         FORMAT_HYBRID_PTR(ldlat),       \
5671         FORMAT_HYBRID_PTR(frontend)
5672
5673 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5674         ADL_HYBRID_RTM_FORMAT_ATTR,
5675         ADL_HYBRID_FORMAT_ATTR,
5676         NULL
5677 };
5678
5679 static struct attribute *adl_hybrid_extra_attr[] = {
5680         ADL_HYBRID_FORMAT_ATTR,
5681         NULL
5682 };
5683
5684 FORMAT_ATTR_HYBRID(snoop_rsp,   hybrid_small);
5685
5686 static struct attribute *mtl_hybrid_extra_attr_rtm[] = {
5687         ADL_HYBRID_RTM_FORMAT_ATTR,
5688         ADL_HYBRID_FORMAT_ATTR,
5689         FORMAT_HYBRID_PTR(snoop_rsp),
5690         NULL
5691 };
5692
5693 static struct attribute *mtl_hybrid_extra_attr[] = {
5694         ADL_HYBRID_FORMAT_ATTR,
5695         FORMAT_HYBRID_PTR(snoop_rsp),
5696         NULL
5697 };
5698
5699 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5700 {
5701         struct device *dev = kobj_to_dev(kobj);
5702         struct x86_hybrid_pmu *pmu =
5703                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5704         struct perf_pmu_events_hybrid_attr *pmu_attr =
5705                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5706
5707         return pmu->cpu_type & pmu_attr->pmu_type;
5708 }
5709
5710 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5711                                         struct attribute *attr, int i)
5712 {
5713         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5714 }
5715
5716 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5717 {
5718         int cpu = cpumask_first(&pmu->supported_cpus);
5719
5720         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5721 }
5722
5723 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5724                                      struct attribute *attr, int i)
5725 {
5726         struct device *dev = kobj_to_dev(kobj);
5727         struct x86_hybrid_pmu *pmu =
5728                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5729         int cpu = hybrid_find_supported_cpu(pmu);
5730
5731         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5732 }
5733
5734 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5735                                         struct attribute *attr, int i)
5736 {
5737         struct device *dev = kobj_to_dev(kobj);
5738         struct x86_hybrid_pmu *pmu =
5739                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5740         struct perf_pmu_format_hybrid_attr *pmu_attr =
5741                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5742         int cpu = hybrid_find_supported_cpu(pmu);
5743
5744         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5745 }
5746
5747 static struct attribute_group hybrid_group_events_td  = {
5748         .name           = "events",
5749         .is_visible     = hybrid_events_is_visible,
5750 };
5751
5752 static struct attribute_group hybrid_group_events_mem = {
5753         .name           = "events",
5754         .is_visible     = hybrid_events_is_visible,
5755 };
5756
5757 static struct attribute_group hybrid_group_events_tsx = {
5758         .name           = "events",
5759         .is_visible     = hybrid_tsx_is_visible,
5760 };
5761
5762 static struct attribute_group hybrid_group_format_extra = {
5763         .name           = "format",
5764         .is_visible     = hybrid_format_is_visible,
5765 };
5766
5767 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5768                                           struct device_attribute *attr,
5769                                           char *buf)
5770 {
5771         struct x86_hybrid_pmu *pmu =
5772                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5773
5774         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5775 }
5776
5777 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5778 static struct attribute *intel_hybrid_cpus_attrs[] = {
5779         &dev_attr_cpus.attr,
5780         NULL,
5781 };
5782
5783 static struct attribute_group hybrid_group_cpus = {
5784         .attrs          = intel_hybrid_cpus_attrs,
5785 };
5786
5787 static const struct attribute_group *hybrid_attr_update[] = {
5788         &hybrid_group_events_td,
5789         &hybrid_group_events_mem,
5790         &hybrid_group_events_tsx,
5791         &group_caps_gen,
5792         &group_caps_lbr,
5793         &hybrid_group_format_extra,
5794         &group_default,
5795         &hybrid_group_cpus,
5796         NULL,
5797 };
5798
5799 static struct attribute *empty_attrs;
5800
5801 static void intel_pmu_check_num_counters(int *num_counters,
5802                                          int *num_counters_fixed,
5803                                          u64 *intel_ctrl, u64 fixed_mask)
5804 {
5805         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5806                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5807                      *num_counters, INTEL_PMC_MAX_GENERIC);
5808                 *num_counters = INTEL_PMC_MAX_GENERIC;
5809         }
5810         *intel_ctrl = (1ULL << *num_counters) - 1;
5811
5812         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5813                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5814                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5815                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5816         }
5817
5818         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5819 }
5820
5821 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5822                                               int num_counters,
5823                                               int num_counters_fixed,
5824                                               u64 intel_ctrl)
5825 {
5826         struct event_constraint *c;
5827
5828         if (!event_constraints)
5829                 return;
5830
5831         /*
5832          * event on fixed counter2 (REF_CYCLES) only works on this
5833          * counter, so do not extend mask to generic counters
5834          */
5835         for_each_event_constraint(c, event_constraints) {
5836                 /*
5837                  * Don't extend the topdown slots and metrics
5838                  * events to the generic counters.
5839                  */
5840                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5841                         /*
5842                          * Disable topdown slots and metrics events,
5843                          * if slots event is not in CPUID.
5844                          */
5845                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5846                                 c->idxmsk64 = 0;
5847                         c->weight = hweight64(c->idxmsk64);
5848                         continue;
5849                 }
5850
5851                 if (c->cmask == FIXED_EVENT_FLAGS) {
5852                         /* Disabled fixed counters which are not in CPUID */
5853                         c->idxmsk64 &= intel_ctrl;
5854
5855                         /*
5856                          * Don't extend the pseudo-encoding to the
5857                          * generic counters
5858                          */
5859                         if (!use_fixed_pseudo_encoding(c->code))
5860                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5861                 }
5862                 c->idxmsk64 &=
5863                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5864                 c->weight = hweight64(c->idxmsk64);
5865         }
5866 }
5867
5868 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5869 {
5870         struct extra_reg *er;
5871
5872         /*
5873          * Access extra MSR may cause #GP under certain circumstances.
5874          * E.g. KVM doesn't support offcore event
5875          * Check all extra_regs here.
5876          */
5877         if (!extra_regs)
5878                 return;
5879
5880         for (er = extra_regs; er->msr; er++) {
5881                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5882                 /* Disable LBR select mapping */
5883                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5884                         x86_pmu.lbr_sel_map = NULL;
5885         }
5886 }
5887
5888 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5889 {
5890         struct x86_hybrid_pmu *pmu;
5891         int i;
5892
5893         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5894                 pmu = &x86_pmu.hybrid_pmu[i];
5895
5896                 intel_pmu_check_num_counters(&pmu->num_counters,
5897                                              &pmu->num_counters_fixed,
5898                                              &pmu->intel_ctrl,
5899                                              fixed_mask);
5900
5901                 if (pmu->intel_cap.perf_metrics) {
5902                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5903                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5904                 }
5905
5906                 if (pmu->intel_cap.pebs_output_pt_available)
5907                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5908
5909                 intel_pmu_check_event_constraints(pmu->event_constraints,
5910                                                   pmu->num_counters,
5911                                                   pmu->num_counters_fixed,
5912                                                   pmu->intel_ctrl);
5913
5914                 intel_pmu_check_extra_regs(pmu->extra_regs);
5915         }
5916 }
5917
5918 static __always_inline bool is_mtl(u8 x86_model)
5919 {
5920         return (x86_model == INTEL_FAM6_METEORLAKE) ||
5921                (x86_model == INTEL_FAM6_METEORLAKE_L);
5922 }
5923
5924 __init int intel_pmu_init(void)
5925 {
5926         struct attribute **extra_skl_attr = &empty_attrs;
5927         struct attribute **extra_attr = &empty_attrs;
5928         struct attribute **td_attr    = &empty_attrs;
5929         struct attribute **mem_attr   = &empty_attrs;
5930         struct attribute **tsx_attr   = &empty_attrs;
5931         union cpuid10_edx edx;
5932         union cpuid10_eax eax;
5933         union cpuid10_ebx ebx;
5934         unsigned int fixed_mask;
5935         bool pmem = false;
5936         int version, i;
5937         char *name;
5938         struct x86_hybrid_pmu *pmu;
5939
5940         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5941                 switch (boot_cpu_data.x86) {
5942                 case 0x6:
5943                         return p6_pmu_init();
5944                 case 0xb:
5945                         return knc_pmu_init();
5946                 case 0xf:
5947                         return p4_pmu_init();
5948                 }
5949                 return -ENODEV;
5950         }
5951
5952         /*
5953          * Check whether the Architectural PerfMon supports
5954          * Branch Misses Retired hw_event or not.
5955          */
5956         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5957         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5958                 return -ENODEV;
5959
5960         version = eax.split.version_id;
5961         if (version < 2)
5962                 x86_pmu = core_pmu;
5963         else
5964                 x86_pmu = intel_pmu;
5965
5966         x86_pmu.version                 = version;
5967         x86_pmu.num_counters            = eax.split.num_counters;
5968         x86_pmu.cntval_bits             = eax.split.bit_width;
5969         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5970
5971         x86_pmu.events_maskl            = ebx.full;
5972         x86_pmu.events_mask_len         = eax.split.mask_length;
5973
5974         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5975         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
5976
5977         /*
5978          * Quirk: v2 perfmon does not report fixed-purpose events, so
5979          * assume at least 3 events, when not running in a hypervisor:
5980          */
5981         if (version > 1 && version < 5) {
5982                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5983
5984                 x86_pmu.num_counters_fixed =
5985                         max((int)edx.split.num_counters_fixed, assume);
5986
5987                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5988         } else if (version >= 5)
5989                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5990
5991         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5992                 u64 capabilities;
5993
5994                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5995                 x86_pmu.intel_cap.capabilities = capabilities;
5996         }
5997
5998         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5999                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
6000                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
6001         }
6002
6003         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
6004                 intel_pmu_arch_lbr_init();
6005
6006         intel_ds_init();
6007
6008         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
6009
6010         if (version >= 5) {
6011                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
6012                 if (x86_pmu.intel_cap.anythread_deprecated)
6013                         pr_cont(" AnyThread deprecated, ");
6014         }
6015
6016         /*
6017          * Install the hw-cache-events table:
6018          */
6019         switch (boot_cpu_data.x86_model) {
6020         case INTEL_FAM6_CORE_YONAH:
6021                 pr_cont("Core events, ");
6022                 name = "core";
6023                 break;
6024
6025         case INTEL_FAM6_CORE2_MEROM:
6026                 x86_add_quirk(intel_clovertown_quirk);
6027                 fallthrough;
6028
6029         case INTEL_FAM6_CORE2_MEROM_L:
6030         case INTEL_FAM6_CORE2_PENRYN:
6031         case INTEL_FAM6_CORE2_DUNNINGTON:
6032                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
6033                        sizeof(hw_cache_event_ids));
6034
6035                 intel_pmu_lbr_init_core();
6036
6037                 x86_pmu.event_constraints = intel_core2_event_constraints;
6038                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
6039                 pr_cont("Core2 events, ");
6040                 name = "core2";
6041                 break;
6042
6043         case INTEL_FAM6_NEHALEM:
6044         case INTEL_FAM6_NEHALEM_EP:
6045         case INTEL_FAM6_NEHALEM_EX:
6046                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
6047                        sizeof(hw_cache_event_ids));
6048                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6049                        sizeof(hw_cache_extra_regs));
6050
6051                 intel_pmu_lbr_init_nhm();
6052
6053                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
6054                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
6055                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6056                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
6057                 x86_pmu.limit_period = nhm_limit_period;
6058
6059                 mem_attr = nhm_mem_events_attrs;
6060
6061                 /* UOPS_ISSUED.STALLED_CYCLES */
6062                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6063                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6064                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6065                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6066                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6067
6068                 intel_pmu_pebs_data_source_nhm();
6069                 x86_add_quirk(intel_nehalem_quirk);
6070                 x86_pmu.pebs_no_tlb = 1;
6071                 extra_attr = nhm_format_attr;
6072
6073                 pr_cont("Nehalem events, ");
6074                 name = "nehalem";
6075                 break;
6076
6077         case INTEL_FAM6_ATOM_BONNELL:
6078         case INTEL_FAM6_ATOM_BONNELL_MID:
6079         case INTEL_FAM6_ATOM_SALTWELL:
6080         case INTEL_FAM6_ATOM_SALTWELL_MID:
6081         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
6082                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
6083                        sizeof(hw_cache_event_ids));
6084
6085                 intel_pmu_lbr_init_atom();
6086
6087                 x86_pmu.event_constraints = intel_gen_event_constraints;
6088                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
6089                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
6090                 pr_cont("Atom events, ");
6091                 name = "bonnell";
6092                 break;
6093
6094         case INTEL_FAM6_ATOM_SILVERMONT:
6095         case INTEL_FAM6_ATOM_SILVERMONT_D:
6096         case INTEL_FAM6_ATOM_SILVERMONT_MID:
6097         case INTEL_FAM6_ATOM_AIRMONT:
6098         case INTEL_FAM6_ATOM_AIRMONT_MID:
6099                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
6100                         sizeof(hw_cache_event_ids));
6101                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
6102                        sizeof(hw_cache_extra_regs));
6103
6104                 intel_pmu_lbr_init_slm();
6105
6106                 x86_pmu.event_constraints = intel_slm_event_constraints;
6107                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6108                 x86_pmu.extra_regs = intel_slm_extra_regs;
6109                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6110                 td_attr = slm_events_attrs;
6111                 extra_attr = slm_format_attr;
6112                 pr_cont("Silvermont events, ");
6113                 name = "silvermont";
6114                 break;
6115
6116         case INTEL_FAM6_ATOM_GOLDMONT:
6117         case INTEL_FAM6_ATOM_GOLDMONT_D:
6118                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
6119                        sizeof(hw_cache_event_ids));
6120                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
6121                        sizeof(hw_cache_extra_regs));
6122
6123                 intel_pmu_lbr_init_skl();
6124
6125                 x86_pmu.event_constraints = intel_slm_event_constraints;
6126                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
6127                 x86_pmu.extra_regs = intel_glm_extra_regs;
6128                 /*
6129                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6130                  * for precise cycles.
6131                  * :pp is identical to :ppp
6132                  */
6133                 x86_pmu.pebs_aliases = NULL;
6134                 x86_pmu.pebs_prec_dist = true;
6135                 x86_pmu.lbr_pt_coexist = true;
6136                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6137                 td_attr = glm_events_attrs;
6138                 extra_attr = slm_format_attr;
6139                 pr_cont("Goldmont events, ");
6140                 name = "goldmont";
6141                 break;
6142
6143         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
6144                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6145                        sizeof(hw_cache_event_ids));
6146                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
6147                        sizeof(hw_cache_extra_regs));
6148
6149                 intel_pmu_lbr_init_skl();
6150
6151                 x86_pmu.event_constraints = intel_slm_event_constraints;
6152                 x86_pmu.extra_regs = intel_glm_extra_regs;
6153                 /*
6154                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6155                  * for precise cycles.
6156                  */
6157                 x86_pmu.pebs_aliases = NULL;
6158                 x86_pmu.pebs_prec_dist = true;
6159                 x86_pmu.lbr_pt_coexist = true;
6160                 x86_pmu.pebs_capable = ~0ULL;
6161                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6162                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6163                 x86_pmu.get_event_constraints = glp_get_event_constraints;
6164                 td_attr = glm_events_attrs;
6165                 /* Goldmont Plus has 4-wide pipeline */
6166                 event_attr_td_total_slots_scale_glm.event_str = "4";
6167                 extra_attr = slm_format_attr;
6168                 pr_cont("Goldmont plus events, ");
6169                 name = "goldmont_plus";
6170                 break;
6171
6172         case INTEL_FAM6_ATOM_TREMONT_D:
6173         case INTEL_FAM6_ATOM_TREMONT:
6174         case INTEL_FAM6_ATOM_TREMONT_L:
6175                 x86_pmu.late_ack = true;
6176                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6177                        sizeof(hw_cache_event_ids));
6178                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6179                        sizeof(hw_cache_extra_regs));
6180                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6181
6182                 intel_pmu_lbr_init_skl();
6183
6184                 x86_pmu.event_constraints = intel_slm_event_constraints;
6185                 x86_pmu.extra_regs = intel_tnt_extra_regs;
6186                 /*
6187                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
6188                  * for precise cycles.
6189                  */
6190                 x86_pmu.pebs_aliases = NULL;
6191                 x86_pmu.pebs_prec_dist = true;
6192                 x86_pmu.lbr_pt_coexist = true;
6193                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6194                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6195                 td_attr = tnt_events_attrs;
6196                 extra_attr = slm_format_attr;
6197                 pr_cont("Tremont events, ");
6198                 name = "Tremont";
6199                 break;
6200
6201         case INTEL_FAM6_ATOM_GRACEMONT:
6202                 x86_pmu.mid_ack = true;
6203                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6204                        sizeof(hw_cache_event_ids));
6205                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6206                        sizeof(hw_cache_extra_regs));
6207                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6208
6209                 x86_pmu.event_constraints = intel_slm_event_constraints;
6210                 x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
6211                 x86_pmu.extra_regs = intel_grt_extra_regs;
6212
6213                 x86_pmu.pebs_aliases = NULL;
6214                 x86_pmu.pebs_prec_dist = true;
6215                 x86_pmu.pebs_block = true;
6216                 x86_pmu.lbr_pt_coexist = true;
6217                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6218                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6219
6220                 intel_pmu_pebs_data_source_grt();
6221                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6222                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
6223                 x86_pmu.limit_period = spr_limit_period;
6224                 td_attr = tnt_events_attrs;
6225                 mem_attr = grt_mem_attrs;
6226                 extra_attr = nhm_format_attr;
6227                 pr_cont("Gracemont events, ");
6228                 name = "gracemont";
6229                 break;
6230
6231         case INTEL_FAM6_ATOM_CRESTMONT:
6232         case INTEL_FAM6_ATOM_CRESTMONT_X:
6233                 x86_pmu.mid_ack = true;
6234                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
6235                        sizeof(hw_cache_event_ids));
6236                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
6237                        sizeof(hw_cache_extra_regs));
6238                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6239
6240                 x86_pmu.event_constraints = intel_slm_event_constraints;
6241                 x86_pmu.pebs_constraints = intel_grt_pebs_event_constraints;
6242                 x86_pmu.extra_regs = intel_cmt_extra_regs;
6243
6244                 x86_pmu.pebs_aliases = NULL;
6245                 x86_pmu.pebs_prec_dist = true;
6246                 x86_pmu.lbr_pt_coexist = true;
6247                 x86_pmu.pebs_block = true;
6248                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6249                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6250
6251                 intel_pmu_pebs_data_source_cmt();
6252                 x86_pmu.pebs_latency_data = mtl_latency_data_small;
6253                 x86_pmu.get_event_constraints = cmt_get_event_constraints;
6254                 x86_pmu.limit_period = spr_limit_period;
6255                 td_attr = cmt_events_attrs;
6256                 mem_attr = grt_mem_attrs;
6257                 extra_attr = cmt_format_attr;
6258                 pr_cont("Crestmont events, ");
6259                 name = "crestmont";
6260                 break;
6261
6262         case INTEL_FAM6_WESTMERE:
6263         case INTEL_FAM6_WESTMERE_EP:
6264         case INTEL_FAM6_WESTMERE_EX:
6265                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
6266                        sizeof(hw_cache_event_ids));
6267                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
6268                        sizeof(hw_cache_extra_regs));
6269
6270                 intel_pmu_lbr_init_nhm();
6271
6272                 x86_pmu.event_constraints = intel_westmere_event_constraints;
6273                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
6274                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
6275                 x86_pmu.extra_regs = intel_westmere_extra_regs;
6276                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6277
6278                 mem_attr = nhm_mem_events_attrs;
6279
6280                 /* UOPS_ISSUED.STALLED_CYCLES */
6281                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6282                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6283                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
6284                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6285                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6286
6287                 intel_pmu_pebs_data_source_nhm();
6288                 extra_attr = nhm_format_attr;
6289                 pr_cont("Westmere events, ");
6290                 name = "westmere";
6291                 break;
6292
6293         case INTEL_FAM6_SANDYBRIDGE:
6294         case INTEL_FAM6_SANDYBRIDGE_X:
6295                 x86_add_quirk(intel_sandybridge_quirk);
6296                 x86_add_quirk(intel_ht_bug);
6297                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6298                        sizeof(hw_cache_event_ids));
6299                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6300                        sizeof(hw_cache_extra_regs));
6301
6302                 intel_pmu_lbr_init_snb();
6303
6304                 x86_pmu.event_constraints = intel_snb_event_constraints;
6305                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6306                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6307                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6308                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6309                 else
6310                         x86_pmu.extra_regs = intel_snb_extra_regs;
6311
6312
6313                 /* all extra regs are per-cpu when HT is on */
6314                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6315                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6316
6317                 td_attr  = snb_events_attrs;
6318                 mem_attr = snb_mem_events_attrs;
6319
6320                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6321                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6322                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6323                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6324                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6325                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6326
6327                 extra_attr = nhm_format_attr;
6328
6329                 pr_cont("SandyBridge events, ");
6330                 name = "sandybridge";
6331                 break;
6332
6333         case INTEL_FAM6_IVYBRIDGE:
6334         case INTEL_FAM6_IVYBRIDGE_X:
6335                 x86_add_quirk(intel_ht_bug);
6336                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6337                        sizeof(hw_cache_event_ids));
6338                 /* dTLB-load-misses on IVB is different than SNB */
6339                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6340
6341                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6342                        sizeof(hw_cache_extra_regs));
6343
6344                 intel_pmu_lbr_init_snb();
6345
6346                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6347                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6348                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6349                 x86_pmu.pebs_prec_dist = true;
6350                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6351                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6352                 else
6353                         x86_pmu.extra_regs = intel_snb_extra_regs;
6354                 /* all extra regs are per-cpu when HT is on */
6355                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6356                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6357
6358                 td_attr  = snb_events_attrs;
6359                 mem_attr = snb_mem_events_attrs;
6360
6361                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6362                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6363                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6364
6365                 extra_attr = nhm_format_attr;
6366
6367                 pr_cont("IvyBridge events, ");
6368                 name = "ivybridge";
6369                 break;
6370
6371
6372         case INTEL_FAM6_HASWELL:
6373         case INTEL_FAM6_HASWELL_X:
6374         case INTEL_FAM6_HASWELL_L:
6375         case INTEL_FAM6_HASWELL_G:
6376                 x86_add_quirk(intel_ht_bug);
6377                 x86_add_quirk(intel_pebs_isolation_quirk);
6378                 x86_pmu.late_ack = true;
6379                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6380                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6381
6382                 intel_pmu_lbr_init_hsw();
6383
6384                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6385                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6386                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6387                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6388                 x86_pmu.pebs_prec_dist = true;
6389                 /* all extra regs are per-cpu when HT is on */
6390                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6391                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6392
6393                 x86_pmu.hw_config = hsw_hw_config;
6394                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6395                 x86_pmu.lbr_double_abort = true;
6396                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6397                         hsw_format_attr : nhm_format_attr;
6398                 td_attr  = hsw_events_attrs;
6399                 mem_attr = hsw_mem_events_attrs;
6400                 tsx_attr = hsw_tsx_events_attrs;
6401                 pr_cont("Haswell events, ");
6402                 name = "haswell";
6403                 break;
6404
6405         case INTEL_FAM6_BROADWELL:
6406         case INTEL_FAM6_BROADWELL_D:
6407         case INTEL_FAM6_BROADWELL_G:
6408         case INTEL_FAM6_BROADWELL_X:
6409                 x86_add_quirk(intel_pebs_isolation_quirk);
6410                 x86_pmu.late_ack = true;
6411                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6412                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6413
6414                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6415                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6416                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6417                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6418                                                                           HSW_SNOOP_DRAM;
6419                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6420                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6421                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6422                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6423
6424                 intel_pmu_lbr_init_hsw();
6425
6426                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6427                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6428                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6429                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6430                 x86_pmu.pebs_prec_dist = true;
6431                 /* all extra regs are per-cpu when HT is on */
6432                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6433                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6434
6435                 x86_pmu.hw_config = hsw_hw_config;
6436                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6437                 x86_pmu.limit_period = bdw_limit_period;
6438                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6439                         hsw_format_attr : nhm_format_attr;
6440                 td_attr  = hsw_events_attrs;
6441                 mem_attr = hsw_mem_events_attrs;
6442                 tsx_attr = hsw_tsx_events_attrs;
6443                 pr_cont("Broadwell events, ");
6444                 name = "broadwell";
6445                 break;
6446
6447         case INTEL_FAM6_XEON_PHI_KNL:
6448         case INTEL_FAM6_XEON_PHI_KNM:
6449                 memcpy(hw_cache_event_ids,
6450                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6451                 memcpy(hw_cache_extra_regs,
6452                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6453                 intel_pmu_lbr_init_knl();
6454
6455                 x86_pmu.event_constraints = intel_slm_event_constraints;
6456                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6457                 x86_pmu.extra_regs = intel_knl_extra_regs;
6458
6459                 /* all extra regs are per-cpu when HT is on */
6460                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6461                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6462                 extra_attr = slm_format_attr;
6463                 pr_cont("Knights Landing/Mill events, ");
6464                 name = "knights-landing";
6465                 break;
6466
6467         case INTEL_FAM6_SKYLAKE_X:
6468                 pmem = true;
6469                 fallthrough;
6470         case INTEL_FAM6_SKYLAKE_L:
6471         case INTEL_FAM6_SKYLAKE:
6472         case INTEL_FAM6_KABYLAKE_L:
6473         case INTEL_FAM6_KABYLAKE:
6474         case INTEL_FAM6_COMETLAKE_L:
6475         case INTEL_FAM6_COMETLAKE:
6476                 x86_add_quirk(intel_pebs_isolation_quirk);
6477                 x86_pmu.late_ack = true;
6478                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6479                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6480                 intel_pmu_lbr_init_skl();
6481
6482                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6483                 event_attr_td_recovery_bubbles.event_str_noht =
6484                         "event=0xd,umask=0x1,cmask=1";
6485                 event_attr_td_recovery_bubbles.event_str_ht =
6486                         "event=0xd,umask=0x1,cmask=1,any=1";
6487
6488                 x86_pmu.event_constraints = intel_skl_event_constraints;
6489                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6490                 x86_pmu.extra_regs = intel_skl_extra_regs;
6491                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6492                 x86_pmu.pebs_prec_dist = true;
6493                 /* all extra regs are per-cpu when HT is on */
6494                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6495                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6496
6497                 x86_pmu.hw_config = hsw_hw_config;
6498                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6499                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6500                         hsw_format_attr : nhm_format_attr;
6501                 extra_skl_attr = skl_format_attr;
6502                 td_attr  = hsw_events_attrs;
6503                 mem_attr = hsw_mem_events_attrs;
6504                 tsx_attr = hsw_tsx_events_attrs;
6505                 intel_pmu_pebs_data_source_skl(pmem);
6506
6507                 /*
6508                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6509                  * TSX force abort hooks are not required on these systems. Only deploy
6510                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6511                  */
6512                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6513                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6514                         x86_pmu.flags |= PMU_FL_TFA;
6515                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6516                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6517                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6518                 }
6519
6520                 pr_cont("Skylake events, ");
6521                 name = "skylake";
6522                 break;
6523
6524         case INTEL_FAM6_ICELAKE_X:
6525         case INTEL_FAM6_ICELAKE_D:
6526                 x86_pmu.pebs_ept = 1;
6527                 pmem = true;
6528                 fallthrough;
6529         case INTEL_FAM6_ICELAKE_L:
6530         case INTEL_FAM6_ICELAKE:
6531         case INTEL_FAM6_TIGERLAKE_L:
6532         case INTEL_FAM6_TIGERLAKE:
6533         case INTEL_FAM6_ROCKETLAKE:
6534                 x86_pmu.late_ack = true;
6535                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6536                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6537                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6538                 intel_pmu_lbr_init_skl();
6539
6540                 x86_pmu.event_constraints = intel_icl_event_constraints;
6541                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6542                 x86_pmu.extra_regs = intel_icl_extra_regs;
6543                 x86_pmu.pebs_aliases = NULL;
6544                 x86_pmu.pebs_prec_dist = true;
6545                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6546                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6547
6548                 x86_pmu.hw_config = hsw_hw_config;
6549                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6550                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6551                         hsw_format_attr : nhm_format_attr;
6552                 extra_skl_attr = skl_format_attr;
6553                 mem_attr = icl_events_attrs;
6554                 td_attr = icl_td_events_attrs;
6555                 tsx_attr = icl_tsx_events_attrs;
6556                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6557                 x86_pmu.lbr_pt_coexist = true;
6558                 intel_pmu_pebs_data_source_skl(pmem);
6559                 x86_pmu.num_topdown_events = 4;
6560                 static_call_update(intel_pmu_update_topdown_event,
6561                                    &icl_update_topdown_event);
6562                 static_call_update(intel_pmu_set_topdown_event_period,
6563                                    &icl_set_topdown_event_period);
6564                 pr_cont("Icelake events, ");
6565                 name = "icelake";
6566                 break;
6567
6568         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6569         case INTEL_FAM6_EMERALDRAPIDS_X:
6570                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6571                 x86_pmu.extra_regs = intel_spr_extra_regs;
6572                 fallthrough;
6573         case INTEL_FAM6_GRANITERAPIDS_X:
6574         case INTEL_FAM6_GRANITERAPIDS_D:
6575                 pmem = true;
6576                 x86_pmu.late_ack = true;
6577                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6578                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6579
6580                 x86_pmu.event_constraints = intel_spr_event_constraints;
6581                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6582                 if (!x86_pmu.extra_regs)
6583                         x86_pmu.extra_regs = intel_gnr_extra_regs;
6584                 x86_pmu.limit_period = spr_limit_period;
6585                 x86_pmu.pebs_ept = 1;
6586                 x86_pmu.pebs_aliases = NULL;
6587                 x86_pmu.pebs_prec_dist = true;
6588                 x86_pmu.pebs_block = true;
6589                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6590                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6591                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6592
6593                 x86_pmu.hw_config = hsw_hw_config;
6594                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6595                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6596                         hsw_format_attr : nhm_format_attr;
6597                 extra_skl_attr = skl_format_attr;
6598                 mem_attr = spr_events_attrs;
6599                 td_attr = spr_td_events_attrs;
6600                 tsx_attr = spr_tsx_events_attrs;
6601                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6602                 x86_pmu.lbr_pt_coexist = true;
6603                 intel_pmu_pebs_data_source_skl(pmem);
6604                 x86_pmu.num_topdown_events = 8;
6605                 static_call_update(intel_pmu_update_topdown_event,
6606                                    &icl_update_topdown_event);
6607                 static_call_update(intel_pmu_set_topdown_event_period,
6608                                    &icl_set_topdown_event_period);
6609                 pr_cont("Sapphire Rapids events, ");
6610                 name = "sapphire_rapids";
6611                 break;
6612
6613         case INTEL_FAM6_ALDERLAKE:
6614         case INTEL_FAM6_ALDERLAKE_L:
6615         case INTEL_FAM6_RAPTORLAKE:
6616         case INTEL_FAM6_RAPTORLAKE_P:
6617         case INTEL_FAM6_RAPTORLAKE_S:
6618         case INTEL_FAM6_METEORLAKE:
6619         case INTEL_FAM6_METEORLAKE_L:
6620                 /*
6621                  * Alder Lake has 2 types of CPU, core and atom.
6622                  *
6623                  * Initialize the common PerfMon capabilities here.
6624                  */
6625                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6626                                              sizeof(struct x86_hybrid_pmu),
6627                                              GFP_KERNEL);
6628                 if (!x86_pmu.hybrid_pmu)
6629                         return -ENOMEM;
6630                 static_branch_enable(&perf_is_hybrid);
6631                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6632
6633                 x86_pmu.pebs_aliases = NULL;
6634                 x86_pmu.pebs_prec_dist = true;
6635                 x86_pmu.pebs_block = true;
6636                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6637                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6638                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6639                 x86_pmu.lbr_pt_coexist = true;
6640                 x86_pmu.pebs_latency_data = adl_latency_data_small;
6641                 x86_pmu.num_topdown_events = 8;
6642                 static_call_update(intel_pmu_update_topdown_event,
6643                                    &adl_update_topdown_event);
6644                 static_call_update(intel_pmu_set_topdown_event_period,
6645                                    &adl_set_topdown_event_period);
6646
6647                 x86_pmu.filter = intel_pmu_filter;
6648                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6649                 x86_pmu.hw_config = adl_hw_config;
6650                 x86_pmu.limit_period = spr_limit_period;
6651                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6652                 /*
6653                  * The rtm_abort_event is used to check whether to enable GPRs
6654                  * for the RTM abort event. Atom doesn't have the RTM abort
6655                  * event. There is no harmful to set it in the common
6656                  * x86_pmu.rtm_abort_event.
6657                  */
6658                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6659
6660                 td_attr = adl_hybrid_events_attrs;
6661                 mem_attr = adl_hybrid_mem_attrs;
6662                 tsx_attr = adl_hybrid_tsx_attrs;
6663                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6664                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6665
6666                 /* Initialize big core specific PerfMon capabilities.*/
6667                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6668                 pmu->name = "cpu_core";
6669                 pmu->cpu_type = hybrid_big;
6670                 pmu->late_ack = true;
6671                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6672                         pmu->num_counters = x86_pmu.num_counters + 2;
6673                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6674                 } else {
6675                         pmu->num_counters = x86_pmu.num_counters;
6676                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6677                 }
6678
6679                 /*
6680                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6681                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6682                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6683                  * mistakenly add extra counters for P-cores. Correct the number of
6684                  * counters here.
6685                  */
6686                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6687                         pmu->num_counters = x86_pmu.num_counters;
6688                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6689                 }
6690
6691                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6692                 pmu->unconstrained = (struct event_constraint)
6693                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6694                                                            0, pmu->num_counters, 0, 0);
6695                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6696                 pmu->intel_cap.perf_metrics = 1;
6697                 pmu->intel_cap.pebs_output_pt_available = 0;
6698
6699                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6700                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6701                 pmu->event_constraints = intel_spr_event_constraints;
6702                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6703                 pmu->extra_regs = intel_spr_extra_regs;
6704
6705                 /* Initialize Atom core specific PerfMon capabilities.*/
6706                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6707                 pmu->name = "cpu_atom";
6708                 pmu->cpu_type = hybrid_small;
6709                 pmu->mid_ack = true;
6710                 pmu->num_counters = x86_pmu.num_counters;
6711                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6712                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6713                 pmu->unconstrained = (struct event_constraint)
6714                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6715                                                            0, pmu->num_counters, 0, 0);
6716                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6717                 pmu->intel_cap.perf_metrics = 0;
6718                 pmu->intel_cap.pebs_output_pt_available = 1;
6719
6720                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6721                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6722                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6723                 pmu->event_constraints = intel_slm_event_constraints;
6724                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6725                 pmu->extra_regs = intel_grt_extra_regs;
6726                 if (is_mtl(boot_cpu_data.x86_model)) {
6727                         x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].extra_regs = intel_gnr_extra_regs;
6728                         x86_pmu.pebs_latency_data = mtl_latency_data_small;
6729                         extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6730                                 mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr;
6731                         mem_attr = mtl_hybrid_mem_attrs;
6732                         intel_pmu_pebs_data_source_mtl();
6733                         x86_pmu.get_event_constraints = mtl_get_event_constraints;
6734                         pmu->extra_regs = intel_cmt_extra_regs;
6735                         pr_cont("Meteorlake Hybrid events, ");
6736                         name = "meteorlake_hybrid";
6737                 } else {
6738                         x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6739                         intel_pmu_pebs_data_source_adl();
6740                         pr_cont("Alderlake Hybrid events, ");
6741                         name = "alderlake_hybrid";
6742                 }
6743                 break;
6744
6745         default:
6746                 switch (x86_pmu.version) {
6747                 case 1:
6748                         x86_pmu.event_constraints = intel_v1_event_constraints;
6749                         pr_cont("generic architected perfmon v1, ");
6750                         name = "generic_arch_v1";
6751                         break;
6752                 case 2:
6753                 case 3:
6754                 case 4:
6755                         /*
6756                          * default constraints for v2 and up
6757                          */
6758                         x86_pmu.event_constraints = intel_gen_event_constraints;
6759                         pr_cont("generic architected perfmon, ");
6760                         name = "generic_arch_v2+";
6761                         break;
6762                 default:
6763                         /*
6764                          * The default constraints for v5 and up can support up to
6765                          * 16 fixed counters. For the fixed counters 4 and later,
6766                          * the pseudo-encoding is applied.
6767                          * The constraints may be cut according to the CPUID enumeration
6768                          * by inserting the EVENT_CONSTRAINT_END.
6769                          */
6770                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6771                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6772                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6773                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6774                         pr_cont("generic architected perfmon, ");
6775                         name = "generic_arch_v5+";
6776                         break;
6777                 }
6778         }
6779
6780         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6781
6782         if (!is_hybrid()) {
6783                 group_events_td.attrs  = td_attr;
6784                 group_events_mem.attrs = mem_attr;
6785                 group_events_tsx.attrs = tsx_attr;
6786                 group_format_extra.attrs = extra_attr;
6787                 group_format_extra_skl.attrs = extra_skl_attr;
6788
6789                 x86_pmu.attr_update = attr_update;
6790         } else {
6791                 hybrid_group_events_td.attrs  = td_attr;
6792                 hybrid_group_events_mem.attrs = mem_attr;
6793                 hybrid_group_events_tsx.attrs = tsx_attr;
6794                 hybrid_group_format_extra.attrs = extra_attr;
6795
6796                 x86_pmu.attr_update = hybrid_attr_update;
6797         }
6798
6799         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6800                                      &x86_pmu.num_counters_fixed,
6801                                      &x86_pmu.intel_ctrl,
6802                                      (u64)fixed_mask);
6803
6804         /* AnyThread may be deprecated on arch perfmon v5 or later */
6805         if (x86_pmu.intel_cap.anythread_deprecated)
6806                 x86_pmu.format_attrs = intel_arch_formats_attr;
6807
6808         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6809                                           x86_pmu.num_counters,
6810                                           x86_pmu.num_counters_fixed,
6811                                           x86_pmu.intel_ctrl);
6812         /*
6813          * Access LBR MSR may cause #GP under certain circumstances.
6814          * Check all LBR MSR here.
6815          * Disable LBR access if any LBR MSRs can not be accessed.
6816          */
6817         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6818                 x86_pmu.lbr_nr = 0;
6819         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6820                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6821                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6822                         x86_pmu.lbr_nr = 0;
6823         }
6824
6825         if (x86_pmu.lbr_nr) {
6826                 intel_pmu_lbr_init();
6827
6828                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6829
6830                 /* only support branch_stack snapshot for perfmon >= v2 */
6831                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6832                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6833                                 static_call_update(perf_snapshot_branch_stack,
6834                                                    intel_pmu_snapshot_arch_branch_stack);
6835                         } else {
6836                                 static_call_update(perf_snapshot_branch_stack,
6837                                                    intel_pmu_snapshot_branch_stack);
6838                         }
6839                 }
6840         }
6841
6842         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6843
6844         /* Support full width counters using alternative MSR range */
6845         if (x86_pmu.intel_cap.full_width_write) {
6846                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6847                 x86_pmu.perfctr = MSR_IA32_PMC0;
6848                 pr_cont("full-width counters, ");
6849         }
6850
6851         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6852                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6853
6854         if (is_hybrid())
6855                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6856
6857         if (x86_pmu.intel_cap.pebs_timing_info)
6858                 x86_pmu.flags |= PMU_FL_RETIRE_LATENCY;
6859
6860         intel_aux_output_init();
6861
6862         return 0;
6863 }
6864
6865 /*
6866  * HT bug: phase 2 init
6867  * Called once we have valid topology information to check
6868  * whether or not HT is enabled
6869  * If HT is off, then we disable the workaround
6870  */
6871 static __init int fixup_ht_bug(void)
6872 {
6873         int c;
6874         /*
6875          * problem not present on this CPU model, nothing to do
6876          */
6877         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6878                 return 0;
6879
6880         if (topology_max_smt_threads() > 1) {
6881                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6882                 return 0;
6883         }
6884
6885         cpus_read_lock();
6886
6887         hardlockup_detector_perf_stop();
6888
6889         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6890
6891         x86_pmu.start_scheduling = NULL;
6892         x86_pmu.commit_scheduling = NULL;
6893         x86_pmu.stop_scheduling = NULL;
6894
6895         hardlockup_detector_perf_restart();
6896
6897         for_each_online_cpu(c)
6898                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6899
6900         cpus_read_unlock();
6901         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6902         return 0;
6903 }
6904 subsys_initcall(fixup_ht_bug)