Merge tag 'linux-watchdog-5.9-rc1' of git://www.linux-watchdog.org/linux-watchdog
[platform/kernel/linux-rpi.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54
55 u64 __read_mostly hw_cache_event_ids
56                                 [PERF_COUNT_HW_CACHE_MAX]
57                                 [PERF_COUNT_HW_CACHE_OP_MAX]
58                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60                                 [PERF_COUNT_HW_CACHE_MAX]
61                                 [PERF_COUNT_HW_CACHE_OP_MAX]
62                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71         struct hw_perf_event *hwc = &event->hw;
72         int shift = 64 - x86_pmu.cntval_bits;
73         u64 prev_raw_count, new_raw_count;
74         u64 delta;
75
76         if (unlikely(!hwc->event_base))
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 release_lbr_buffers();
362                 mutex_unlock(&pmc_reserve_mutex);
363         }
364 }
365
366 /*
367  * Check if we can create event of a certain type (that no conflicting events
368  * are present).
369  */
370 int x86_add_exclusive(unsigned int what)
371 {
372         int i;
373
374         /*
375          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
376          * LBR and BTS are still mutually exclusive.
377          */
378         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
379                 goto out;
380
381         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
382                 mutex_lock(&pmc_reserve_mutex);
383                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
384                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
385                                 goto fail_unlock;
386                 }
387                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
388                 mutex_unlock(&pmc_reserve_mutex);
389         }
390
391 out:
392         atomic_inc(&active_events);
393         return 0;
394
395 fail_unlock:
396         mutex_unlock(&pmc_reserve_mutex);
397         return -EBUSY;
398 }
399
400 void x86_del_exclusive(unsigned int what)
401 {
402         atomic_dec(&active_events);
403
404         /*
405          * See the comment in x86_add_exclusive().
406          */
407         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
408                 return;
409
410         atomic_dec(&x86_pmu.lbr_exclusive[what]);
411 }
412
413 int x86_setup_perfctr(struct perf_event *event)
414 {
415         struct perf_event_attr *attr = &event->attr;
416         struct hw_perf_event *hwc = &event->hw;
417         u64 config;
418
419         if (!is_sampling_event(event)) {
420                 hwc->sample_period = x86_pmu.max_period;
421                 hwc->last_period = hwc->sample_period;
422                 local64_set(&hwc->period_left, hwc->sample_period);
423         }
424
425         if (attr->type == PERF_TYPE_RAW)
426                 return x86_pmu_extra_regs(event->attr.config, event);
427
428         if (attr->type == PERF_TYPE_HW_CACHE)
429                 return set_ext_hw_attr(hwc, event);
430
431         if (attr->config >= x86_pmu.max_events)
432                 return -EINVAL;
433
434         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
435
436         /*
437          * The generic map:
438          */
439         config = x86_pmu.event_map(attr->config);
440
441         if (config == 0)
442                 return -ENOENT;
443
444         if (config == -1LL)
445                 return -EINVAL;
446
447         hwc->config |= config;
448
449         return 0;
450 }
451
452 /*
453  * check that branch_sample_type is compatible with
454  * settings needed for precise_ip > 1 which implies
455  * using the LBR to capture ALL taken branches at the
456  * priv levels of the measurement
457  */
458 static inline int precise_br_compat(struct perf_event *event)
459 {
460         u64 m = event->attr.branch_sample_type;
461         u64 b = 0;
462
463         /* must capture all branches */
464         if (!(m & PERF_SAMPLE_BRANCH_ANY))
465                 return 0;
466
467         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
468
469         if (!event->attr.exclude_user)
470                 b |= PERF_SAMPLE_BRANCH_USER;
471
472         if (!event->attr.exclude_kernel)
473                 b |= PERF_SAMPLE_BRANCH_KERNEL;
474
475         /*
476          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
477          */
478
479         return m == b;
480 }
481
482 int x86_pmu_max_precise(void)
483 {
484         int precise = 0;
485
486         /* Support for constant skid */
487         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
488                 precise++;
489
490                 /* Support for IP fixup */
491                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
492                         precise++;
493
494                 if (x86_pmu.pebs_prec_dist)
495                         precise++;
496         }
497         return precise;
498 }
499
500 int x86_pmu_hw_config(struct perf_event *event)
501 {
502         if (event->attr.precise_ip) {
503                 int precise = x86_pmu_max_precise();
504
505                 if (event->attr.precise_ip > precise)
506                         return -EOPNOTSUPP;
507
508                 /* There's no sense in having PEBS for non sampling events: */
509                 if (!is_sampling_event(event))
510                         return -EINVAL;
511         }
512         /*
513          * check that PEBS LBR correction does not conflict with
514          * whatever the user is asking with attr->branch_sample_type
515          */
516         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
517                 u64 *br_type = &event->attr.branch_sample_type;
518
519                 if (has_branch_stack(event)) {
520                         if (!precise_br_compat(event))
521                                 return -EOPNOTSUPP;
522
523                         /* branch_sample_type is compatible */
524
525                 } else {
526                         /*
527                          * user did not specify  branch_sample_type
528                          *
529                          * For PEBS fixups, we capture all
530                          * the branches at the priv level of the
531                          * event.
532                          */
533                         *br_type = PERF_SAMPLE_BRANCH_ANY;
534
535                         if (!event->attr.exclude_user)
536                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
537
538                         if (!event->attr.exclude_kernel)
539                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
540                 }
541         }
542
543         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
544                 event->attach_state |= PERF_ATTACH_TASK_DATA;
545
546         /*
547          * Generate PMC IRQs:
548          * (keep 'enabled' bit clear for now)
549          */
550         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
551
552         /*
553          * Count user and OS events unless requested not to
554          */
555         if (!event->attr.exclude_user)
556                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
557         if (!event->attr.exclude_kernel)
558                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
559
560         if (event->attr.type == PERF_TYPE_RAW)
561                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
562
563         if (event->attr.sample_period && x86_pmu.limit_period) {
564                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
565                                 event->attr.sample_period)
566                         return -EINVAL;
567         }
568
569         /* sample_regs_user never support XMM registers */
570         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
571                 return -EINVAL;
572         /*
573          * Besides the general purpose registers, XMM registers may
574          * be collected in PEBS on some platforms, e.g. Icelake
575          */
576         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
577                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
578                         return -EINVAL;
579
580                 if (!event->attr.precise_ip)
581                         return -EINVAL;
582         }
583
584         return x86_setup_perfctr(event);
585 }
586
587 /*
588  * Setup the hardware configuration for a given attr_type
589  */
590 static int __x86_pmu_event_init(struct perf_event *event)
591 {
592         int err;
593
594         if (!x86_pmu_initialized())
595                 return -ENODEV;
596
597         err = x86_reserve_hardware();
598         if (err)
599                 return err;
600
601         atomic_inc(&active_events);
602         event->destroy = hw_perf_event_destroy;
603
604         event->hw.idx = -1;
605         event->hw.last_cpu = -1;
606         event->hw.last_tag = ~0ULL;
607
608         /* mark unused */
609         event->hw.extra_reg.idx = EXTRA_REG_NONE;
610         event->hw.branch_reg.idx = EXTRA_REG_NONE;
611
612         return x86_pmu.hw_config(event);
613 }
614
615 void x86_pmu_disable_all(void)
616 {
617         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618         int idx;
619
620         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
621                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
622                 u64 val;
623
624                 if (!test_bit(idx, cpuc->active_mask))
625                         continue;
626                 rdmsrl(x86_pmu_config_addr(idx), val);
627                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
628                         continue;
629                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
630                 wrmsrl(x86_pmu_config_addr(idx), val);
631                 if (is_counter_pair(hwc))
632                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
633         }
634 }
635
636 /*
637  * There may be PMI landing after enabled=0. The PMI hitting could be before or
638  * after disable_all.
639  *
640  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
641  * It will not be re-enabled in the NMI handler again, because enabled=0. After
642  * handling the NMI, disable_all will be called, which will not change the
643  * state either. If PMI hits after disable_all, the PMU is already disabled
644  * before entering NMI handler. The NMI handler will not change the state
645  * either.
646  *
647  * So either situation is harmless.
648  */
649 static void x86_pmu_disable(struct pmu *pmu)
650 {
651         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652
653         if (!x86_pmu_initialized())
654                 return;
655
656         if (!cpuc->enabled)
657                 return;
658
659         cpuc->n_added = 0;
660         cpuc->enabled = 0;
661         barrier();
662
663         x86_pmu.disable_all();
664 }
665
666 void x86_pmu_enable_all(int added)
667 {
668         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
669         int idx;
670
671         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
672                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
673
674                 if (!test_bit(idx, cpuc->active_mask))
675                         continue;
676
677                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
678         }
679 }
680
681 static struct pmu pmu;
682
683 static inline int is_x86_event(struct perf_event *event)
684 {
685         return event->pmu == &pmu;
686 }
687
688 struct pmu *x86_get_pmu(void)
689 {
690         return &pmu;
691 }
692 /*
693  * Event scheduler state:
694  *
695  * Assign events iterating over all events and counters, beginning
696  * with events with least weights first. Keep the current iterator
697  * state in struct sched_state.
698  */
699 struct sched_state {
700         int     weight;
701         int     event;          /* event index */
702         int     counter;        /* counter index */
703         int     unassigned;     /* number of events to be assigned left */
704         int     nr_gp;          /* number of GP counters used */
705         u64     used;
706 };
707
708 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
709 #define SCHED_STATES_MAX        2
710
711 struct perf_sched {
712         int                     max_weight;
713         int                     max_events;
714         int                     max_gp;
715         int                     saved_states;
716         struct event_constraint **constraints;
717         struct sched_state      state;
718         struct sched_state      saved[SCHED_STATES_MAX];
719 };
720
721 /*
722  * Initialize interator that runs through all events and counters.
723  */
724 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
725                             int num, int wmin, int wmax, int gpmax)
726 {
727         int idx;
728
729         memset(sched, 0, sizeof(*sched));
730         sched->max_events       = num;
731         sched->max_weight       = wmax;
732         sched->max_gp           = gpmax;
733         sched->constraints      = constraints;
734
735         for (idx = 0; idx < num; idx++) {
736                 if (constraints[idx]->weight == wmin)
737                         break;
738         }
739
740         sched->state.event      = idx;          /* start with min weight */
741         sched->state.weight     = wmin;
742         sched->state.unassigned = num;
743 }
744
745 static void perf_sched_save_state(struct perf_sched *sched)
746 {
747         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
748                 return;
749
750         sched->saved[sched->saved_states] = sched->state;
751         sched->saved_states++;
752 }
753
754 static bool perf_sched_restore_state(struct perf_sched *sched)
755 {
756         if (!sched->saved_states)
757                 return false;
758
759         sched->saved_states--;
760         sched->state = sched->saved[sched->saved_states];
761
762         /* this assignment didn't work out */
763         /* XXX broken vs EVENT_PAIR */
764         sched->state.used &= ~BIT_ULL(sched->state.counter);
765
766         /* try the next one */
767         sched->state.counter++;
768
769         return true;
770 }
771
772 /*
773  * Select a counter for the current event to schedule. Return true on
774  * success.
775  */
776 static bool __perf_sched_find_counter(struct perf_sched *sched)
777 {
778         struct event_constraint *c;
779         int idx;
780
781         if (!sched->state.unassigned)
782                 return false;
783
784         if (sched->state.event >= sched->max_events)
785                 return false;
786
787         c = sched->constraints[sched->state.event];
788         /* Prefer fixed purpose counters */
789         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
790                 idx = INTEL_PMC_IDX_FIXED;
791                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
792                         u64 mask = BIT_ULL(idx);
793
794                         if (sched->state.used & mask)
795                                 continue;
796
797                         sched->state.used |= mask;
798                         goto done;
799                 }
800         }
801
802         /* Grab the first unused counter starting with idx */
803         idx = sched->state.counter;
804         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
805                 u64 mask = BIT_ULL(idx);
806
807                 if (c->flags & PERF_X86_EVENT_PAIR)
808                         mask |= mask << 1;
809
810                 if (sched->state.used & mask)
811                         continue;
812
813                 if (sched->state.nr_gp++ >= sched->max_gp)
814                         return false;
815
816                 sched->state.used |= mask;
817                 goto done;
818         }
819
820         return false;
821
822 done:
823         sched->state.counter = idx;
824
825         if (c->overlap)
826                 perf_sched_save_state(sched);
827
828         return true;
829 }
830
831 static bool perf_sched_find_counter(struct perf_sched *sched)
832 {
833         while (!__perf_sched_find_counter(sched)) {
834                 if (!perf_sched_restore_state(sched))
835                         return false;
836         }
837
838         return true;
839 }
840
841 /*
842  * Go through all unassigned events and find the next one to schedule.
843  * Take events with the least weight first. Return true on success.
844  */
845 static bool perf_sched_next_event(struct perf_sched *sched)
846 {
847         struct event_constraint *c;
848
849         if (!sched->state.unassigned || !--sched->state.unassigned)
850                 return false;
851
852         do {
853                 /* next event */
854                 sched->state.event++;
855                 if (sched->state.event >= sched->max_events) {
856                         /* next weight */
857                         sched->state.event = 0;
858                         sched->state.weight++;
859                         if (sched->state.weight > sched->max_weight)
860                                 return false;
861                 }
862                 c = sched->constraints[sched->state.event];
863         } while (c->weight != sched->state.weight);
864
865         sched->state.counter = 0;       /* start with first counter */
866
867         return true;
868 }
869
870 /*
871  * Assign a counter for each event.
872  */
873 int perf_assign_events(struct event_constraint **constraints, int n,
874                         int wmin, int wmax, int gpmax, int *assign)
875 {
876         struct perf_sched sched;
877
878         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
879
880         do {
881                 if (!perf_sched_find_counter(&sched))
882                         break;  /* failed */
883                 if (assign)
884                         assign[sched.state.event] = sched.state.counter;
885         } while (perf_sched_next_event(&sched));
886
887         return sched.state.unassigned;
888 }
889 EXPORT_SYMBOL_GPL(perf_assign_events);
890
891 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
892 {
893         struct event_constraint *c;
894         struct perf_event *e;
895         int n0, i, wmin, wmax, unsched = 0;
896         struct hw_perf_event *hwc;
897         u64 used_mask = 0;
898
899         /*
900          * Compute the number of events already present; see x86_pmu_add(),
901          * validate_group() and x86_pmu_commit_txn(). For the former two
902          * cpuc->n_events hasn't been updated yet, while for the latter
903          * cpuc->n_txn contains the number of events added in the current
904          * transaction.
905          */
906         n0 = cpuc->n_events;
907         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
908                 n0 -= cpuc->n_txn;
909
910         if (x86_pmu.start_scheduling)
911                 x86_pmu.start_scheduling(cpuc);
912
913         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
914                 c = cpuc->event_constraint[i];
915
916                 /*
917                  * Previously scheduled events should have a cached constraint,
918                  * while new events should not have one.
919                  */
920                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
921
922                 /*
923                  * Request constraints for new events; or for those events that
924                  * have a dynamic constraint -- for those the constraint can
925                  * change due to external factors (sibling state, allow_tfa).
926                  */
927                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
928                         c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
929                         cpuc->event_constraint[i] = c;
930                 }
931
932                 wmin = min(wmin, c->weight);
933                 wmax = max(wmax, c->weight);
934         }
935
936         /*
937          * fastpath, try to reuse previous register
938          */
939         for (i = 0; i < n; i++) {
940                 u64 mask;
941
942                 hwc = &cpuc->event_list[i]->hw;
943                 c = cpuc->event_constraint[i];
944
945                 /* never assigned */
946                 if (hwc->idx == -1)
947                         break;
948
949                 /* constraint still honored */
950                 if (!test_bit(hwc->idx, c->idxmsk))
951                         break;
952
953                 mask = BIT_ULL(hwc->idx);
954                 if (is_counter_pair(hwc))
955                         mask |= mask << 1;
956
957                 /* not already used */
958                 if (used_mask & mask)
959                         break;
960
961                 used_mask |= mask;
962
963                 if (assign)
964                         assign[i] = hwc->idx;
965         }
966
967         /* slow path */
968         if (i != n) {
969                 int gpmax = x86_pmu.num_counters;
970
971                 /*
972                  * Do not allow scheduling of more than half the available
973                  * generic counters.
974                  *
975                  * This helps avoid counter starvation of sibling thread by
976                  * ensuring at most half the counters cannot be in exclusive
977                  * mode. There is no designated counters for the limits. Any
978                  * N/2 counters can be used. This helps with events with
979                  * specific counter constraints.
980                  */
981                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
982                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
983                         gpmax /= 2;
984
985                 /*
986                  * Reduce the amount of available counters to allow fitting
987                  * the extra Merge events needed by large increment events.
988                  */
989                 if (x86_pmu.flags & PMU_FL_PAIR) {
990                         gpmax = x86_pmu.num_counters - cpuc->n_pair;
991                         WARN_ON(gpmax <= 0);
992                 }
993
994                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
995                                              wmax, gpmax, assign);
996         }
997
998         /*
999          * In case of success (unsched = 0), mark events as committed,
1000          * so we do not put_constraint() in case new events are added
1001          * and fail to be scheduled
1002          *
1003          * We invoke the lower level commit callback to lock the resource
1004          *
1005          * We do not need to do all of this in case we are called to
1006          * validate an event group (assign == NULL)
1007          */
1008         if (!unsched && assign) {
1009                 for (i = 0; i < n; i++) {
1010                         e = cpuc->event_list[i];
1011                         if (x86_pmu.commit_scheduling)
1012                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1013                 }
1014         } else {
1015                 for (i = n0; i < n; i++) {
1016                         e = cpuc->event_list[i];
1017
1018                         /*
1019                          * release events that failed scheduling
1020                          */
1021                         if (x86_pmu.put_event_constraints)
1022                                 x86_pmu.put_event_constraints(cpuc, e);
1023
1024                         cpuc->event_constraint[i] = NULL;
1025                 }
1026         }
1027
1028         if (x86_pmu.stop_scheduling)
1029                 x86_pmu.stop_scheduling(cpuc);
1030
1031         return unsched ? -EINVAL : 0;
1032 }
1033
1034 /*
1035  * dogrp: true if must collect siblings events (group)
1036  * returns total number of events and error code
1037  */
1038 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1039 {
1040         struct perf_event *event;
1041         int n, max_count;
1042
1043         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1044
1045         /* current number of events already accepted */
1046         n = cpuc->n_events;
1047         if (!cpuc->n_events)
1048                 cpuc->pebs_output = 0;
1049
1050         if (!cpuc->is_fake && leader->attr.precise_ip) {
1051                 /*
1052                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1053                  * away, the group was broken down and this singleton event
1054                  * can't schedule any more.
1055                  */
1056                 if (is_pebs_pt(leader) && !leader->aux_event)
1057                         return -EINVAL;
1058
1059                 /*
1060                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1061                  */
1062                 if (cpuc->pebs_output &&
1063                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1064                         return -EINVAL;
1065
1066                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1067         }
1068
1069         if (is_x86_event(leader)) {
1070                 if (n >= max_count)
1071                         return -EINVAL;
1072                 cpuc->event_list[n] = leader;
1073                 n++;
1074                 if (is_counter_pair(&leader->hw))
1075                         cpuc->n_pair++;
1076         }
1077         if (!dogrp)
1078                 return n;
1079
1080         for_each_sibling_event(event, leader) {
1081                 if (!is_x86_event(event) ||
1082                     event->state <= PERF_EVENT_STATE_OFF)
1083                         continue;
1084
1085                 if (n >= max_count)
1086                         return -EINVAL;
1087
1088                 cpuc->event_list[n] = event;
1089                 n++;
1090                 if (is_counter_pair(&event->hw))
1091                         cpuc->n_pair++;
1092         }
1093         return n;
1094 }
1095
1096 static inline void x86_assign_hw_event(struct perf_event *event,
1097                                 struct cpu_hw_events *cpuc, int i)
1098 {
1099         struct hw_perf_event *hwc = &event->hw;
1100         int idx;
1101
1102         idx = hwc->idx = cpuc->assign[i];
1103         hwc->last_cpu = smp_processor_id();
1104         hwc->last_tag = ++cpuc->tags[i];
1105
1106         switch (hwc->idx) {
1107         case INTEL_PMC_IDX_FIXED_BTS:
1108         case INTEL_PMC_IDX_FIXED_VLBR:
1109                 hwc->config_base = 0;
1110                 hwc->event_base = 0;
1111                 break;
1112
1113         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1114                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1115                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1116                                 (idx - INTEL_PMC_IDX_FIXED);
1117                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1118                 break;
1119
1120         default:
1121                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1122                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1123                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1124                 break;
1125         }
1126 }
1127
1128 /**
1129  * x86_perf_rdpmc_index - Return PMC counter used for event
1130  * @event: the perf_event to which the PMC counter was assigned
1131  *
1132  * The counter assigned to this performance event may change if interrupts
1133  * are enabled. This counter should thus never be used while interrupts are
1134  * enabled. Before this function is used to obtain the assigned counter the
1135  * event should be checked for validity using, for example,
1136  * perf_event_read_local(), within the same interrupt disabled section in
1137  * which this counter is planned to be used.
1138  *
1139  * Return: The index of the performance monitoring counter assigned to
1140  * @perf_event.
1141  */
1142 int x86_perf_rdpmc_index(struct perf_event *event)
1143 {
1144         lockdep_assert_irqs_disabled();
1145
1146         return event->hw.event_base_rdpmc;
1147 }
1148
1149 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1150                                         struct cpu_hw_events *cpuc,
1151                                         int i)
1152 {
1153         return hwc->idx == cpuc->assign[i] &&
1154                 hwc->last_cpu == smp_processor_id() &&
1155                 hwc->last_tag == cpuc->tags[i];
1156 }
1157
1158 static void x86_pmu_start(struct perf_event *event, int flags);
1159
1160 static void x86_pmu_enable(struct pmu *pmu)
1161 {
1162         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163         struct perf_event *event;
1164         struct hw_perf_event *hwc;
1165         int i, added = cpuc->n_added;
1166
1167         if (!x86_pmu_initialized())
1168                 return;
1169
1170         if (cpuc->enabled)
1171                 return;
1172
1173         if (cpuc->n_added) {
1174                 int n_running = cpuc->n_events - cpuc->n_added;
1175                 /*
1176                  * apply assignment obtained either from
1177                  * hw_perf_group_sched_in() or x86_pmu_enable()
1178                  *
1179                  * step1: save events moving to new counters
1180                  */
1181                 for (i = 0; i < n_running; i++) {
1182                         event = cpuc->event_list[i];
1183                         hwc = &event->hw;
1184
1185                         /*
1186                          * we can avoid reprogramming counter if:
1187                          * - assigned same counter as last time
1188                          * - running on same CPU as last time
1189                          * - no other event has used the counter since
1190                          */
1191                         if (hwc->idx == -1 ||
1192                             match_prev_assignment(hwc, cpuc, i))
1193                                 continue;
1194
1195                         /*
1196                          * Ensure we don't accidentally enable a stopped
1197                          * counter simply because we rescheduled.
1198                          */
1199                         if (hwc->state & PERF_HES_STOPPED)
1200                                 hwc->state |= PERF_HES_ARCH;
1201
1202                         x86_pmu_stop(event, PERF_EF_UPDATE);
1203                 }
1204
1205                 /*
1206                  * step2: reprogram moved events into new counters
1207                  */
1208                 for (i = 0; i < cpuc->n_events; i++) {
1209                         event = cpuc->event_list[i];
1210                         hwc = &event->hw;
1211
1212                         if (!match_prev_assignment(hwc, cpuc, i))
1213                                 x86_assign_hw_event(event, cpuc, i);
1214                         else if (i < n_running)
1215                                 continue;
1216
1217                         if (hwc->state & PERF_HES_ARCH)
1218                                 continue;
1219
1220                         x86_pmu_start(event, PERF_EF_RELOAD);
1221                 }
1222                 cpuc->n_added = 0;
1223                 perf_events_lapic_init();
1224         }
1225
1226         cpuc->enabled = 1;
1227         barrier();
1228
1229         x86_pmu.enable_all(added);
1230 }
1231
1232 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1233
1234 /*
1235  * Set the next IRQ period, based on the hwc->period_left value.
1236  * To be called with the event disabled in hw:
1237  */
1238 int x86_perf_event_set_period(struct perf_event *event)
1239 {
1240         struct hw_perf_event *hwc = &event->hw;
1241         s64 left = local64_read(&hwc->period_left);
1242         s64 period = hwc->sample_period;
1243         int ret = 0, idx = hwc->idx;
1244
1245         if (unlikely(!hwc->event_base))
1246                 return 0;
1247
1248         /*
1249          * If we are way outside a reasonable range then just skip forward:
1250          */
1251         if (unlikely(left <= -period)) {
1252                 left = period;
1253                 local64_set(&hwc->period_left, left);
1254                 hwc->last_period = period;
1255                 ret = 1;
1256         }
1257
1258         if (unlikely(left <= 0)) {
1259                 left += period;
1260                 local64_set(&hwc->period_left, left);
1261                 hwc->last_period = period;
1262                 ret = 1;
1263         }
1264         /*
1265          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1266          */
1267         if (unlikely(left < 2))
1268                 left = 2;
1269
1270         if (left > x86_pmu.max_period)
1271                 left = x86_pmu.max_period;
1272
1273         if (x86_pmu.limit_period)
1274                 left = x86_pmu.limit_period(event, left);
1275
1276         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1277
1278         /*
1279          * The hw event starts counting from this event offset,
1280          * mark it to be able to extra future deltas:
1281          */
1282         local64_set(&hwc->prev_count, (u64)-left);
1283
1284         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1285
1286         /*
1287          * Clear the Merge event counter's upper 16 bits since
1288          * we currently declare a 48-bit counter width
1289          */
1290         if (is_counter_pair(hwc))
1291                 wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1292
1293         /*
1294          * Due to erratum on certan cpu we need
1295          * a second write to be sure the register
1296          * is updated properly
1297          */
1298         if (x86_pmu.perfctr_second_write) {
1299                 wrmsrl(hwc->event_base,
1300                         (u64)(-left) & x86_pmu.cntval_mask);
1301         }
1302
1303         perf_event_update_userpage(event);
1304
1305         return ret;
1306 }
1307
1308 void x86_pmu_enable_event(struct perf_event *event)
1309 {
1310         if (__this_cpu_read(cpu_hw_events.enabled))
1311                 __x86_pmu_enable_event(&event->hw,
1312                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1313 }
1314
1315 /*
1316  * Add a single event to the PMU.
1317  *
1318  * The event is added to the group of enabled events
1319  * but only if it can be scheduled with existing events.
1320  */
1321 static int x86_pmu_add(struct perf_event *event, int flags)
1322 {
1323         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1324         struct hw_perf_event *hwc;
1325         int assign[X86_PMC_IDX_MAX];
1326         int n, n0, ret;
1327
1328         hwc = &event->hw;
1329
1330         n0 = cpuc->n_events;
1331         ret = n = collect_events(cpuc, event, false);
1332         if (ret < 0)
1333                 goto out;
1334
1335         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1336         if (!(flags & PERF_EF_START))
1337                 hwc->state |= PERF_HES_ARCH;
1338
1339         /*
1340          * If group events scheduling transaction was started,
1341          * skip the schedulability test here, it will be performed
1342          * at commit time (->commit_txn) as a whole.
1343          *
1344          * If commit fails, we'll call ->del() on all events
1345          * for which ->add() was called.
1346          */
1347         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1348                 goto done_collect;
1349
1350         ret = x86_pmu.schedule_events(cpuc, n, assign);
1351         if (ret)
1352                 goto out;
1353         /*
1354          * copy new assignment, now we know it is possible
1355          * will be used by hw_perf_enable()
1356          */
1357         memcpy(cpuc->assign, assign, n*sizeof(int));
1358
1359 done_collect:
1360         /*
1361          * Commit the collect_events() state. See x86_pmu_del() and
1362          * x86_pmu_*_txn().
1363          */
1364         cpuc->n_events = n;
1365         cpuc->n_added += n - n0;
1366         cpuc->n_txn += n - n0;
1367
1368         if (x86_pmu.add) {
1369                 /*
1370                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1371                  * so we enable LBRs before an event needs them etc..
1372                  */
1373                 x86_pmu.add(event);
1374         }
1375
1376         ret = 0;
1377 out:
1378         return ret;
1379 }
1380
1381 static void x86_pmu_start(struct perf_event *event, int flags)
1382 {
1383         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384         int idx = event->hw.idx;
1385
1386         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1387                 return;
1388
1389         if (WARN_ON_ONCE(idx == -1))
1390                 return;
1391
1392         if (flags & PERF_EF_RELOAD) {
1393                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1394                 x86_perf_event_set_period(event);
1395         }
1396
1397         event->hw.state = 0;
1398
1399         cpuc->events[idx] = event;
1400         __set_bit(idx, cpuc->active_mask);
1401         __set_bit(idx, cpuc->running);
1402         x86_pmu.enable(event);
1403         perf_event_update_userpage(event);
1404 }
1405
1406 void perf_event_print_debug(void)
1407 {
1408         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1409         u64 pebs, debugctl;
1410         struct cpu_hw_events *cpuc;
1411         unsigned long flags;
1412         int cpu, idx;
1413
1414         if (!x86_pmu.num_counters)
1415                 return;
1416
1417         local_irq_save(flags);
1418
1419         cpu = smp_processor_id();
1420         cpuc = &per_cpu(cpu_hw_events, cpu);
1421
1422         if (x86_pmu.version >= 2) {
1423                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1424                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1425                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1426                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1427
1428                 pr_info("\n");
1429                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1430                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1431                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1432                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1433                 if (x86_pmu.pebs_constraints) {
1434                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1435                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1436                 }
1437                 if (x86_pmu.lbr_nr) {
1438                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1439                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1440                 }
1441         }
1442         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1443
1444         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1445                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1446                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1447
1448                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1449
1450                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1451                         cpu, idx, pmc_ctrl);
1452                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1453                         cpu, idx, pmc_count);
1454                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1455                         cpu, idx, prev_left);
1456         }
1457         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1458                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1459
1460                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1461                         cpu, idx, pmc_count);
1462         }
1463         local_irq_restore(flags);
1464 }
1465
1466 void x86_pmu_stop(struct perf_event *event, int flags)
1467 {
1468         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1469         struct hw_perf_event *hwc = &event->hw;
1470
1471         if (test_bit(hwc->idx, cpuc->active_mask)) {
1472                 x86_pmu.disable(event);
1473                 __clear_bit(hwc->idx, cpuc->active_mask);
1474                 cpuc->events[hwc->idx] = NULL;
1475                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1476                 hwc->state |= PERF_HES_STOPPED;
1477         }
1478
1479         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1480                 /*
1481                  * Drain the remaining delta count out of a event
1482                  * that we are disabling:
1483                  */
1484                 x86_perf_event_update(event);
1485                 hwc->state |= PERF_HES_UPTODATE;
1486         }
1487 }
1488
1489 static void x86_pmu_del(struct perf_event *event, int flags)
1490 {
1491         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492         int i;
1493
1494         /*
1495          * If we're called during a txn, we only need to undo x86_pmu.add.
1496          * The events never got scheduled and ->cancel_txn will truncate
1497          * the event_list.
1498          *
1499          * XXX assumes any ->del() called during a TXN will only be on
1500          * an event added during that same TXN.
1501          */
1502         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1503                 goto do_del;
1504
1505         /*
1506          * Not a TXN, therefore cleanup properly.
1507          */
1508         x86_pmu_stop(event, PERF_EF_UPDATE);
1509
1510         for (i = 0; i < cpuc->n_events; i++) {
1511                 if (event == cpuc->event_list[i])
1512                         break;
1513         }
1514
1515         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1516                 return;
1517
1518         /* If we have a newly added event; make sure to decrease n_added. */
1519         if (i >= cpuc->n_events - cpuc->n_added)
1520                 --cpuc->n_added;
1521
1522         if (x86_pmu.put_event_constraints)
1523                 x86_pmu.put_event_constraints(cpuc, event);
1524
1525         /* Delete the array entry. */
1526         while (++i < cpuc->n_events) {
1527                 cpuc->event_list[i-1] = cpuc->event_list[i];
1528                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1529         }
1530         cpuc->event_constraint[i-1] = NULL;
1531         --cpuc->n_events;
1532
1533         perf_event_update_userpage(event);
1534
1535 do_del:
1536         if (x86_pmu.del) {
1537                 /*
1538                  * This is after x86_pmu_stop(); so we disable LBRs after any
1539                  * event can need them etc..
1540                  */
1541                 x86_pmu.del(event);
1542         }
1543 }
1544
1545 int x86_pmu_handle_irq(struct pt_regs *regs)
1546 {
1547         struct perf_sample_data data;
1548         struct cpu_hw_events *cpuc;
1549         struct perf_event *event;
1550         int idx, handled = 0;
1551         u64 val;
1552
1553         cpuc = this_cpu_ptr(&cpu_hw_events);
1554
1555         /*
1556          * Some chipsets need to unmask the LVTPC in a particular spot
1557          * inside the nmi handler.  As a result, the unmasking was pushed
1558          * into all the nmi handlers.
1559          *
1560          * This generic handler doesn't seem to have any issues where the
1561          * unmasking occurs so it was left at the top.
1562          */
1563         apic_write(APIC_LVTPC, APIC_DM_NMI);
1564
1565         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1566                 if (!test_bit(idx, cpuc->active_mask))
1567                         continue;
1568
1569                 event = cpuc->events[idx];
1570
1571                 val = x86_perf_event_update(event);
1572                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1573                         continue;
1574
1575                 /*
1576                  * event overflow
1577                  */
1578                 handled++;
1579                 perf_sample_data_init(&data, 0, event->hw.last_period);
1580
1581                 if (!x86_perf_event_set_period(event))
1582                         continue;
1583
1584                 if (perf_event_overflow(event, &data, regs))
1585                         x86_pmu_stop(event, 0);
1586         }
1587
1588         if (handled)
1589                 inc_irq_stat(apic_perf_irqs);
1590
1591         return handled;
1592 }
1593
1594 void perf_events_lapic_init(void)
1595 {
1596         if (!x86_pmu.apic || !x86_pmu_initialized())
1597                 return;
1598
1599         /*
1600          * Always use NMI for PMU
1601          */
1602         apic_write(APIC_LVTPC, APIC_DM_NMI);
1603 }
1604
1605 static int
1606 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1607 {
1608         u64 start_clock;
1609         u64 finish_clock;
1610         int ret;
1611
1612         /*
1613          * All PMUs/events that share this PMI handler should make sure to
1614          * increment active_events for their events.
1615          */
1616         if (!atomic_read(&active_events))
1617                 return NMI_DONE;
1618
1619         start_clock = sched_clock();
1620         ret = x86_pmu.handle_irq(regs);
1621         finish_clock = sched_clock();
1622
1623         perf_sample_event_took(finish_clock - start_clock);
1624
1625         return ret;
1626 }
1627 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1628
1629 struct event_constraint emptyconstraint;
1630 struct event_constraint unconstrained;
1631
1632 static int x86_pmu_prepare_cpu(unsigned int cpu)
1633 {
1634         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1635         int i;
1636
1637         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1638                 cpuc->kfree_on_online[i] = NULL;
1639         if (x86_pmu.cpu_prepare)
1640                 return x86_pmu.cpu_prepare(cpu);
1641         return 0;
1642 }
1643
1644 static int x86_pmu_dead_cpu(unsigned int cpu)
1645 {
1646         if (x86_pmu.cpu_dead)
1647                 x86_pmu.cpu_dead(cpu);
1648         return 0;
1649 }
1650
1651 static int x86_pmu_online_cpu(unsigned int cpu)
1652 {
1653         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1654         int i;
1655
1656         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1657                 kfree(cpuc->kfree_on_online[i]);
1658                 cpuc->kfree_on_online[i] = NULL;
1659         }
1660         return 0;
1661 }
1662
1663 static int x86_pmu_starting_cpu(unsigned int cpu)
1664 {
1665         if (x86_pmu.cpu_starting)
1666                 x86_pmu.cpu_starting(cpu);
1667         return 0;
1668 }
1669
1670 static int x86_pmu_dying_cpu(unsigned int cpu)
1671 {
1672         if (x86_pmu.cpu_dying)
1673                 x86_pmu.cpu_dying(cpu);
1674         return 0;
1675 }
1676
1677 static void __init pmu_check_apic(void)
1678 {
1679         if (boot_cpu_has(X86_FEATURE_APIC))
1680                 return;
1681
1682         x86_pmu.apic = 0;
1683         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1684         pr_info("no hardware sampling interrupt available.\n");
1685
1686         /*
1687          * If we have a PMU initialized but no APIC
1688          * interrupts, we cannot sample hardware
1689          * events (user-space has to fall back and
1690          * sample via a hrtimer based software event):
1691          */
1692         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1693
1694 }
1695
1696 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1697         .name = "format",
1698         .attrs = NULL,
1699 };
1700
1701 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1702 {
1703         struct perf_pmu_events_attr *pmu_attr =
1704                 container_of(attr, struct perf_pmu_events_attr, attr);
1705         u64 config = 0;
1706
1707         if (pmu_attr->id < x86_pmu.max_events)
1708                 config = x86_pmu.event_map(pmu_attr->id);
1709
1710         /* string trumps id */
1711         if (pmu_attr->event_str)
1712                 return sprintf(page, "%s", pmu_attr->event_str);
1713
1714         return x86_pmu.events_sysfs_show(page, config);
1715 }
1716 EXPORT_SYMBOL_GPL(events_sysfs_show);
1717
1718 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1719                           char *page)
1720 {
1721         struct perf_pmu_events_ht_attr *pmu_attr =
1722                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1723
1724         /*
1725          * Report conditional events depending on Hyper-Threading.
1726          *
1727          * This is overly conservative as usually the HT special
1728          * handling is not needed if the other CPU thread is idle.
1729          *
1730          * Note this does not (and cannot) handle the case when thread
1731          * siblings are invisible, for example with virtualization
1732          * if they are owned by some other guest.  The user tool
1733          * has to re-read when a thread sibling gets onlined later.
1734          */
1735         return sprintf(page, "%s",
1736                         topology_max_smt_threads() > 1 ?
1737                         pmu_attr->event_str_ht :
1738                         pmu_attr->event_str_noht);
1739 }
1740
1741 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1742 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1743 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1744 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1745 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1746 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1747 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1748 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1749 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1750 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1751
1752 static struct attribute *empty_attrs;
1753
1754 static struct attribute *events_attr[] = {
1755         EVENT_PTR(CPU_CYCLES),
1756         EVENT_PTR(INSTRUCTIONS),
1757         EVENT_PTR(CACHE_REFERENCES),
1758         EVENT_PTR(CACHE_MISSES),
1759         EVENT_PTR(BRANCH_INSTRUCTIONS),
1760         EVENT_PTR(BRANCH_MISSES),
1761         EVENT_PTR(BUS_CYCLES),
1762         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1763         EVENT_PTR(STALLED_CYCLES_BACKEND),
1764         EVENT_PTR(REF_CPU_CYCLES),
1765         NULL,
1766 };
1767
1768 /*
1769  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1770  * out of events_attr attributes.
1771  */
1772 static umode_t
1773 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1774 {
1775         struct perf_pmu_events_attr *pmu_attr;
1776
1777         if (idx >= x86_pmu.max_events)
1778                 return 0;
1779
1780         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1781         /* str trumps id */
1782         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1783 }
1784
1785 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1786         .name = "events",
1787         .attrs = events_attr,
1788         .is_visible = is_visible,
1789 };
1790
1791 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1792 {
1793         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1794         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1795         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1796         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1797         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1798         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1799         ssize_t ret;
1800
1801         /*
1802         * We have whole page size to spend and just little data
1803         * to write, so we can safely use sprintf.
1804         */
1805         ret = sprintf(page, "event=0x%02llx", event);
1806
1807         if (umask)
1808                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1809
1810         if (edge)
1811                 ret += sprintf(page + ret, ",edge");
1812
1813         if (pc)
1814                 ret += sprintf(page + ret, ",pc");
1815
1816         if (any)
1817                 ret += sprintf(page + ret, ",any");
1818
1819         if (inv)
1820                 ret += sprintf(page + ret, ",inv");
1821
1822         if (cmask)
1823                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1824
1825         ret += sprintf(page + ret, "\n");
1826
1827         return ret;
1828 }
1829
1830 static struct attribute_group x86_pmu_attr_group;
1831 static struct attribute_group x86_pmu_caps_group;
1832
1833 static int __init init_hw_perf_events(void)
1834 {
1835         struct x86_pmu_quirk *quirk;
1836         int err;
1837
1838         pr_info("Performance Events: ");
1839
1840         switch (boot_cpu_data.x86_vendor) {
1841         case X86_VENDOR_INTEL:
1842                 err = intel_pmu_init();
1843                 break;
1844         case X86_VENDOR_AMD:
1845                 err = amd_pmu_init();
1846                 break;
1847         case X86_VENDOR_HYGON:
1848                 err = amd_pmu_init();
1849                 x86_pmu.name = "HYGON";
1850                 break;
1851         case X86_VENDOR_ZHAOXIN:
1852         case X86_VENDOR_CENTAUR:
1853                 err = zhaoxin_pmu_init();
1854                 break;
1855         default:
1856                 err = -ENOTSUPP;
1857         }
1858         if (err != 0) {
1859                 pr_cont("no PMU driver, software events only.\n");
1860                 return 0;
1861         }
1862
1863         pmu_check_apic();
1864
1865         /* sanity check that the hardware exists or is emulated */
1866         if (!check_hw_exists())
1867                 return 0;
1868
1869         pr_cont("%s PMU driver.\n", x86_pmu.name);
1870
1871         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1872
1873         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1874                 quirk->func();
1875
1876         if (!x86_pmu.intel_ctrl)
1877                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1878
1879         perf_events_lapic_init();
1880         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1881
1882         unconstrained = (struct event_constraint)
1883                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1884                                    0, x86_pmu.num_counters, 0, 0);
1885
1886         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1887
1888         if (!x86_pmu.events_sysfs_show)
1889                 x86_pmu_events_group.attrs = &empty_attrs;
1890
1891         pmu.attr_update = x86_pmu.attr_update;
1892
1893         pr_info("... version:                %d\n",     x86_pmu.version);
1894         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1895         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1896         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1897         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1898         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1899         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1900
1901         /*
1902          * Install callbacks. Core will call them for each online
1903          * cpu.
1904          */
1905         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1906                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1907         if (err)
1908                 return err;
1909
1910         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1911                                 "perf/x86:starting", x86_pmu_starting_cpu,
1912                                 x86_pmu_dying_cpu);
1913         if (err)
1914                 goto out;
1915
1916         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1917                                 x86_pmu_online_cpu, NULL);
1918         if (err)
1919                 goto out1;
1920
1921         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1922         if (err)
1923                 goto out2;
1924
1925         return 0;
1926
1927 out2:
1928         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1929 out1:
1930         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1931 out:
1932         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1933         return err;
1934 }
1935 early_initcall(init_hw_perf_events);
1936
1937 static inline void x86_pmu_read(struct perf_event *event)
1938 {
1939         if (x86_pmu.read)
1940                 return x86_pmu.read(event);
1941         x86_perf_event_update(event);
1942 }
1943
1944 /*
1945  * Start group events scheduling transaction
1946  * Set the flag to make pmu::enable() not perform the
1947  * schedulability test, it will be performed at commit time
1948  *
1949  * We only support PERF_PMU_TXN_ADD transactions. Save the
1950  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1951  * transactions.
1952  */
1953 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1954 {
1955         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1956
1957         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1958
1959         cpuc->txn_flags = txn_flags;
1960         if (txn_flags & ~PERF_PMU_TXN_ADD)
1961                 return;
1962
1963         perf_pmu_disable(pmu);
1964         __this_cpu_write(cpu_hw_events.n_txn, 0);
1965 }
1966
1967 /*
1968  * Stop group events scheduling transaction
1969  * Clear the flag and pmu::enable() will perform the
1970  * schedulability test.
1971  */
1972 static void x86_pmu_cancel_txn(struct pmu *pmu)
1973 {
1974         unsigned int txn_flags;
1975         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1976
1977         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1978
1979         txn_flags = cpuc->txn_flags;
1980         cpuc->txn_flags = 0;
1981         if (txn_flags & ~PERF_PMU_TXN_ADD)
1982                 return;
1983
1984         /*
1985          * Truncate collected array by the number of events added in this
1986          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1987          */
1988         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1989         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1990         perf_pmu_enable(pmu);
1991 }
1992
1993 /*
1994  * Commit group events scheduling transaction
1995  * Perform the group schedulability test as a whole
1996  * Return 0 if success
1997  *
1998  * Does not cancel the transaction on failure; expects the caller to do this.
1999  */
2000 static int x86_pmu_commit_txn(struct pmu *pmu)
2001 {
2002         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2003         int assign[X86_PMC_IDX_MAX];
2004         int n, ret;
2005
2006         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2007
2008         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2009                 cpuc->txn_flags = 0;
2010                 return 0;
2011         }
2012
2013         n = cpuc->n_events;
2014
2015         if (!x86_pmu_initialized())
2016                 return -EAGAIN;
2017
2018         ret = x86_pmu.schedule_events(cpuc, n, assign);
2019         if (ret)
2020                 return ret;
2021
2022         /*
2023          * copy new assignment, now we know it is possible
2024          * will be used by hw_perf_enable()
2025          */
2026         memcpy(cpuc->assign, assign, n*sizeof(int));
2027
2028         cpuc->txn_flags = 0;
2029         perf_pmu_enable(pmu);
2030         return 0;
2031 }
2032 /*
2033  * a fake_cpuc is used to validate event groups. Due to
2034  * the extra reg logic, we need to also allocate a fake
2035  * per_core and per_cpu structure. Otherwise, group events
2036  * using extra reg may conflict without the kernel being
2037  * able to catch this when the last event gets added to
2038  * the group.
2039  */
2040 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2041 {
2042         intel_cpuc_finish(cpuc);
2043         kfree(cpuc);
2044 }
2045
2046 static struct cpu_hw_events *allocate_fake_cpuc(void)
2047 {
2048         struct cpu_hw_events *cpuc;
2049         int cpu = raw_smp_processor_id();
2050
2051         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2052         if (!cpuc)
2053                 return ERR_PTR(-ENOMEM);
2054         cpuc->is_fake = 1;
2055
2056         if (intel_cpuc_prepare(cpuc, cpu))
2057                 goto error;
2058
2059         return cpuc;
2060 error:
2061         free_fake_cpuc(cpuc);
2062         return ERR_PTR(-ENOMEM);
2063 }
2064
2065 /*
2066  * validate that we can schedule this event
2067  */
2068 static int validate_event(struct perf_event *event)
2069 {
2070         struct cpu_hw_events *fake_cpuc;
2071         struct event_constraint *c;
2072         int ret = 0;
2073
2074         fake_cpuc = allocate_fake_cpuc();
2075         if (IS_ERR(fake_cpuc))
2076                 return PTR_ERR(fake_cpuc);
2077
2078         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2079
2080         if (!c || !c->weight)
2081                 ret = -EINVAL;
2082
2083         if (x86_pmu.put_event_constraints)
2084                 x86_pmu.put_event_constraints(fake_cpuc, event);
2085
2086         free_fake_cpuc(fake_cpuc);
2087
2088         return ret;
2089 }
2090
2091 /*
2092  * validate a single event group
2093  *
2094  * validation include:
2095  *      - check events are compatible which each other
2096  *      - events do not compete for the same counter
2097  *      - number of events <= number of counters
2098  *
2099  * validation ensures the group can be loaded onto the
2100  * PMU if it was the only group available.
2101  */
2102 static int validate_group(struct perf_event *event)
2103 {
2104         struct perf_event *leader = event->group_leader;
2105         struct cpu_hw_events *fake_cpuc;
2106         int ret = -EINVAL, n;
2107
2108         fake_cpuc = allocate_fake_cpuc();
2109         if (IS_ERR(fake_cpuc))
2110                 return PTR_ERR(fake_cpuc);
2111         /*
2112          * the event is not yet connected with its
2113          * siblings therefore we must first collect
2114          * existing siblings, then add the new event
2115          * before we can simulate the scheduling
2116          */
2117         n = collect_events(fake_cpuc, leader, true);
2118         if (n < 0)
2119                 goto out;
2120
2121         fake_cpuc->n_events = n;
2122         n = collect_events(fake_cpuc, event, false);
2123         if (n < 0)
2124                 goto out;
2125
2126         fake_cpuc->n_events = 0;
2127         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2128
2129 out:
2130         free_fake_cpuc(fake_cpuc);
2131         return ret;
2132 }
2133
2134 static int x86_pmu_event_init(struct perf_event *event)
2135 {
2136         struct pmu *tmp;
2137         int err;
2138
2139         switch (event->attr.type) {
2140         case PERF_TYPE_RAW:
2141         case PERF_TYPE_HARDWARE:
2142         case PERF_TYPE_HW_CACHE:
2143                 break;
2144
2145         default:
2146                 return -ENOENT;
2147         }
2148
2149         err = __x86_pmu_event_init(event);
2150         if (!err) {
2151                 /*
2152                  * we temporarily connect event to its pmu
2153                  * such that validate_group() can classify
2154                  * it as an x86 event using is_x86_event()
2155                  */
2156                 tmp = event->pmu;
2157                 event->pmu = &pmu;
2158
2159                 if (event->group_leader != event)
2160                         err = validate_group(event);
2161                 else
2162                         err = validate_event(event);
2163
2164                 event->pmu = tmp;
2165         }
2166         if (err) {
2167                 if (event->destroy)
2168                         event->destroy(event);
2169         }
2170
2171         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2172             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2173                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2174
2175         return err;
2176 }
2177
2178 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2179 {
2180         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2181                 return;
2182
2183         /*
2184          * This function relies on not being called concurrently in two
2185          * tasks in the same mm.  Otherwise one task could observe
2186          * perf_rdpmc_allowed > 1 and return all the way back to
2187          * userspace with CR4.PCE clear while another task is still
2188          * doing on_each_cpu_mask() to propagate CR4.PCE.
2189          *
2190          * For now, this can't happen because all callers hold mmap_lock
2191          * for write.  If this changes, we'll need a different solution.
2192          */
2193         mmap_assert_write_locked(mm);
2194
2195         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2196                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2197 }
2198
2199 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2200 {
2201
2202         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2203                 return;
2204
2205         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2206                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2207 }
2208
2209 static int x86_pmu_event_idx(struct perf_event *event)
2210 {
2211         int idx = event->hw.idx;
2212
2213         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2214                 return 0;
2215
2216         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2217                 idx -= INTEL_PMC_IDX_FIXED;
2218                 idx |= 1 << 30;
2219         }
2220
2221         return idx + 1;
2222 }
2223
2224 static ssize_t get_attr_rdpmc(struct device *cdev,
2225                               struct device_attribute *attr,
2226                               char *buf)
2227 {
2228         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2229 }
2230
2231 static ssize_t set_attr_rdpmc(struct device *cdev,
2232                               struct device_attribute *attr,
2233                               const char *buf, size_t count)
2234 {
2235         unsigned long val;
2236         ssize_t ret;
2237
2238         ret = kstrtoul(buf, 0, &val);
2239         if (ret)
2240                 return ret;
2241
2242         if (val > 2)
2243                 return -EINVAL;
2244
2245         if (x86_pmu.attr_rdpmc_broken)
2246                 return -ENOTSUPP;
2247
2248         if (val != x86_pmu.attr_rdpmc) {
2249                 /*
2250                  * Changing into or out of never available or always available,
2251                  * aka perf-event-bypassing mode. This path is extremely slow,
2252                  * but only root can trigger it, so it's okay.
2253                  */
2254                 if (val == 0)
2255                         static_branch_inc(&rdpmc_never_available_key);
2256                 else if (x86_pmu.attr_rdpmc == 0)
2257                         static_branch_dec(&rdpmc_never_available_key);
2258
2259                 if (val == 2)
2260                         static_branch_inc(&rdpmc_always_available_key);
2261                 else if (x86_pmu.attr_rdpmc == 2)
2262                         static_branch_dec(&rdpmc_always_available_key);
2263
2264                 on_each_cpu(cr4_update_pce, NULL, 1);
2265                 x86_pmu.attr_rdpmc = val;
2266         }
2267
2268         return count;
2269 }
2270
2271 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2272
2273 static struct attribute *x86_pmu_attrs[] = {
2274         &dev_attr_rdpmc.attr,
2275         NULL,
2276 };
2277
2278 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2279         .attrs = x86_pmu_attrs,
2280 };
2281
2282 static ssize_t max_precise_show(struct device *cdev,
2283                                   struct device_attribute *attr,
2284                                   char *buf)
2285 {
2286         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2287 }
2288
2289 static DEVICE_ATTR_RO(max_precise);
2290
2291 static struct attribute *x86_pmu_caps_attrs[] = {
2292         &dev_attr_max_precise.attr,
2293         NULL
2294 };
2295
2296 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2297         .name = "caps",
2298         .attrs = x86_pmu_caps_attrs,
2299 };
2300
2301 static const struct attribute_group *x86_pmu_attr_groups[] = {
2302         &x86_pmu_attr_group,
2303         &x86_pmu_format_group,
2304         &x86_pmu_events_group,
2305         &x86_pmu_caps_group,
2306         NULL,
2307 };
2308
2309 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2310 {
2311         if (x86_pmu.sched_task)
2312                 x86_pmu.sched_task(ctx, sched_in);
2313 }
2314
2315 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2316                                   struct perf_event_context *next)
2317 {
2318         if (x86_pmu.swap_task_ctx)
2319                 x86_pmu.swap_task_ctx(prev, next);
2320 }
2321
2322 void perf_check_microcode(void)
2323 {
2324         if (x86_pmu.check_microcode)
2325                 x86_pmu.check_microcode();
2326 }
2327
2328 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2329 {
2330         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2331                 return -EINVAL;
2332
2333         if (value && x86_pmu.limit_period) {
2334                 if (x86_pmu.limit_period(event, value) > value)
2335                         return -EINVAL;
2336         }
2337
2338         return 0;
2339 }
2340
2341 static int x86_pmu_aux_output_match(struct perf_event *event)
2342 {
2343         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2344                 return 0;
2345
2346         if (x86_pmu.aux_output_match)
2347                 return x86_pmu.aux_output_match(event);
2348
2349         return 0;
2350 }
2351
2352 static struct pmu pmu = {
2353         .pmu_enable             = x86_pmu_enable,
2354         .pmu_disable            = x86_pmu_disable,
2355
2356         .attr_groups            = x86_pmu_attr_groups,
2357
2358         .event_init             = x86_pmu_event_init,
2359
2360         .event_mapped           = x86_pmu_event_mapped,
2361         .event_unmapped         = x86_pmu_event_unmapped,
2362
2363         .add                    = x86_pmu_add,
2364         .del                    = x86_pmu_del,
2365         .start                  = x86_pmu_start,
2366         .stop                   = x86_pmu_stop,
2367         .read                   = x86_pmu_read,
2368
2369         .start_txn              = x86_pmu_start_txn,
2370         .cancel_txn             = x86_pmu_cancel_txn,
2371         .commit_txn             = x86_pmu_commit_txn,
2372
2373         .event_idx              = x86_pmu_event_idx,
2374         .sched_task             = x86_pmu_sched_task,
2375         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2376         .check_period           = x86_pmu_check_period,
2377
2378         .aux_output_match       = x86_pmu_aux_output_match,
2379 };
2380
2381 void arch_perf_update_userpage(struct perf_event *event,
2382                                struct perf_event_mmap_page *userpg, u64 now)
2383 {
2384         struct cyc2ns_data data;
2385         u64 offset;
2386
2387         userpg->cap_user_time = 0;
2388         userpg->cap_user_time_zero = 0;
2389         userpg->cap_user_rdpmc =
2390                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2391         userpg->pmc_width = x86_pmu.cntval_bits;
2392
2393         if (!using_native_sched_clock() || !sched_clock_stable())
2394                 return;
2395
2396         cyc2ns_read_begin(&data);
2397
2398         offset = data.cyc2ns_offset + __sched_clock_offset;
2399
2400         /*
2401          * Internal timekeeping for enabled/running/stopped times
2402          * is always in the local_clock domain.
2403          */
2404         userpg->cap_user_time = 1;
2405         userpg->time_mult = data.cyc2ns_mul;
2406         userpg->time_shift = data.cyc2ns_shift;
2407         userpg->time_offset = offset - now;
2408
2409         /*
2410          * cap_user_time_zero doesn't make sense when we're using a different
2411          * time base for the records.
2412          */
2413         if (!event->attr.use_clockid) {
2414                 userpg->cap_user_time_zero = 1;
2415                 userpg->time_zero = offset;
2416         }
2417
2418         cyc2ns_read_end();
2419 }
2420
2421 /*
2422  * Determine whether the regs were taken from an irq/exception handler rather
2423  * than from perf_arch_fetch_caller_regs().
2424  */
2425 static bool perf_hw_regs(struct pt_regs *regs)
2426 {
2427         return regs->flags & X86_EFLAGS_FIXED;
2428 }
2429
2430 void
2431 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2432 {
2433         struct unwind_state state;
2434         unsigned long addr;
2435
2436         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2437                 /* TODO: We don't support guest os callchain now */
2438                 return;
2439         }
2440
2441         if (perf_callchain_store(entry, regs->ip))
2442                 return;
2443
2444         if (perf_hw_regs(regs))
2445                 unwind_start(&state, current, regs, NULL);
2446         else
2447                 unwind_start(&state, current, NULL, (void *)regs->sp);
2448
2449         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2450                 addr = unwind_get_return_address(&state);
2451                 if (!addr || perf_callchain_store(entry, addr))
2452                         return;
2453         }
2454 }
2455
2456 static inline int
2457 valid_user_frame(const void __user *fp, unsigned long size)
2458 {
2459         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2460 }
2461
2462 static unsigned long get_segment_base(unsigned int segment)
2463 {
2464         struct desc_struct *desc;
2465         unsigned int idx = segment >> 3;
2466
2467         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2468 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2469                 struct ldt_struct *ldt;
2470
2471                 /* IRQs are off, so this synchronizes with smp_store_release */
2472                 ldt = READ_ONCE(current->active_mm->context.ldt);
2473                 if (!ldt || idx >= ldt->nr_entries)
2474                         return 0;
2475
2476                 desc = &ldt->entries[idx];
2477 #else
2478                 return 0;
2479 #endif
2480         } else {
2481                 if (idx >= GDT_ENTRIES)
2482                         return 0;
2483
2484                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2485         }
2486
2487         return get_desc_base(desc);
2488 }
2489
2490 #ifdef CONFIG_IA32_EMULATION
2491
2492 #include <linux/compat.h>
2493
2494 static inline int
2495 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2496 {
2497         /* 32-bit process in 64-bit kernel. */
2498         unsigned long ss_base, cs_base;
2499         struct stack_frame_ia32 frame;
2500         const struct stack_frame_ia32 __user *fp;
2501
2502         if (!test_thread_flag(TIF_IA32))
2503                 return 0;
2504
2505         cs_base = get_segment_base(regs->cs);
2506         ss_base = get_segment_base(regs->ss);
2507
2508         fp = compat_ptr(ss_base + regs->bp);
2509         pagefault_disable();
2510         while (entry->nr < entry->max_stack) {
2511                 if (!valid_user_frame(fp, sizeof(frame)))
2512                         break;
2513
2514                 if (__get_user(frame.next_frame, &fp->next_frame))
2515                         break;
2516                 if (__get_user(frame.return_address, &fp->return_address))
2517                         break;
2518
2519                 perf_callchain_store(entry, cs_base + frame.return_address);
2520                 fp = compat_ptr(ss_base + frame.next_frame);
2521         }
2522         pagefault_enable();
2523         return 1;
2524 }
2525 #else
2526 static inline int
2527 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2528 {
2529     return 0;
2530 }
2531 #endif
2532
2533 void
2534 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2535 {
2536         struct stack_frame frame;
2537         const struct stack_frame __user *fp;
2538
2539         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2540                 /* TODO: We don't support guest os callchain now */
2541                 return;
2542         }
2543
2544         /*
2545          * We don't know what to do with VM86 stacks.. ignore them for now.
2546          */
2547         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2548                 return;
2549
2550         fp = (void __user *)regs->bp;
2551
2552         perf_callchain_store(entry, regs->ip);
2553
2554         if (!nmi_uaccess_okay())
2555                 return;
2556
2557         if (perf_callchain_user32(regs, entry))
2558                 return;
2559
2560         pagefault_disable();
2561         while (entry->nr < entry->max_stack) {
2562                 if (!valid_user_frame(fp, sizeof(frame)))
2563                         break;
2564
2565                 if (__get_user(frame.next_frame, &fp->next_frame))
2566                         break;
2567                 if (__get_user(frame.return_address, &fp->return_address))
2568                         break;
2569
2570                 perf_callchain_store(entry, frame.return_address);
2571                 fp = (void __user *)frame.next_frame;
2572         }
2573         pagefault_enable();
2574 }
2575
2576 /*
2577  * Deal with code segment offsets for the various execution modes:
2578  *
2579  *   VM86 - the good olde 16 bit days, where the linear address is
2580  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2581  *
2582  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2583  *          to figure out what the 32bit base address is.
2584  *
2585  *    X32 - has TIF_X32 set, but is running in x86_64
2586  *
2587  * X86_64 - CS,DS,SS,ES are all zero based.
2588  */
2589 static unsigned long code_segment_base(struct pt_regs *regs)
2590 {
2591         /*
2592          * For IA32 we look at the GDT/LDT segment base to convert the
2593          * effective IP to a linear address.
2594          */
2595
2596 #ifdef CONFIG_X86_32
2597         /*
2598          * If we are in VM86 mode, add the segment offset to convert to a
2599          * linear address.
2600          */
2601         if (regs->flags & X86_VM_MASK)
2602                 return 0x10 * regs->cs;
2603
2604         if (user_mode(regs) && regs->cs != __USER_CS)
2605                 return get_segment_base(regs->cs);
2606 #else
2607         if (user_mode(regs) && !user_64bit_mode(regs) &&
2608             regs->cs != __USER32_CS)
2609                 return get_segment_base(regs->cs);
2610 #endif
2611         return 0;
2612 }
2613
2614 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2615 {
2616         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2617                 return perf_guest_cbs->get_guest_ip();
2618
2619         return regs->ip + code_segment_base(regs);
2620 }
2621
2622 unsigned long perf_misc_flags(struct pt_regs *regs)
2623 {
2624         int misc = 0;
2625
2626         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2627                 if (perf_guest_cbs->is_user_mode())
2628                         misc |= PERF_RECORD_MISC_GUEST_USER;
2629                 else
2630                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2631         } else {
2632                 if (user_mode(regs))
2633                         misc |= PERF_RECORD_MISC_USER;
2634                 else
2635                         misc |= PERF_RECORD_MISC_KERNEL;
2636         }
2637
2638         if (regs->flags & PERF_EFLAGS_EXACT)
2639                 misc |= PERF_RECORD_MISC_EXACT_IP;
2640
2641         return misc;
2642 }
2643
2644 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2645 {
2646         cap->version            = x86_pmu.version;
2647         cap->num_counters_gp    = x86_pmu.num_counters;
2648         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2649         cap->bit_width_gp       = x86_pmu.cntval_bits;
2650         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2651         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2652         cap->events_mask_len    = x86_pmu.events_mask_len;
2653 }
2654 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);