2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
33 #include <asm/stacktrace.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
55 u64 __read_mostly hw_cache_event_ids
56 [PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 [PERF_COUNT_HW_CACHE_MAX]
61 [PERF_COUNT_HW_CACHE_OP_MAX]
62 [PERF_COUNT_HW_CACHE_RESULT_MAX];
65 * Propagate event elapsed time into the generic event.
66 * Can only be executed on the CPU where the event is active.
67 * Returns the delta events processed.
69 u64 x86_perf_event_update(struct perf_event *event)
71 struct hw_perf_event *hwc = &event->hw;
72 int shift = 64 - x86_pmu.cntval_bits;
73 u64 prev_raw_count, new_raw_count;
76 if (unlikely(!hwc->event_base))
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
127 if (event->attr.config1 & ~er->valid_mask)
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
134 reg->config = event->attr.config1;
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
167 i = x86_pmu.num_counters;
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
176 static void release_pmc_hardware(void)
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
193 static bool check_hw_exists(void)
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
201 * Check to see if the BIOS enabled any of the counters, if so
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe == -1) {
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
258 * We still allow the PMU driver to operate:
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
280 static void hw_perf_event_destroy(struct perf_event *event)
282 x86_release_hardware();
283 atomic_dec(&active_events);
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 hw_perf_event_destroy(event);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu.handle_irq != NULL;
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
306 config = attr->config;
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
336 int x86_reserve_hardware(void)
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
346 reserve_ds_buffers();
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 release_lbr_buffers();
362 mutex_unlock(&pmc_reserve_mutex);
367 * Check if we can create event of a certain type (that no conflicting events
370 int x86_add_exclusive(unsigned int what)
375 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
376 * LBR and BTS are still mutually exclusive.
378 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
381 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
382 mutex_lock(&pmc_reserve_mutex);
383 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
384 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
387 atomic_inc(&x86_pmu.lbr_exclusive[what]);
388 mutex_unlock(&pmc_reserve_mutex);
392 atomic_inc(&active_events);
396 mutex_unlock(&pmc_reserve_mutex);
400 void x86_del_exclusive(unsigned int what)
402 atomic_dec(&active_events);
405 * See the comment in x86_add_exclusive().
407 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
410 atomic_dec(&x86_pmu.lbr_exclusive[what]);
413 int x86_setup_perfctr(struct perf_event *event)
415 struct perf_event_attr *attr = &event->attr;
416 struct hw_perf_event *hwc = &event->hw;
419 if (!is_sampling_event(event)) {
420 hwc->sample_period = x86_pmu.max_period;
421 hwc->last_period = hwc->sample_period;
422 local64_set(&hwc->period_left, hwc->sample_period);
425 if (attr->type == PERF_TYPE_RAW)
426 return x86_pmu_extra_regs(event->attr.config, event);
428 if (attr->type == PERF_TYPE_HW_CACHE)
429 return set_ext_hw_attr(hwc, event);
431 if (attr->config >= x86_pmu.max_events)
434 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
439 config = x86_pmu.event_map(attr->config);
447 hwc->config |= config;
453 * check that branch_sample_type is compatible with
454 * settings needed for precise_ip > 1 which implies
455 * using the LBR to capture ALL taken branches at the
456 * priv levels of the measurement
458 static inline int precise_br_compat(struct perf_event *event)
460 u64 m = event->attr.branch_sample_type;
463 /* must capture all branches */
464 if (!(m & PERF_SAMPLE_BRANCH_ANY))
467 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
469 if (!event->attr.exclude_user)
470 b |= PERF_SAMPLE_BRANCH_USER;
472 if (!event->attr.exclude_kernel)
473 b |= PERF_SAMPLE_BRANCH_KERNEL;
476 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
482 int x86_pmu_max_precise(void)
486 /* Support for constant skid */
487 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
490 /* Support for IP fixup */
491 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
494 if (x86_pmu.pebs_prec_dist)
500 int x86_pmu_hw_config(struct perf_event *event)
502 if (event->attr.precise_ip) {
503 int precise = x86_pmu_max_precise();
505 if (event->attr.precise_ip > precise)
508 /* There's no sense in having PEBS for non sampling events: */
509 if (!is_sampling_event(event))
513 * check that PEBS LBR correction does not conflict with
514 * whatever the user is asking with attr->branch_sample_type
516 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
517 u64 *br_type = &event->attr.branch_sample_type;
519 if (has_branch_stack(event)) {
520 if (!precise_br_compat(event))
523 /* branch_sample_type is compatible */
527 * user did not specify branch_sample_type
529 * For PEBS fixups, we capture all
530 * the branches at the priv level of the
533 *br_type = PERF_SAMPLE_BRANCH_ANY;
535 if (!event->attr.exclude_user)
536 *br_type |= PERF_SAMPLE_BRANCH_USER;
538 if (!event->attr.exclude_kernel)
539 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
543 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
544 event->attach_state |= PERF_ATTACH_TASK_DATA;
548 * (keep 'enabled' bit clear for now)
550 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
553 * Count user and OS events unless requested not to
555 if (!event->attr.exclude_user)
556 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
557 if (!event->attr.exclude_kernel)
558 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
560 if (event->attr.type == PERF_TYPE_RAW)
561 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
563 if (event->attr.sample_period && x86_pmu.limit_period) {
564 if (x86_pmu.limit_period(event, event->attr.sample_period) >
565 event->attr.sample_period)
569 /* sample_regs_user never support XMM registers */
570 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
573 * Besides the general purpose registers, XMM registers may
574 * be collected in PEBS on some platforms, e.g. Icelake
576 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
577 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
580 if (!event->attr.precise_ip)
584 return x86_setup_perfctr(event);
588 * Setup the hardware configuration for a given attr_type
590 static int __x86_pmu_event_init(struct perf_event *event)
594 if (!x86_pmu_initialized())
597 err = x86_reserve_hardware();
601 atomic_inc(&active_events);
602 event->destroy = hw_perf_event_destroy;
605 event->hw.last_cpu = -1;
606 event->hw.last_tag = ~0ULL;
609 event->hw.extra_reg.idx = EXTRA_REG_NONE;
610 event->hw.branch_reg.idx = EXTRA_REG_NONE;
612 return x86_pmu.hw_config(event);
615 void x86_pmu_disable_all(void)
617 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
620 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
621 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
624 if (!test_bit(idx, cpuc->active_mask))
626 rdmsrl(x86_pmu_config_addr(idx), val);
627 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
629 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
630 wrmsrl(x86_pmu_config_addr(idx), val);
631 if (is_counter_pair(hwc))
632 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
637 * There may be PMI landing after enabled=0. The PMI hitting could be before or
640 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
641 * It will not be re-enabled in the NMI handler again, because enabled=0. After
642 * handling the NMI, disable_all will be called, which will not change the
643 * state either. If PMI hits after disable_all, the PMU is already disabled
644 * before entering NMI handler. The NMI handler will not change the state
647 * So either situation is harmless.
649 static void x86_pmu_disable(struct pmu *pmu)
651 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 if (!x86_pmu_initialized())
663 x86_pmu.disable_all();
666 void x86_pmu_enable_all(int added)
668 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
671 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
672 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
674 if (!test_bit(idx, cpuc->active_mask))
677 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
681 static struct pmu pmu;
683 static inline int is_x86_event(struct perf_event *event)
685 return event->pmu == &pmu;
688 struct pmu *x86_get_pmu(void)
693 * Event scheduler state:
695 * Assign events iterating over all events and counters, beginning
696 * with events with least weights first. Keep the current iterator
697 * state in struct sched_state.
701 int event; /* event index */
702 int counter; /* counter index */
703 int unassigned; /* number of events to be assigned left */
704 int nr_gp; /* number of GP counters used */
708 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
709 #define SCHED_STATES_MAX 2
716 struct event_constraint **constraints;
717 struct sched_state state;
718 struct sched_state saved[SCHED_STATES_MAX];
722 * Initialize interator that runs through all events and counters.
724 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
725 int num, int wmin, int wmax, int gpmax)
729 memset(sched, 0, sizeof(*sched));
730 sched->max_events = num;
731 sched->max_weight = wmax;
732 sched->max_gp = gpmax;
733 sched->constraints = constraints;
735 for (idx = 0; idx < num; idx++) {
736 if (constraints[idx]->weight == wmin)
740 sched->state.event = idx; /* start with min weight */
741 sched->state.weight = wmin;
742 sched->state.unassigned = num;
745 static void perf_sched_save_state(struct perf_sched *sched)
747 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
750 sched->saved[sched->saved_states] = sched->state;
751 sched->saved_states++;
754 static bool perf_sched_restore_state(struct perf_sched *sched)
756 if (!sched->saved_states)
759 sched->saved_states--;
760 sched->state = sched->saved[sched->saved_states];
762 /* this assignment didn't work out */
763 /* XXX broken vs EVENT_PAIR */
764 sched->state.used &= ~BIT_ULL(sched->state.counter);
766 /* try the next one */
767 sched->state.counter++;
773 * Select a counter for the current event to schedule. Return true on
776 static bool __perf_sched_find_counter(struct perf_sched *sched)
778 struct event_constraint *c;
781 if (!sched->state.unassigned)
784 if (sched->state.event >= sched->max_events)
787 c = sched->constraints[sched->state.event];
788 /* Prefer fixed purpose counters */
789 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
790 idx = INTEL_PMC_IDX_FIXED;
791 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
792 u64 mask = BIT_ULL(idx);
794 if (sched->state.used & mask)
797 sched->state.used |= mask;
802 /* Grab the first unused counter starting with idx */
803 idx = sched->state.counter;
804 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
805 u64 mask = BIT_ULL(idx);
807 if (c->flags & PERF_X86_EVENT_PAIR)
810 if (sched->state.used & mask)
813 if (sched->state.nr_gp++ >= sched->max_gp)
816 sched->state.used |= mask;
823 sched->state.counter = idx;
826 perf_sched_save_state(sched);
831 static bool perf_sched_find_counter(struct perf_sched *sched)
833 while (!__perf_sched_find_counter(sched)) {
834 if (!perf_sched_restore_state(sched))
842 * Go through all unassigned events and find the next one to schedule.
843 * Take events with the least weight first. Return true on success.
845 static bool perf_sched_next_event(struct perf_sched *sched)
847 struct event_constraint *c;
849 if (!sched->state.unassigned || !--sched->state.unassigned)
854 sched->state.event++;
855 if (sched->state.event >= sched->max_events) {
857 sched->state.event = 0;
858 sched->state.weight++;
859 if (sched->state.weight > sched->max_weight)
862 c = sched->constraints[sched->state.event];
863 } while (c->weight != sched->state.weight);
865 sched->state.counter = 0; /* start with first counter */
871 * Assign a counter for each event.
873 int perf_assign_events(struct event_constraint **constraints, int n,
874 int wmin, int wmax, int gpmax, int *assign)
876 struct perf_sched sched;
878 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
881 if (!perf_sched_find_counter(&sched))
884 assign[sched.state.event] = sched.state.counter;
885 } while (perf_sched_next_event(&sched));
887 return sched.state.unassigned;
889 EXPORT_SYMBOL_GPL(perf_assign_events);
891 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
893 struct event_constraint *c;
894 struct perf_event *e;
895 int n0, i, wmin, wmax, unsched = 0;
896 struct hw_perf_event *hwc;
900 * Compute the number of events already present; see x86_pmu_add(),
901 * validate_group() and x86_pmu_commit_txn(). For the former two
902 * cpuc->n_events hasn't been updated yet, while for the latter
903 * cpuc->n_txn contains the number of events added in the current
907 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
910 if (x86_pmu.start_scheduling)
911 x86_pmu.start_scheduling(cpuc);
913 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
914 c = cpuc->event_constraint[i];
917 * Previously scheduled events should have a cached constraint,
918 * while new events should not have one.
920 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
923 * Request constraints for new events; or for those events that
924 * have a dynamic constraint -- for those the constraint can
925 * change due to external factors (sibling state, allow_tfa).
927 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
928 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
929 cpuc->event_constraint[i] = c;
932 wmin = min(wmin, c->weight);
933 wmax = max(wmax, c->weight);
937 * fastpath, try to reuse previous register
939 for (i = 0; i < n; i++) {
942 hwc = &cpuc->event_list[i]->hw;
943 c = cpuc->event_constraint[i];
949 /* constraint still honored */
950 if (!test_bit(hwc->idx, c->idxmsk))
953 mask = BIT_ULL(hwc->idx);
954 if (is_counter_pair(hwc))
957 /* not already used */
958 if (used_mask & mask)
964 assign[i] = hwc->idx;
969 int gpmax = x86_pmu.num_counters;
972 * Do not allow scheduling of more than half the available
975 * This helps avoid counter starvation of sibling thread by
976 * ensuring at most half the counters cannot be in exclusive
977 * mode. There is no designated counters for the limits. Any
978 * N/2 counters can be used. This helps with events with
979 * specific counter constraints.
981 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
982 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
986 * Reduce the amount of available counters to allow fitting
987 * the extra Merge events needed by large increment events.
989 if (x86_pmu.flags & PMU_FL_PAIR) {
990 gpmax = x86_pmu.num_counters - cpuc->n_pair;
994 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
995 wmax, gpmax, assign);
999 * In case of success (unsched = 0), mark events as committed,
1000 * so we do not put_constraint() in case new events are added
1001 * and fail to be scheduled
1003 * We invoke the lower level commit callback to lock the resource
1005 * We do not need to do all of this in case we are called to
1006 * validate an event group (assign == NULL)
1008 if (!unsched && assign) {
1009 for (i = 0; i < n; i++) {
1010 e = cpuc->event_list[i];
1011 if (x86_pmu.commit_scheduling)
1012 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1015 for (i = n0; i < n; i++) {
1016 e = cpuc->event_list[i];
1019 * release events that failed scheduling
1021 if (x86_pmu.put_event_constraints)
1022 x86_pmu.put_event_constraints(cpuc, e);
1024 cpuc->event_constraint[i] = NULL;
1028 if (x86_pmu.stop_scheduling)
1029 x86_pmu.stop_scheduling(cpuc);
1031 return unsched ? -EINVAL : 0;
1035 * dogrp: true if must collect siblings events (group)
1036 * returns total number of events and error code
1038 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1040 struct perf_event *event;
1043 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1045 /* current number of events already accepted */
1047 if (!cpuc->n_events)
1048 cpuc->pebs_output = 0;
1050 if (!cpuc->is_fake && leader->attr.precise_ip) {
1052 * For PEBS->PT, if !aux_event, the group leader (PT) went
1053 * away, the group was broken down and this singleton event
1054 * can't schedule any more.
1056 if (is_pebs_pt(leader) && !leader->aux_event)
1060 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1062 if (cpuc->pebs_output &&
1063 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1066 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1069 if (is_x86_event(leader)) {
1072 cpuc->event_list[n] = leader;
1074 if (is_counter_pair(&leader->hw))
1080 for_each_sibling_event(event, leader) {
1081 if (!is_x86_event(event) ||
1082 event->state <= PERF_EVENT_STATE_OFF)
1088 cpuc->event_list[n] = event;
1090 if (is_counter_pair(&event->hw))
1096 static inline void x86_assign_hw_event(struct perf_event *event,
1097 struct cpu_hw_events *cpuc, int i)
1099 struct hw_perf_event *hwc = &event->hw;
1102 idx = hwc->idx = cpuc->assign[i];
1103 hwc->last_cpu = smp_processor_id();
1104 hwc->last_tag = ++cpuc->tags[i];
1107 case INTEL_PMC_IDX_FIXED_BTS:
1108 case INTEL_PMC_IDX_FIXED_VLBR:
1109 hwc->config_base = 0;
1110 hwc->event_base = 0;
1113 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1114 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1115 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1116 (idx - INTEL_PMC_IDX_FIXED);
1117 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1121 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1122 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1123 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1129 * x86_perf_rdpmc_index - Return PMC counter used for event
1130 * @event: the perf_event to which the PMC counter was assigned
1132 * The counter assigned to this performance event may change if interrupts
1133 * are enabled. This counter should thus never be used while interrupts are
1134 * enabled. Before this function is used to obtain the assigned counter the
1135 * event should be checked for validity using, for example,
1136 * perf_event_read_local(), within the same interrupt disabled section in
1137 * which this counter is planned to be used.
1139 * Return: The index of the performance monitoring counter assigned to
1142 int x86_perf_rdpmc_index(struct perf_event *event)
1144 lockdep_assert_irqs_disabled();
1146 return event->hw.event_base_rdpmc;
1149 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1150 struct cpu_hw_events *cpuc,
1153 return hwc->idx == cpuc->assign[i] &&
1154 hwc->last_cpu == smp_processor_id() &&
1155 hwc->last_tag == cpuc->tags[i];
1158 static void x86_pmu_start(struct perf_event *event, int flags);
1160 static void x86_pmu_enable(struct pmu *pmu)
1162 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163 struct perf_event *event;
1164 struct hw_perf_event *hwc;
1165 int i, added = cpuc->n_added;
1167 if (!x86_pmu_initialized())
1173 if (cpuc->n_added) {
1174 int n_running = cpuc->n_events - cpuc->n_added;
1176 * apply assignment obtained either from
1177 * hw_perf_group_sched_in() or x86_pmu_enable()
1179 * step1: save events moving to new counters
1181 for (i = 0; i < n_running; i++) {
1182 event = cpuc->event_list[i];
1186 * we can avoid reprogramming counter if:
1187 * - assigned same counter as last time
1188 * - running on same CPU as last time
1189 * - no other event has used the counter since
1191 if (hwc->idx == -1 ||
1192 match_prev_assignment(hwc, cpuc, i))
1196 * Ensure we don't accidentally enable a stopped
1197 * counter simply because we rescheduled.
1199 if (hwc->state & PERF_HES_STOPPED)
1200 hwc->state |= PERF_HES_ARCH;
1202 x86_pmu_stop(event, PERF_EF_UPDATE);
1206 * step2: reprogram moved events into new counters
1208 for (i = 0; i < cpuc->n_events; i++) {
1209 event = cpuc->event_list[i];
1212 if (!match_prev_assignment(hwc, cpuc, i))
1213 x86_assign_hw_event(event, cpuc, i);
1214 else if (i < n_running)
1217 if (hwc->state & PERF_HES_ARCH)
1220 x86_pmu_start(event, PERF_EF_RELOAD);
1223 perf_events_lapic_init();
1229 x86_pmu.enable_all(added);
1232 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1235 * Set the next IRQ period, based on the hwc->period_left value.
1236 * To be called with the event disabled in hw:
1238 int x86_perf_event_set_period(struct perf_event *event)
1240 struct hw_perf_event *hwc = &event->hw;
1241 s64 left = local64_read(&hwc->period_left);
1242 s64 period = hwc->sample_period;
1243 int ret = 0, idx = hwc->idx;
1245 if (unlikely(!hwc->event_base))
1249 * If we are way outside a reasonable range then just skip forward:
1251 if (unlikely(left <= -period)) {
1253 local64_set(&hwc->period_left, left);
1254 hwc->last_period = period;
1258 if (unlikely(left <= 0)) {
1260 local64_set(&hwc->period_left, left);
1261 hwc->last_period = period;
1265 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1267 if (unlikely(left < 2))
1270 if (left > x86_pmu.max_period)
1271 left = x86_pmu.max_period;
1273 if (x86_pmu.limit_period)
1274 left = x86_pmu.limit_period(event, left);
1276 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1279 * The hw event starts counting from this event offset,
1280 * mark it to be able to extra future deltas:
1282 local64_set(&hwc->prev_count, (u64)-left);
1284 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1287 * Clear the Merge event counter's upper 16 bits since
1288 * we currently declare a 48-bit counter width
1290 if (is_counter_pair(hwc))
1291 wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1294 * Due to erratum on certan cpu we need
1295 * a second write to be sure the register
1296 * is updated properly
1298 if (x86_pmu.perfctr_second_write) {
1299 wrmsrl(hwc->event_base,
1300 (u64)(-left) & x86_pmu.cntval_mask);
1303 perf_event_update_userpage(event);
1308 void x86_pmu_enable_event(struct perf_event *event)
1310 if (__this_cpu_read(cpu_hw_events.enabled))
1311 __x86_pmu_enable_event(&event->hw,
1312 ARCH_PERFMON_EVENTSEL_ENABLE);
1316 * Add a single event to the PMU.
1318 * The event is added to the group of enabled events
1319 * but only if it can be scheduled with existing events.
1321 static int x86_pmu_add(struct perf_event *event, int flags)
1323 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1324 struct hw_perf_event *hwc;
1325 int assign[X86_PMC_IDX_MAX];
1330 n0 = cpuc->n_events;
1331 ret = n = collect_events(cpuc, event, false);
1335 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1336 if (!(flags & PERF_EF_START))
1337 hwc->state |= PERF_HES_ARCH;
1340 * If group events scheduling transaction was started,
1341 * skip the schedulability test here, it will be performed
1342 * at commit time (->commit_txn) as a whole.
1344 * If commit fails, we'll call ->del() on all events
1345 * for which ->add() was called.
1347 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1350 ret = x86_pmu.schedule_events(cpuc, n, assign);
1354 * copy new assignment, now we know it is possible
1355 * will be used by hw_perf_enable()
1357 memcpy(cpuc->assign, assign, n*sizeof(int));
1361 * Commit the collect_events() state. See x86_pmu_del() and
1365 cpuc->n_added += n - n0;
1366 cpuc->n_txn += n - n0;
1370 * This is before x86_pmu_enable() will call x86_pmu_start(),
1371 * so we enable LBRs before an event needs them etc..
1381 static void x86_pmu_start(struct perf_event *event, int flags)
1383 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384 int idx = event->hw.idx;
1386 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1389 if (WARN_ON_ONCE(idx == -1))
1392 if (flags & PERF_EF_RELOAD) {
1393 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1394 x86_perf_event_set_period(event);
1397 event->hw.state = 0;
1399 cpuc->events[idx] = event;
1400 __set_bit(idx, cpuc->active_mask);
1401 __set_bit(idx, cpuc->running);
1402 x86_pmu.enable(event);
1403 perf_event_update_userpage(event);
1406 void perf_event_print_debug(void)
1408 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1410 struct cpu_hw_events *cpuc;
1411 unsigned long flags;
1414 if (!x86_pmu.num_counters)
1417 local_irq_save(flags);
1419 cpu = smp_processor_id();
1420 cpuc = &per_cpu(cpu_hw_events, cpu);
1422 if (x86_pmu.version >= 2) {
1423 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1424 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1425 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1426 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1429 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1430 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1431 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1432 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1433 if (x86_pmu.pebs_constraints) {
1434 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1435 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1437 if (x86_pmu.lbr_nr) {
1438 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1439 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1442 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1444 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1445 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1446 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1448 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1450 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1451 cpu, idx, pmc_ctrl);
1452 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1453 cpu, idx, pmc_count);
1454 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1455 cpu, idx, prev_left);
1457 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1458 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1460 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1461 cpu, idx, pmc_count);
1463 local_irq_restore(flags);
1466 void x86_pmu_stop(struct perf_event *event, int flags)
1468 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1469 struct hw_perf_event *hwc = &event->hw;
1471 if (test_bit(hwc->idx, cpuc->active_mask)) {
1472 x86_pmu.disable(event);
1473 __clear_bit(hwc->idx, cpuc->active_mask);
1474 cpuc->events[hwc->idx] = NULL;
1475 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1476 hwc->state |= PERF_HES_STOPPED;
1479 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1481 * Drain the remaining delta count out of a event
1482 * that we are disabling:
1484 x86_perf_event_update(event);
1485 hwc->state |= PERF_HES_UPTODATE;
1489 static void x86_pmu_del(struct perf_event *event, int flags)
1491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1495 * If we're called during a txn, we only need to undo x86_pmu.add.
1496 * The events never got scheduled and ->cancel_txn will truncate
1499 * XXX assumes any ->del() called during a TXN will only be on
1500 * an event added during that same TXN.
1502 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1506 * Not a TXN, therefore cleanup properly.
1508 x86_pmu_stop(event, PERF_EF_UPDATE);
1510 for (i = 0; i < cpuc->n_events; i++) {
1511 if (event == cpuc->event_list[i])
1515 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1518 /* If we have a newly added event; make sure to decrease n_added. */
1519 if (i >= cpuc->n_events - cpuc->n_added)
1522 if (x86_pmu.put_event_constraints)
1523 x86_pmu.put_event_constraints(cpuc, event);
1525 /* Delete the array entry. */
1526 while (++i < cpuc->n_events) {
1527 cpuc->event_list[i-1] = cpuc->event_list[i];
1528 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1530 cpuc->event_constraint[i-1] = NULL;
1533 perf_event_update_userpage(event);
1538 * This is after x86_pmu_stop(); so we disable LBRs after any
1539 * event can need them etc..
1545 int x86_pmu_handle_irq(struct pt_regs *regs)
1547 struct perf_sample_data data;
1548 struct cpu_hw_events *cpuc;
1549 struct perf_event *event;
1550 int idx, handled = 0;
1553 cpuc = this_cpu_ptr(&cpu_hw_events);
1556 * Some chipsets need to unmask the LVTPC in a particular spot
1557 * inside the nmi handler. As a result, the unmasking was pushed
1558 * into all the nmi handlers.
1560 * This generic handler doesn't seem to have any issues where the
1561 * unmasking occurs so it was left at the top.
1563 apic_write(APIC_LVTPC, APIC_DM_NMI);
1565 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1566 if (!test_bit(idx, cpuc->active_mask))
1569 event = cpuc->events[idx];
1571 val = x86_perf_event_update(event);
1572 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1579 perf_sample_data_init(&data, 0, event->hw.last_period);
1581 if (!x86_perf_event_set_period(event))
1584 if (perf_event_overflow(event, &data, regs))
1585 x86_pmu_stop(event, 0);
1589 inc_irq_stat(apic_perf_irqs);
1594 void perf_events_lapic_init(void)
1596 if (!x86_pmu.apic || !x86_pmu_initialized())
1600 * Always use NMI for PMU
1602 apic_write(APIC_LVTPC, APIC_DM_NMI);
1606 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1613 * All PMUs/events that share this PMI handler should make sure to
1614 * increment active_events for their events.
1616 if (!atomic_read(&active_events))
1619 start_clock = sched_clock();
1620 ret = x86_pmu.handle_irq(regs);
1621 finish_clock = sched_clock();
1623 perf_sample_event_took(finish_clock - start_clock);
1627 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1629 struct event_constraint emptyconstraint;
1630 struct event_constraint unconstrained;
1632 static int x86_pmu_prepare_cpu(unsigned int cpu)
1634 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1637 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1638 cpuc->kfree_on_online[i] = NULL;
1639 if (x86_pmu.cpu_prepare)
1640 return x86_pmu.cpu_prepare(cpu);
1644 static int x86_pmu_dead_cpu(unsigned int cpu)
1646 if (x86_pmu.cpu_dead)
1647 x86_pmu.cpu_dead(cpu);
1651 static int x86_pmu_online_cpu(unsigned int cpu)
1653 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1656 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1657 kfree(cpuc->kfree_on_online[i]);
1658 cpuc->kfree_on_online[i] = NULL;
1663 static int x86_pmu_starting_cpu(unsigned int cpu)
1665 if (x86_pmu.cpu_starting)
1666 x86_pmu.cpu_starting(cpu);
1670 static int x86_pmu_dying_cpu(unsigned int cpu)
1672 if (x86_pmu.cpu_dying)
1673 x86_pmu.cpu_dying(cpu);
1677 static void __init pmu_check_apic(void)
1679 if (boot_cpu_has(X86_FEATURE_APIC))
1683 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1684 pr_info("no hardware sampling interrupt available.\n");
1687 * If we have a PMU initialized but no APIC
1688 * interrupts, we cannot sample hardware
1689 * events (user-space has to fall back and
1690 * sample via a hrtimer based software event):
1692 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1696 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1701 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1703 struct perf_pmu_events_attr *pmu_attr =
1704 container_of(attr, struct perf_pmu_events_attr, attr);
1707 if (pmu_attr->id < x86_pmu.max_events)
1708 config = x86_pmu.event_map(pmu_attr->id);
1710 /* string trumps id */
1711 if (pmu_attr->event_str)
1712 return sprintf(page, "%s", pmu_attr->event_str);
1714 return x86_pmu.events_sysfs_show(page, config);
1716 EXPORT_SYMBOL_GPL(events_sysfs_show);
1718 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1721 struct perf_pmu_events_ht_attr *pmu_attr =
1722 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1725 * Report conditional events depending on Hyper-Threading.
1727 * This is overly conservative as usually the HT special
1728 * handling is not needed if the other CPU thread is idle.
1730 * Note this does not (and cannot) handle the case when thread
1731 * siblings are invisible, for example with virtualization
1732 * if they are owned by some other guest. The user tool
1733 * has to re-read when a thread sibling gets onlined later.
1735 return sprintf(page, "%s",
1736 topology_max_smt_threads() > 1 ?
1737 pmu_attr->event_str_ht :
1738 pmu_attr->event_str_noht);
1741 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1742 EVENT_ATTR(instructions, INSTRUCTIONS );
1743 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1744 EVENT_ATTR(cache-misses, CACHE_MISSES );
1745 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1746 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1747 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1748 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1749 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1750 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1752 static struct attribute *empty_attrs;
1754 static struct attribute *events_attr[] = {
1755 EVENT_PTR(CPU_CYCLES),
1756 EVENT_PTR(INSTRUCTIONS),
1757 EVENT_PTR(CACHE_REFERENCES),
1758 EVENT_PTR(CACHE_MISSES),
1759 EVENT_PTR(BRANCH_INSTRUCTIONS),
1760 EVENT_PTR(BRANCH_MISSES),
1761 EVENT_PTR(BUS_CYCLES),
1762 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1763 EVENT_PTR(STALLED_CYCLES_BACKEND),
1764 EVENT_PTR(REF_CPU_CYCLES),
1769 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1770 * out of events_attr attributes.
1773 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1775 struct perf_pmu_events_attr *pmu_attr;
1777 if (idx >= x86_pmu.max_events)
1780 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1782 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1785 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1787 .attrs = events_attr,
1788 .is_visible = is_visible,
1791 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1793 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1794 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1795 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1796 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1797 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1798 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1802 * We have whole page size to spend and just little data
1803 * to write, so we can safely use sprintf.
1805 ret = sprintf(page, "event=0x%02llx", event);
1808 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1811 ret += sprintf(page + ret, ",edge");
1814 ret += sprintf(page + ret, ",pc");
1817 ret += sprintf(page + ret, ",any");
1820 ret += sprintf(page + ret, ",inv");
1823 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1825 ret += sprintf(page + ret, "\n");
1830 static struct attribute_group x86_pmu_attr_group;
1831 static struct attribute_group x86_pmu_caps_group;
1833 static int __init init_hw_perf_events(void)
1835 struct x86_pmu_quirk *quirk;
1838 pr_info("Performance Events: ");
1840 switch (boot_cpu_data.x86_vendor) {
1841 case X86_VENDOR_INTEL:
1842 err = intel_pmu_init();
1844 case X86_VENDOR_AMD:
1845 err = amd_pmu_init();
1847 case X86_VENDOR_HYGON:
1848 err = amd_pmu_init();
1849 x86_pmu.name = "HYGON";
1851 case X86_VENDOR_ZHAOXIN:
1852 case X86_VENDOR_CENTAUR:
1853 err = zhaoxin_pmu_init();
1859 pr_cont("no PMU driver, software events only.\n");
1865 /* sanity check that the hardware exists or is emulated */
1866 if (!check_hw_exists())
1869 pr_cont("%s PMU driver.\n", x86_pmu.name);
1871 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1873 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1876 if (!x86_pmu.intel_ctrl)
1877 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1879 perf_events_lapic_init();
1880 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1882 unconstrained = (struct event_constraint)
1883 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1884 0, x86_pmu.num_counters, 0, 0);
1886 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1888 if (!x86_pmu.events_sysfs_show)
1889 x86_pmu_events_group.attrs = &empty_attrs;
1891 pmu.attr_update = x86_pmu.attr_update;
1893 pr_info("... version: %d\n", x86_pmu.version);
1894 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1895 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1896 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1897 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1898 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1899 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1902 * Install callbacks. Core will call them for each online
1905 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1906 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1910 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1911 "perf/x86:starting", x86_pmu_starting_cpu,
1916 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1917 x86_pmu_online_cpu, NULL);
1921 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1928 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1930 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1932 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1935 early_initcall(init_hw_perf_events);
1937 static inline void x86_pmu_read(struct perf_event *event)
1940 return x86_pmu.read(event);
1941 x86_perf_event_update(event);
1945 * Start group events scheduling transaction
1946 * Set the flag to make pmu::enable() not perform the
1947 * schedulability test, it will be performed at commit time
1949 * We only support PERF_PMU_TXN_ADD transactions. Save the
1950 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1953 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1955 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1957 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1959 cpuc->txn_flags = txn_flags;
1960 if (txn_flags & ~PERF_PMU_TXN_ADD)
1963 perf_pmu_disable(pmu);
1964 __this_cpu_write(cpu_hw_events.n_txn, 0);
1968 * Stop group events scheduling transaction
1969 * Clear the flag and pmu::enable() will perform the
1970 * schedulability test.
1972 static void x86_pmu_cancel_txn(struct pmu *pmu)
1974 unsigned int txn_flags;
1975 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1977 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1979 txn_flags = cpuc->txn_flags;
1980 cpuc->txn_flags = 0;
1981 if (txn_flags & ~PERF_PMU_TXN_ADD)
1985 * Truncate collected array by the number of events added in this
1986 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1988 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1989 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1990 perf_pmu_enable(pmu);
1994 * Commit group events scheduling transaction
1995 * Perform the group schedulability test as a whole
1996 * Return 0 if success
1998 * Does not cancel the transaction on failure; expects the caller to do this.
2000 static int x86_pmu_commit_txn(struct pmu *pmu)
2002 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2003 int assign[X86_PMC_IDX_MAX];
2006 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2008 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2009 cpuc->txn_flags = 0;
2015 if (!x86_pmu_initialized())
2018 ret = x86_pmu.schedule_events(cpuc, n, assign);
2023 * copy new assignment, now we know it is possible
2024 * will be used by hw_perf_enable()
2026 memcpy(cpuc->assign, assign, n*sizeof(int));
2028 cpuc->txn_flags = 0;
2029 perf_pmu_enable(pmu);
2033 * a fake_cpuc is used to validate event groups. Due to
2034 * the extra reg logic, we need to also allocate a fake
2035 * per_core and per_cpu structure. Otherwise, group events
2036 * using extra reg may conflict without the kernel being
2037 * able to catch this when the last event gets added to
2040 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2042 intel_cpuc_finish(cpuc);
2046 static struct cpu_hw_events *allocate_fake_cpuc(void)
2048 struct cpu_hw_events *cpuc;
2049 int cpu = raw_smp_processor_id();
2051 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2053 return ERR_PTR(-ENOMEM);
2056 if (intel_cpuc_prepare(cpuc, cpu))
2061 free_fake_cpuc(cpuc);
2062 return ERR_PTR(-ENOMEM);
2066 * validate that we can schedule this event
2068 static int validate_event(struct perf_event *event)
2070 struct cpu_hw_events *fake_cpuc;
2071 struct event_constraint *c;
2074 fake_cpuc = allocate_fake_cpuc();
2075 if (IS_ERR(fake_cpuc))
2076 return PTR_ERR(fake_cpuc);
2078 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2080 if (!c || !c->weight)
2083 if (x86_pmu.put_event_constraints)
2084 x86_pmu.put_event_constraints(fake_cpuc, event);
2086 free_fake_cpuc(fake_cpuc);
2092 * validate a single event group
2094 * validation include:
2095 * - check events are compatible which each other
2096 * - events do not compete for the same counter
2097 * - number of events <= number of counters
2099 * validation ensures the group can be loaded onto the
2100 * PMU if it was the only group available.
2102 static int validate_group(struct perf_event *event)
2104 struct perf_event *leader = event->group_leader;
2105 struct cpu_hw_events *fake_cpuc;
2106 int ret = -EINVAL, n;
2108 fake_cpuc = allocate_fake_cpuc();
2109 if (IS_ERR(fake_cpuc))
2110 return PTR_ERR(fake_cpuc);
2112 * the event is not yet connected with its
2113 * siblings therefore we must first collect
2114 * existing siblings, then add the new event
2115 * before we can simulate the scheduling
2117 n = collect_events(fake_cpuc, leader, true);
2121 fake_cpuc->n_events = n;
2122 n = collect_events(fake_cpuc, event, false);
2126 fake_cpuc->n_events = 0;
2127 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2130 free_fake_cpuc(fake_cpuc);
2134 static int x86_pmu_event_init(struct perf_event *event)
2139 switch (event->attr.type) {
2141 case PERF_TYPE_HARDWARE:
2142 case PERF_TYPE_HW_CACHE:
2149 err = __x86_pmu_event_init(event);
2152 * we temporarily connect event to its pmu
2153 * such that validate_group() can classify
2154 * it as an x86 event using is_x86_event()
2159 if (event->group_leader != event)
2160 err = validate_group(event);
2162 err = validate_event(event);
2168 event->destroy(event);
2171 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2172 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2173 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2178 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2180 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2184 * This function relies on not being called concurrently in two
2185 * tasks in the same mm. Otherwise one task could observe
2186 * perf_rdpmc_allowed > 1 and return all the way back to
2187 * userspace with CR4.PCE clear while another task is still
2188 * doing on_each_cpu_mask() to propagate CR4.PCE.
2190 * For now, this can't happen because all callers hold mmap_lock
2191 * for write. If this changes, we'll need a different solution.
2193 mmap_assert_write_locked(mm);
2195 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2196 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2199 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2202 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2205 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2206 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2209 static int x86_pmu_event_idx(struct perf_event *event)
2211 int idx = event->hw.idx;
2213 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2216 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2217 idx -= INTEL_PMC_IDX_FIXED;
2224 static ssize_t get_attr_rdpmc(struct device *cdev,
2225 struct device_attribute *attr,
2228 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2231 static ssize_t set_attr_rdpmc(struct device *cdev,
2232 struct device_attribute *attr,
2233 const char *buf, size_t count)
2238 ret = kstrtoul(buf, 0, &val);
2245 if (x86_pmu.attr_rdpmc_broken)
2248 if (val != x86_pmu.attr_rdpmc) {
2250 * Changing into or out of never available or always available,
2251 * aka perf-event-bypassing mode. This path is extremely slow,
2252 * but only root can trigger it, so it's okay.
2255 static_branch_inc(&rdpmc_never_available_key);
2256 else if (x86_pmu.attr_rdpmc == 0)
2257 static_branch_dec(&rdpmc_never_available_key);
2260 static_branch_inc(&rdpmc_always_available_key);
2261 else if (x86_pmu.attr_rdpmc == 2)
2262 static_branch_dec(&rdpmc_always_available_key);
2264 on_each_cpu(cr4_update_pce, NULL, 1);
2265 x86_pmu.attr_rdpmc = val;
2271 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2273 static struct attribute *x86_pmu_attrs[] = {
2274 &dev_attr_rdpmc.attr,
2278 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2279 .attrs = x86_pmu_attrs,
2282 static ssize_t max_precise_show(struct device *cdev,
2283 struct device_attribute *attr,
2286 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2289 static DEVICE_ATTR_RO(max_precise);
2291 static struct attribute *x86_pmu_caps_attrs[] = {
2292 &dev_attr_max_precise.attr,
2296 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2298 .attrs = x86_pmu_caps_attrs,
2301 static const struct attribute_group *x86_pmu_attr_groups[] = {
2302 &x86_pmu_attr_group,
2303 &x86_pmu_format_group,
2304 &x86_pmu_events_group,
2305 &x86_pmu_caps_group,
2309 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2311 if (x86_pmu.sched_task)
2312 x86_pmu.sched_task(ctx, sched_in);
2315 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2316 struct perf_event_context *next)
2318 if (x86_pmu.swap_task_ctx)
2319 x86_pmu.swap_task_ctx(prev, next);
2322 void perf_check_microcode(void)
2324 if (x86_pmu.check_microcode)
2325 x86_pmu.check_microcode();
2328 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2330 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2333 if (value && x86_pmu.limit_period) {
2334 if (x86_pmu.limit_period(event, value) > value)
2341 static int x86_pmu_aux_output_match(struct perf_event *event)
2343 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2346 if (x86_pmu.aux_output_match)
2347 return x86_pmu.aux_output_match(event);
2352 static struct pmu pmu = {
2353 .pmu_enable = x86_pmu_enable,
2354 .pmu_disable = x86_pmu_disable,
2356 .attr_groups = x86_pmu_attr_groups,
2358 .event_init = x86_pmu_event_init,
2360 .event_mapped = x86_pmu_event_mapped,
2361 .event_unmapped = x86_pmu_event_unmapped,
2365 .start = x86_pmu_start,
2366 .stop = x86_pmu_stop,
2367 .read = x86_pmu_read,
2369 .start_txn = x86_pmu_start_txn,
2370 .cancel_txn = x86_pmu_cancel_txn,
2371 .commit_txn = x86_pmu_commit_txn,
2373 .event_idx = x86_pmu_event_idx,
2374 .sched_task = x86_pmu_sched_task,
2375 .swap_task_ctx = x86_pmu_swap_task_ctx,
2376 .check_period = x86_pmu_check_period,
2378 .aux_output_match = x86_pmu_aux_output_match,
2381 void arch_perf_update_userpage(struct perf_event *event,
2382 struct perf_event_mmap_page *userpg, u64 now)
2384 struct cyc2ns_data data;
2387 userpg->cap_user_time = 0;
2388 userpg->cap_user_time_zero = 0;
2389 userpg->cap_user_rdpmc =
2390 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2391 userpg->pmc_width = x86_pmu.cntval_bits;
2393 if (!using_native_sched_clock() || !sched_clock_stable())
2396 cyc2ns_read_begin(&data);
2398 offset = data.cyc2ns_offset + __sched_clock_offset;
2401 * Internal timekeeping for enabled/running/stopped times
2402 * is always in the local_clock domain.
2404 userpg->cap_user_time = 1;
2405 userpg->time_mult = data.cyc2ns_mul;
2406 userpg->time_shift = data.cyc2ns_shift;
2407 userpg->time_offset = offset - now;
2410 * cap_user_time_zero doesn't make sense when we're using a different
2411 * time base for the records.
2413 if (!event->attr.use_clockid) {
2414 userpg->cap_user_time_zero = 1;
2415 userpg->time_zero = offset;
2422 * Determine whether the regs were taken from an irq/exception handler rather
2423 * than from perf_arch_fetch_caller_regs().
2425 static bool perf_hw_regs(struct pt_regs *regs)
2427 return regs->flags & X86_EFLAGS_FIXED;
2431 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2433 struct unwind_state state;
2436 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2437 /* TODO: We don't support guest os callchain now */
2441 if (perf_callchain_store(entry, regs->ip))
2444 if (perf_hw_regs(regs))
2445 unwind_start(&state, current, regs, NULL);
2447 unwind_start(&state, current, NULL, (void *)regs->sp);
2449 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2450 addr = unwind_get_return_address(&state);
2451 if (!addr || perf_callchain_store(entry, addr))
2457 valid_user_frame(const void __user *fp, unsigned long size)
2459 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2462 static unsigned long get_segment_base(unsigned int segment)
2464 struct desc_struct *desc;
2465 unsigned int idx = segment >> 3;
2467 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2468 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2469 struct ldt_struct *ldt;
2471 /* IRQs are off, so this synchronizes with smp_store_release */
2472 ldt = READ_ONCE(current->active_mm->context.ldt);
2473 if (!ldt || idx >= ldt->nr_entries)
2476 desc = &ldt->entries[idx];
2481 if (idx >= GDT_ENTRIES)
2484 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2487 return get_desc_base(desc);
2490 #ifdef CONFIG_IA32_EMULATION
2492 #include <linux/compat.h>
2495 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2497 /* 32-bit process in 64-bit kernel. */
2498 unsigned long ss_base, cs_base;
2499 struct stack_frame_ia32 frame;
2500 const struct stack_frame_ia32 __user *fp;
2502 if (!test_thread_flag(TIF_IA32))
2505 cs_base = get_segment_base(regs->cs);
2506 ss_base = get_segment_base(regs->ss);
2508 fp = compat_ptr(ss_base + regs->bp);
2509 pagefault_disable();
2510 while (entry->nr < entry->max_stack) {
2511 if (!valid_user_frame(fp, sizeof(frame)))
2514 if (__get_user(frame.next_frame, &fp->next_frame))
2516 if (__get_user(frame.return_address, &fp->return_address))
2519 perf_callchain_store(entry, cs_base + frame.return_address);
2520 fp = compat_ptr(ss_base + frame.next_frame);
2527 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2534 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2536 struct stack_frame frame;
2537 const struct stack_frame __user *fp;
2539 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2540 /* TODO: We don't support guest os callchain now */
2545 * We don't know what to do with VM86 stacks.. ignore them for now.
2547 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2550 fp = (void __user *)regs->bp;
2552 perf_callchain_store(entry, regs->ip);
2554 if (!nmi_uaccess_okay())
2557 if (perf_callchain_user32(regs, entry))
2560 pagefault_disable();
2561 while (entry->nr < entry->max_stack) {
2562 if (!valid_user_frame(fp, sizeof(frame)))
2565 if (__get_user(frame.next_frame, &fp->next_frame))
2567 if (__get_user(frame.return_address, &fp->return_address))
2570 perf_callchain_store(entry, frame.return_address);
2571 fp = (void __user *)frame.next_frame;
2577 * Deal with code segment offsets for the various execution modes:
2579 * VM86 - the good olde 16 bit days, where the linear address is
2580 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2582 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2583 * to figure out what the 32bit base address is.
2585 * X32 - has TIF_X32 set, but is running in x86_64
2587 * X86_64 - CS,DS,SS,ES are all zero based.
2589 static unsigned long code_segment_base(struct pt_regs *regs)
2592 * For IA32 we look at the GDT/LDT segment base to convert the
2593 * effective IP to a linear address.
2596 #ifdef CONFIG_X86_32
2598 * If we are in VM86 mode, add the segment offset to convert to a
2601 if (regs->flags & X86_VM_MASK)
2602 return 0x10 * regs->cs;
2604 if (user_mode(regs) && regs->cs != __USER_CS)
2605 return get_segment_base(regs->cs);
2607 if (user_mode(regs) && !user_64bit_mode(regs) &&
2608 regs->cs != __USER32_CS)
2609 return get_segment_base(regs->cs);
2614 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2616 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2617 return perf_guest_cbs->get_guest_ip();
2619 return regs->ip + code_segment_base(regs);
2622 unsigned long perf_misc_flags(struct pt_regs *regs)
2626 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2627 if (perf_guest_cbs->is_user_mode())
2628 misc |= PERF_RECORD_MISC_GUEST_USER;
2630 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2632 if (user_mode(regs))
2633 misc |= PERF_RECORD_MISC_USER;
2635 misc |= PERF_RECORD_MISC_KERNEL;
2638 if (regs->flags & PERF_EFLAGS_EXACT)
2639 misc |= PERF_RECORD_MISC_EXACT_IP;
2644 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2646 cap->version = x86_pmu.version;
2647 cap->num_counters_gp = x86_pmu.num_counters;
2648 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2649 cap->bit_width_gp = x86_pmu.cntval_bits;
2650 cap->bit_width_fixed = x86_pmu.cntval_bits;
2651 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2652 cap->events_mask_len = x86_pmu.events_mask_len;
2654 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);