perf/x86/amd: Fix sampling Large Increment per Cycle events
[platform/kernel/linux-rpi.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
53 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54
55 u64 __read_mostly hw_cache_event_ids
56                                 [PERF_COUNT_HW_CACHE_MAX]
57                                 [PERF_COUNT_HW_CACHE_OP_MAX]
58                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60                                 [PERF_COUNT_HW_CACHE_MAX]
61                                 [PERF_COUNT_HW_CACHE_OP_MAX]
62                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71         struct hw_perf_event *hwc = &event->hw;
72         int shift = 64 - x86_pmu.cntval_bits;
73         u64 prev_raw_count, new_raw_count;
74         u64 delta;
75
76         if (unlikely(!hwc->event_base))
77                 return 0;
78
79         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
80                 return x86_pmu.update_topdown_event(event);
81
82         /*
83          * Careful: an NMI might modify the previous event value.
84          *
85          * Our tactic to handle this is to first atomically read and
86          * exchange a new raw count - then add that new-prev delta
87          * count to the generic event atomically:
88          */
89 again:
90         prev_raw_count = local64_read(&hwc->prev_count);
91         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
92
93         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
94                                         new_raw_count) != prev_raw_count)
95                 goto again;
96
97         /*
98          * Now we have the new raw value and have updated the prev
99          * timestamp already. We can now calculate the elapsed delta
100          * (event-)time and add that to the generic event.
101          *
102          * Careful, not all hw sign-extends above the physical width
103          * of the count.
104          */
105         delta = (new_raw_count << shift) - (prev_raw_count << shift);
106         delta >>= shift;
107
108         local64_add(delta, &event->count);
109         local64_sub(delta, &hwc->period_left);
110
111         return new_raw_count;
112 }
113
114 /*
115  * Find and validate any extra registers to set up.
116  */
117 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
118 {
119         struct hw_perf_event_extra *reg;
120         struct extra_reg *er;
121
122         reg = &event->hw.extra_reg;
123
124         if (!x86_pmu.extra_regs)
125                 return 0;
126
127         for (er = x86_pmu.extra_regs; er->msr; er++) {
128                 if (er->event != (config & er->config_mask))
129                         continue;
130                 if (event->attr.config1 & ~er->valid_mask)
131                         return -EINVAL;
132                 /* Check if the extra msrs can be safely accessed*/
133                 if (!er->extra_msr_access)
134                         return -ENXIO;
135
136                 reg->idx = er->idx;
137                 reg->config = event->attr.config1;
138                 reg->reg = er->msr;
139                 break;
140         }
141         return 0;
142 }
143
144 static atomic_t active_events;
145 static atomic_t pmc_refcount;
146 static DEFINE_MUTEX(pmc_reserve_mutex);
147
148 #ifdef CONFIG_X86_LOCAL_APIC
149
150 static bool reserve_pmc_hardware(void)
151 {
152         int i;
153
154         for (i = 0; i < x86_pmu.num_counters; i++) {
155                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
156                         goto perfctr_fail;
157         }
158
159         for (i = 0; i < x86_pmu.num_counters; i++) {
160                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
161                         goto eventsel_fail;
162         }
163
164         return true;
165
166 eventsel_fail:
167         for (i--; i >= 0; i--)
168                 release_evntsel_nmi(x86_pmu_config_addr(i));
169
170         i = x86_pmu.num_counters;
171
172 perfctr_fail:
173         for (i--; i >= 0; i--)
174                 release_perfctr_nmi(x86_pmu_event_addr(i));
175
176         return false;
177 }
178
179 static void release_pmc_hardware(void)
180 {
181         int i;
182
183         for (i = 0; i < x86_pmu.num_counters; i++) {
184                 release_perfctr_nmi(x86_pmu_event_addr(i));
185                 release_evntsel_nmi(x86_pmu_config_addr(i));
186         }
187 }
188
189 #else
190
191 static bool reserve_pmc_hardware(void) { return true; }
192 static void release_pmc_hardware(void) {}
193
194 #endif
195
196 static bool check_hw_exists(void)
197 {
198         u64 val, val_fail = -1, val_new= ~0;
199         int i, reg, reg_fail = -1, ret = 0;
200         int bios_fail = 0;
201         int reg_safe = -1;
202
203         /*
204          * Check to see if the BIOS enabled any of the counters, if so
205          * complain and bail.
206          */
207         for (i = 0; i < x86_pmu.num_counters; i++) {
208                 reg = x86_pmu_config_addr(i);
209                 ret = rdmsrl_safe(reg, &val);
210                 if (ret)
211                         goto msr_fail;
212                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
213                         bios_fail = 1;
214                         val_fail = val;
215                         reg_fail = reg;
216                 } else {
217                         reg_safe = i;
218                 }
219         }
220
221         if (x86_pmu.num_counters_fixed) {
222                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
223                 ret = rdmsrl_safe(reg, &val);
224                 if (ret)
225                         goto msr_fail;
226                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
227                         if (val & (0x03 << i*4)) {
228                                 bios_fail = 1;
229                                 val_fail = val;
230                                 reg_fail = reg;
231                         }
232                 }
233         }
234
235         /*
236          * If all the counters are enabled, the below test will always
237          * fail.  The tools will also become useless in this scenario.
238          * Just fail and disable the hardware counters.
239          */
240
241         if (reg_safe == -1) {
242                 reg = reg_safe;
243                 goto msr_fail;
244         }
245
246         /*
247          * Read the current value, change it and read it back to see if it
248          * matches, this is needed to detect certain hardware emulators
249          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
250          */
251         reg = x86_pmu_event_addr(reg_safe);
252         if (rdmsrl_safe(reg, &val))
253                 goto msr_fail;
254         val ^= 0xffffUL;
255         ret = wrmsrl_safe(reg, val);
256         ret |= rdmsrl_safe(reg, &val_new);
257         if (ret || val != val_new)
258                 goto msr_fail;
259
260         /*
261          * We still allow the PMU driver to operate:
262          */
263         if (bios_fail) {
264                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
265                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
266                               reg_fail, val_fail);
267         }
268
269         return true;
270
271 msr_fail:
272         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
273                 pr_cont("PMU not available due to virtualization, using software events only.\n");
274         } else {
275                 pr_cont("Broken PMU hardware detected, using software events only.\n");
276                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
277                        reg, val_new);
278         }
279
280         return false;
281 }
282
283 static void hw_perf_event_destroy(struct perf_event *event)
284 {
285         x86_release_hardware();
286         atomic_dec(&active_events);
287 }
288
289 void hw_perf_lbr_event_destroy(struct perf_event *event)
290 {
291         hw_perf_event_destroy(event);
292
293         /* undo the lbr/bts event accounting */
294         x86_del_exclusive(x86_lbr_exclusive_lbr);
295 }
296
297 static inline int x86_pmu_initialized(void)
298 {
299         return x86_pmu.handle_irq != NULL;
300 }
301
302 static inline int
303 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
304 {
305         struct perf_event_attr *attr = &event->attr;
306         unsigned int cache_type, cache_op, cache_result;
307         u64 config, val;
308
309         config = attr->config;
310
311         cache_type = (config >> 0) & 0xff;
312         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
313                 return -EINVAL;
314         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
315
316         cache_op = (config >>  8) & 0xff;
317         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
318                 return -EINVAL;
319         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
320
321         cache_result = (config >> 16) & 0xff;
322         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
323                 return -EINVAL;
324         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
325
326         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
327
328         if (val == 0)
329                 return -ENOENT;
330
331         if (val == -1)
332                 return -EINVAL;
333
334         hwc->config |= val;
335         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
336         return x86_pmu_extra_regs(val, event);
337 }
338
339 int x86_reserve_hardware(void)
340 {
341         int err = 0;
342
343         if (!atomic_inc_not_zero(&pmc_refcount)) {
344                 mutex_lock(&pmc_reserve_mutex);
345                 if (atomic_read(&pmc_refcount) == 0) {
346                         if (!reserve_pmc_hardware())
347                                 err = -EBUSY;
348                         else
349                                 reserve_ds_buffers();
350                 }
351                 if (!err)
352                         atomic_inc(&pmc_refcount);
353                 mutex_unlock(&pmc_reserve_mutex);
354         }
355
356         return err;
357 }
358
359 void x86_release_hardware(void)
360 {
361         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
362                 release_pmc_hardware();
363                 release_ds_buffers();
364                 release_lbr_buffers();
365                 mutex_unlock(&pmc_reserve_mutex);
366         }
367 }
368
369 /*
370  * Check if we can create event of a certain type (that no conflicting events
371  * are present).
372  */
373 int x86_add_exclusive(unsigned int what)
374 {
375         int i;
376
377         /*
378          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
379          * LBR and BTS are still mutually exclusive.
380          */
381         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
382                 goto out;
383
384         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
385                 mutex_lock(&pmc_reserve_mutex);
386                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
387                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
388                                 goto fail_unlock;
389                 }
390                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
391                 mutex_unlock(&pmc_reserve_mutex);
392         }
393
394 out:
395         atomic_inc(&active_events);
396         return 0;
397
398 fail_unlock:
399         mutex_unlock(&pmc_reserve_mutex);
400         return -EBUSY;
401 }
402
403 void x86_del_exclusive(unsigned int what)
404 {
405         atomic_dec(&active_events);
406
407         /*
408          * See the comment in x86_add_exclusive().
409          */
410         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
411                 return;
412
413         atomic_dec(&x86_pmu.lbr_exclusive[what]);
414 }
415
416 int x86_setup_perfctr(struct perf_event *event)
417 {
418         struct perf_event_attr *attr = &event->attr;
419         struct hw_perf_event *hwc = &event->hw;
420         u64 config;
421
422         if (!is_sampling_event(event)) {
423                 hwc->sample_period = x86_pmu.max_period;
424                 hwc->last_period = hwc->sample_period;
425                 local64_set(&hwc->period_left, hwc->sample_period);
426         }
427
428         if (attr->type == PERF_TYPE_RAW)
429                 return x86_pmu_extra_regs(event->attr.config, event);
430
431         if (attr->type == PERF_TYPE_HW_CACHE)
432                 return set_ext_hw_attr(hwc, event);
433
434         if (attr->config >= x86_pmu.max_events)
435                 return -EINVAL;
436
437         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
438
439         /*
440          * The generic map:
441          */
442         config = x86_pmu.event_map(attr->config);
443
444         if (config == 0)
445                 return -ENOENT;
446
447         if (config == -1LL)
448                 return -EINVAL;
449
450         hwc->config |= config;
451
452         return 0;
453 }
454
455 /*
456  * check that branch_sample_type is compatible with
457  * settings needed for precise_ip > 1 which implies
458  * using the LBR to capture ALL taken branches at the
459  * priv levels of the measurement
460  */
461 static inline int precise_br_compat(struct perf_event *event)
462 {
463         u64 m = event->attr.branch_sample_type;
464         u64 b = 0;
465
466         /* must capture all branches */
467         if (!(m & PERF_SAMPLE_BRANCH_ANY))
468                 return 0;
469
470         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
471
472         if (!event->attr.exclude_user)
473                 b |= PERF_SAMPLE_BRANCH_USER;
474
475         if (!event->attr.exclude_kernel)
476                 b |= PERF_SAMPLE_BRANCH_KERNEL;
477
478         /*
479          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
480          */
481
482         return m == b;
483 }
484
485 int x86_pmu_max_precise(void)
486 {
487         int precise = 0;
488
489         /* Support for constant skid */
490         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
491                 precise++;
492
493                 /* Support for IP fixup */
494                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
495                         precise++;
496
497                 if (x86_pmu.pebs_prec_dist)
498                         precise++;
499         }
500         return precise;
501 }
502
503 int x86_pmu_hw_config(struct perf_event *event)
504 {
505         if (event->attr.precise_ip) {
506                 int precise = x86_pmu_max_precise();
507
508                 if (event->attr.precise_ip > precise)
509                         return -EOPNOTSUPP;
510
511                 /* There's no sense in having PEBS for non sampling events: */
512                 if (!is_sampling_event(event))
513                         return -EINVAL;
514         }
515         /*
516          * check that PEBS LBR correction does not conflict with
517          * whatever the user is asking with attr->branch_sample_type
518          */
519         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
520                 u64 *br_type = &event->attr.branch_sample_type;
521
522                 if (has_branch_stack(event)) {
523                         if (!precise_br_compat(event))
524                                 return -EOPNOTSUPP;
525
526                         /* branch_sample_type is compatible */
527
528                 } else {
529                         /*
530                          * user did not specify  branch_sample_type
531                          *
532                          * For PEBS fixups, we capture all
533                          * the branches at the priv level of the
534                          * event.
535                          */
536                         *br_type = PERF_SAMPLE_BRANCH_ANY;
537
538                         if (!event->attr.exclude_user)
539                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
540
541                         if (!event->attr.exclude_kernel)
542                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
543                 }
544         }
545
546         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
547                 event->attach_state |= PERF_ATTACH_TASK_DATA;
548
549         /*
550          * Generate PMC IRQs:
551          * (keep 'enabled' bit clear for now)
552          */
553         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
554
555         /*
556          * Count user and OS events unless requested not to
557          */
558         if (!event->attr.exclude_user)
559                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
560         if (!event->attr.exclude_kernel)
561                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
562
563         if (event->attr.type == PERF_TYPE_RAW)
564                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
565
566         if (event->attr.sample_period && x86_pmu.limit_period) {
567                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
568                                 event->attr.sample_period)
569                         return -EINVAL;
570         }
571
572         /* sample_regs_user never support XMM registers */
573         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
574                 return -EINVAL;
575         /*
576          * Besides the general purpose registers, XMM registers may
577          * be collected in PEBS on some platforms, e.g. Icelake
578          */
579         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
580                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
581                         return -EINVAL;
582
583                 if (!event->attr.precise_ip)
584                         return -EINVAL;
585         }
586
587         return x86_setup_perfctr(event);
588 }
589
590 /*
591  * Setup the hardware configuration for a given attr_type
592  */
593 static int __x86_pmu_event_init(struct perf_event *event)
594 {
595         int err;
596
597         if (!x86_pmu_initialized())
598                 return -ENODEV;
599
600         err = x86_reserve_hardware();
601         if (err)
602                 return err;
603
604         atomic_inc(&active_events);
605         event->destroy = hw_perf_event_destroy;
606
607         event->hw.idx = -1;
608         event->hw.last_cpu = -1;
609         event->hw.last_tag = ~0ULL;
610
611         /* mark unused */
612         event->hw.extra_reg.idx = EXTRA_REG_NONE;
613         event->hw.branch_reg.idx = EXTRA_REG_NONE;
614
615         return x86_pmu.hw_config(event);
616 }
617
618 void x86_pmu_disable_all(void)
619 {
620         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
621         int idx;
622
623         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
624                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
625                 u64 val;
626
627                 if (!test_bit(idx, cpuc->active_mask))
628                         continue;
629                 rdmsrl(x86_pmu_config_addr(idx), val);
630                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
631                         continue;
632                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
633                 wrmsrl(x86_pmu_config_addr(idx), val);
634                 if (is_counter_pair(hwc))
635                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
636         }
637 }
638
639 /*
640  * There may be PMI landing after enabled=0. The PMI hitting could be before or
641  * after disable_all.
642  *
643  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
644  * It will not be re-enabled in the NMI handler again, because enabled=0. After
645  * handling the NMI, disable_all will be called, which will not change the
646  * state either. If PMI hits after disable_all, the PMU is already disabled
647  * before entering NMI handler. The NMI handler will not change the state
648  * either.
649  *
650  * So either situation is harmless.
651  */
652 static void x86_pmu_disable(struct pmu *pmu)
653 {
654         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
655
656         if (!x86_pmu_initialized())
657                 return;
658
659         if (!cpuc->enabled)
660                 return;
661
662         cpuc->n_added = 0;
663         cpuc->enabled = 0;
664         barrier();
665
666         x86_pmu.disable_all();
667 }
668
669 void x86_pmu_enable_all(int added)
670 {
671         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
672         int idx;
673
674         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
675                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
676
677                 if (!test_bit(idx, cpuc->active_mask))
678                         continue;
679
680                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
681         }
682 }
683
684 static struct pmu pmu;
685
686 static inline int is_x86_event(struct perf_event *event)
687 {
688         return event->pmu == &pmu;
689 }
690
691 struct pmu *x86_get_pmu(void)
692 {
693         return &pmu;
694 }
695 /*
696  * Event scheduler state:
697  *
698  * Assign events iterating over all events and counters, beginning
699  * with events with least weights first. Keep the current iterator
700  * state in struct sched_state.
701  */
702 struct sched_state {
703         int     weight;
704         int     event;          /* event index */
705         int     counter;        /* counter index */
706         int     unassigned;     /* number of events to be assigned left */
707         int     nr_gp;          /* number of GP counters used */
708         u64     used;
709 };
710
711 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
712 #define SCHED_STATES_MAX        2
713
714 struct perf_sched {
715         int                     max_weight;
716         int                     max_events;
717         int                     max_gp;
718         int                     saved_states;
719         struct event_constraint **constraints;
720         struct sched_state      state;
721         struct sched_state      saved[SCHED_STATES_MAX];
722 };
723
724 /*
725  * Initialize interator that runs through all events and counters.
726  */
727 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
728                             int num, int wmin, int wmax, int gpmax)
729 {
730         int idx;
731
732         memset(sched, 0, sizeof(*sched));
733         sched->max_events       = num;
734         sched->max_weight       = wmax;
735         sched->max_gp           = gpmax;
736         sched->constraints      = constraints;
737
738         for (idx = 0; idx < num; idx++) {
739                 if (constraints[idx]->weight == wmin)
740                         break;
741         }
742
743         sched->state.event      = idx;          /* start with min weight */
744         sched->state.weight     = wmin;
745         sched->state.unassigned = num;
746 }
747
748 static void perf_sched_save_state(struct perf_sched *sched)
749 {
750         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
751                 return;
752
753         sched->saved[sched->saved_states] = sched->state;
754         sched->saved_states++;
755 }
756
757 static bool perf_sched_restore_state(struct perf_sched *sched)
758 {
759         if (!sched->saved_states)
760                 return false;
761
762         sched->saved_states--;
763         sched->state = sched->saved[sched->saved_states];
764
765         /* this assignment didn't work out */
766         /* XXX broken vs EVENT_PAIR */
767         sched->state.used &= ~BIT_ULL(sched->state.counter);
768
769         /* try the next one */
770         sched->state.counter++;
771
772         return true;
773 }
774
775 /*
776  * Select a counter for the current event to schedule. Return true on
777  * success.
778  */
779 static bool __perf_sched_find_counter(struct perf_sched *sched)
780 {
781         struct event_constraint *c;
782         int idx;
783
784         if (!sched->state.unassigned)
785                 return false;
786
787         if (sched->state.event >= sched->max_events)
788                 return false;
789
790         c = sched->constraints[sched->state.event];
791         /* Prefer fixed purpose counters */
792         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
793                 idx = INTEL_PMC_IDX_FIXED;
794                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
795                         u64 mask = BIT_ULL(idx);
796
797                         if (sched->state.used & mask)
798                                 continue;
799
800                         sched->state.used |= mask;
801                         goto done;
802                 }
803         }
804
805         /* Grab the first unused counter starting with idx */
806         idx = sched->state.counter;
807         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
808                 u64 mask = BIT_ULL(idx);
809
810                 if (c->flags & PERF_X86_EVENT_PAIR)
811                         mask |= mask << 1;
812
813                 if (sched->state.used & mask)
814                         continue;
815
816                 if (sched->state.nr_gp++ >= sched->max_gp)
817                         return false;
818
819                 sched->state.used |= mask;
820                 goto done;
821         }
822
823         return false;
824
825 done:
826         sched->state.counter = idx;
827
828         if (c->overlap)
829                 perf_sched_save_state(sched);
830
831         return true;
832 }
833
834 static bool perf_sched_find_counter(struct perf_sched *sched)
835 {
836         while (!__perf_sched_find_counter(sched)) {
837                 if (!perf_sched_restore_state(sched))
838                         return false;
839         }
840
841         return true;
842 }
843
844 /*
845  * Go through all unassigned events and find the next one to schedule.
846  * Take events with the least weight first. Return true on success.
847  */
848 static bool perf_sched_next_event(struct perf_sched *sched)
849 {
850         struct event_constraint *c;
851
852         if (!sched->state.unassigned || !--sched->state.unassigned)
853                 return false;
854
855         do {
856                 /* next event */
857                 sched->state.event++;
858                 if (sched->state.event >= sched->max_events) {
859                         /* next weight */
860                         sched->state.event = 0;
861                         sched->state.weight++;
862                         if (sched->state.weight > sched->max_weight)
863                                 return false;
864                 }
865                 c = sched->constraints[sched->state.event];
866         } while (c->weight != sched->state.weight);
867
868         sched->state.counter = 0;       /* start with first counter */
869
870         return true;
871 }
872
873 /*
874  * Assign a counter for each event.
875  */
876 int perf_assign_events(struct event_constraint **constraints, int n,
877                         int wmin, int wmax, int gpmax, int *assign)
878 {
879         struct perf_sched sched;
880
881         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
882
883         do {
884                 if (!perf_sched_find_counter(&sched))
885                         break;  /* failed */
886                 if (assign)
887                         assign[sched.state.event] = sched.state.counter;
888         } while (perf_sched_next_event(&sched));
889
890         return sched.state.unassigned;
891 }
892 EXPORT_SYMBOL_GPL(perf_assign_events);
893
894 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
895 {
896         struct event_constraint *c;
897         struct perf_event *e;
898         int n0, i, wmin, wmax, unsched = 0;
899         struct hw_perf_event *hwc;
900         u64 used_mask = 0;
901
902         /*
903          * Compute the number of events already present; see x86_pmu_add(),
904          * validate_group() and x86_pmu_commit_txn(). For the former two
905          * cpuc->n_events hasn't been updated yet, while for the latter
906          * cpuc->n_txn contains the number of events added in the current
907          * transaction.
908          */
909         n0 = cpuc->n_events;
910         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
911                 n0 -= cpuc->n_txn;
912
913         if (x86_pmu.start_scheduling)
914                 x86_pmu.start_scheduling(cpuc);
915
916         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
917                 c = cpuc->event_constraint[i];
918
919                 /*
920                  * Previously scheduled events should have a cached constraint,
921                  * while new events should not have one.
922                  */
923                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
924
925                 /*
926                  * Request constraints for new events; or for those events that
927                  * have a dynamic constraint -- for those the constraint can
928                  * change due to external factors (sibling state, allow_tfa).
929                  */
930                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
931                         c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
932                         cpuc->event_constraint[i] = c;
933                 }
934
935                 wmin = min(wmin, c->weight);
936                 wmax = max(wmax, c->weight);
937         }
938
939         /*
940          * fastpath, try to reuse previous register
941          */
942         for (i = 0; i < n; i++) {
943                 u64 mask;
944
945                 hwc = &cpuc->event_list[i]->hw;
946                 c = cpuc->event_constraint[i];
947
948                 /* never assigned */
949                 if (hwc->idx == -1)
950                         break;
951
952                 /* constraint still honored */
953                 if (!test_bit(hwc->idx, c->idxmsk))
954                         break;
955
956                 mask = BIT_ULL(hwc->idx);
957                 if (is_counter_pair(hwc))
958                         mask |= mask << 1;
959
960                 /* not already used */
961                 if (used_mask & mask)
962                         break;
963
964                 used_mask |= mask;
965
966                 if (assign)
967                         assign[i] = hwc->idx;
968         }
969
970         /* slow path */
971         if (i != n) {
972                 int gpmax = x86_pmu.num_counters;
973
974                 /*
975                  * Do not allow scheduling of more than half the available
976                  * generic counters.
977                  *
978                  * This helps avoid counter starvation of sibling thread by
979                  * ensuring at most half the counters cannot be in exclusive
980                  * mode. There is no designated counters for the limits. Any
981                  * N/2 counters can be used. This helps with events with
982                  * specific counter constraints.
983                  */
984                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
985                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
986                         gpmax /= 2;
987
988                 /*
989                  * Reduce the amount of available counters to allow fitting
990                  * the extra Merge events needed by large increment events.
991                  */
992                 if (x86_pmu.flags & PMU_FL_PAIR) {
993                         gpmax = x86_pmu.num_counters - cpuc->n_pair;
994                         WARN_ON(gpmax <= 0);
995                 }
996
997                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
998                                              wmax, gpmax, assign);
999         }
1000
1001         /*
1002          * In case of success (unsched = 0), mark events as committed,
1003          * so we do not put_constraint() in case new events are added
1004          * and fail to be scheduled
1005          *
1006          * We invoke the lower level commit callback to lock the resource
1007          *
1008          * We do not need to do all of this in case we are called to
1009          * validate an event group (assign == NULL)
1010          */
1011         if (!unsched && assign) {
1012                 for (i = 0; i < n; i++) {
1013                         e = cpuc->event_list[i];
1014                         if (x86_pmu.commit_scheduling)
1015                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1016                 }
1017         } else {
1018                 for (i = n0; i < n; i++) {
1019                         e = cpuc->event_list[i];
1020
1021                         /*
1022                          * release events that failed scheduling
1023                          */
1024                         if (x86_pmu.put_event_constraints)
1025                                 x86_pmu.put_event_constraints(cpuc, e);
1026
1027                         cpuc->event_constraint[i] = NULL;
1028                 }
1029         }
1030
1031         if (x86_pmu.stop_scheduling)
1032                 x86_pmu.stop_scheduling(cpuc);
1033
1034         return unsched ? -EINVAL : 0;
1035 }
1036
1037 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1038                                struct perf_event *event)
1039 {
1040         if (is_metric_event(event)) {
1041                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1042                         return -EINVAL;
1043                 cpuc->n_metric++;
1044         }
1045
1046         return 0;
1047 }
1048
1049 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1050                                 struct perf_event *event)
1051 {
1052         if (is_metric_event(event))
1053                 cpuc->n_metric--;
1054 }
1055
1056 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1057                          int max_count, int n)
1058 {
1059
1060         if (x86_pmu.intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1061                 return -EINVAL;
1062
1063         if (n >= max_count + cpuc->n_metric)
1064                 return -EINVAL;
1065
1066         cpuc->event_list[n] = event;
1067         if (is_counter_pair(&event->hw))
1068                 cpuc->n_pair++;
1069
1070         return 0;
1071 }
1072
1073 /*
1074  * dogrp: true if must collect siblings events (group)
1075  * returns total number of events and error code
1076  */
1077 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1078 {
1079         struct perf_event *event;
1080         int n, max_count;
1081
1082         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1083
1084         /* current number of events already accepted */
1085         n = cpuc->n_events;
1086         if (!cpuc->n_events)
1087                 cpuc->pebs_output = 0;
1088
1089         if (!cpuc->is_fake && leader->attr.precise_ip) {
1090                 /*
1091                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1092                  * away, the group was broken down and this singleton event
1093                  * can't schedule any more.
1094                  */
1095                 if (is_pebs_pt(leader) && !leader->aux_event)
1096                         return -EINVAL;
1097
1098                 /*
1099                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1100                  */
1101                 if (cpuc->pebs_output &&
1102                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1103                         return -EINVAL;
1104
1105                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1106         }
1107
1108         if (is_x86_event(leader)) {
1109                 if (collect_event(cpuc, leader, max_count, n))
1110                         return -EINVAL;
1111                 n++;
1112         }
1113
1114         if (!dogrp)
1115                 return n;
1116
1117         for_each_sibling_event(event, leader) {
1118                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1119                         continue;
1120
1121                 if (collect_event(cpuc, event, max_count, n))
1122                         return -EINVAL;
1123
1124                 n++;
1125         }
1126         return n;
1127 }
1128
1129 static inline void x86_assign_hw_event(struct perf_event *event,
1130                                 struct cpu_hw_events *cpuc, int i)
1131 {
1132         struct hw_perf_event *hwc = &event->hw;
1133         int idx;
1134
1135         idx = hwc->idx = cpuc->assign[i];
1136         hwc->last_cpu = smp_processor_id();
1137         hwc->last_tag = ++cpuc->tags[i];
1138
1139         switch (hwc->idx) {
1140         case INTEL_PMC_IDX_FIXED_BTS:
1141         case INTEL_PMC_IDX_FIXED_VLBR:
1142                 hwc->config_base = 0;
1143                 hwc->event_base = 0;
1144                 break;
1145
1146         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1147                 /* All the metric events are mapped onto the fixed counter 3. */
1148                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1149                 /* fall through */
1150         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1151                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1152                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1153                                 (idx - INTEL_PMC_IDX_FIXED);
1154                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1155                                         INTEL_PMC_FIXED_RDPMC_BASE;
1156                 break;
1157
1158         default:
1159                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1160                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1161                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1162                 break;
1163         }
1164 }
1165
1166 /**
1167  * x86_perf_rdpmc_index - Return PMC counter used for event
1168  * @event: the perf_event to which the PMC counter was assigned
1169  *
1170  * The counter assigned to this performance event may change if interrupts
1171  * are enabled. This counter should thus never be used while interrupts are
1172  * enabled. Before this function is used to obtain the assigned counter the
1173  * event should be checked for validity using, for example,
1174  * perf_event_read_local(), within the same interrupt disabled section in
1175  * which this counter is planned to be used.
1176  *
1177  * Return: The index of the performance monitoring counter assigned to
1178  * @perf_event.
1179  */
1180 int x86_perf_rdpmc_index(struct perf_event *event)
1181 {
1182         lockdep_assert_irqs_disabled();
1183
1184         return event->hw.event_base_rdpmc;
1185 }
1186
1187 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1188                                         struct cpu_hw_events *cpuc,
1189                                         int i)
1190 {
1191         return hwc->idx == cpuc->assign[i] &&
1192                 hwc->last_cpu == smp_processor_id() &&
1193                 hwc->last_tag == cpuc->tags[i];
1194 }
1195
1196 static void x86_pmu_start(struct perf_event *event, int flags);
1197
1198 static void x86_pmu_enable(struct pmu *pmu)
1199 {
1200         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1201         struct perf_event *event;
1202         struct hw_perf_event *hwc;
1203         int i, added = cpuc->n_added;
1204
1205         if (!x86_pmu_initialized())
1206                 return;
1207
1208         if (cpuc->enabled)
1209                 return;
1210
1211         if (cpuc->n_added) {
1212                 int n_running = cpuc->n_events - cpuc->n_added;
1213                 /*
1214                  * apply assignment obtained either from
1215                  * hw_perf_group_sched_in() or x86_pmu_enable()
1216                  *
1217                  * step1: save events moving to new counters
1218                  */
1219                 for (i = 0; i < n_running; i++) {
1220                         event = cpuc->event_list[i];
1221                         hwc = &event->hw;
1222
1223                         /*
1224                          * we can avoid reprogramming counter if:
1225                          * - assigned same counter as last time
1226                          * - running on same CPU as last time
1227                          * - no other event has used the counter since
1228                          */
1229                         if (hwc->idx == -1 ||
1230                             match_prev_assignment(hwc, cpuc, i))
1231                                 continue;
1232
1233                         /*
1234                          * Ensure we don't accidentally enable a stopped
1235                          * counter simply because we rescheduled.
1236                          */
1237                         if (hwc->state & PERF_HES_STOPPED)
1238                                 hwc->state |= PERF_HES_ARCH;
1239
1240                         x86_pmu_stop(event, PERF_EF_UPDATE);
1241                 }
1242
1243                 /*
1244                  * step2: reprogram moved events into new counters
1245                  */
1246                 for (i = 0; i < cpuc->n_events; i++) {
1247                         event = cpuc->event_list[i];
1248                         hwc = &event->hw;
1249
1250                         if (!match_prev_assignment(hwc, cpuc, i))
1251                                 x86_assign_hw_event(event, cpuc, i);
1252                         else if (i < n_running)
1253                                 continue;
1254
1255                         if (hwc->state & PERF_HES_ARCH)
1256                                 continue;
1257
1258                         x86_pmu_start(event, PERF_EF_RELOAD);
1259                 }
1260                 cpuc->n_added = 0;
1261                 perf_events_lapic_init();
1262         }
1263
1264         cpuc->enabled = 1;
1265         barrier();
1266
1267         x86_pmu.enable_all(added);
1268 }
1269
1270 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1271
1272 /*
1273  * Set the next IRQ period, based on the hwc->period_left value.
1274  * To be called with the event disabled in hw:
1275  */
1276 int x86_perf_event_set_period(struct perf_event *event)
1277 {
1278         struct hw_perf_event *hwc = &event->hw;
1279         s64 left = local64_read(&hwc->period_left);
1280         s64 period = hwc->sample_period;
1281         int ret = 0, idx = hwc->idx;
1282
1283         if (unlikely(!hwc->event_base))
1284                 return 0;
1285
1286         if (unlikely(is_topdown_count(event)) &&
1287             x86_pmu.set_topdown_event_period)
1288                 return x86_pmu.set_topdown_event_period(event);
1289
1290         /*
1291          * If we are way outside a reasonable range then just skip forward:
1292          */
1293         if (unlikely(left <= -period)) {
1294                 left = period;
1295                 local64_set(&hwc->period_left, left);
1296                 hwc->last_period = period;
1297                 ret = 1;
1298         }
1299
1300         if (unlikely(left <= 0)) {
1301                 left += period;
1302                 local64_set(&hwc->period_left, left);
1303                 hwc->last_period = period;
1304                 ret = 1;
1305         }
1306         /*
1307          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1308          */
1309         if (unlikely(left < 2))
1310                 left = 2;
1311
1312         if (left > x86_pmu.max_period)
1313                 left = x86_pmu.max_period;
1314
1315         if (x86_pmu.limit_period)
1316                 left = x86_pmu.limit_period(event, left);
1317
1318         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1319
1320         /*
1321          * The hw event starts counting from this event offset,
1322          * mark it to be able to extra future deltas:
1323          */
1324         local64_set(&hwc->prev_count, (u64)-left);
1325
1326         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1327
1328         /*
1329          * Sign extend the Merge event counter's upper 16 bits since
1330          * we currently declare a 48-bit counter width
1331          */
1332         if (is_counter_pair(hwc))
1333                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1334
1335         /*
1336          * Due to erratum on certan cpu we need
1337          * a second write to be sure the register
1338          * is updated properly
1339          */
1340         if (x86_pmu.perfctr_second_write) {
1341                 wrmsrl(hwc->event_base,
1342                         (u64)(-left) & x86_pmu.cntval_mask);
1343         }
1344
1345         perf_event_update_userpage(event);
1346
1347         return ret;
1348 }
1349
1350 void x86_pmu_enable_event(struct perf_event *event)
1351 {
1352         if (__this_cpu_read(cpu_hw_events.enabled))
1353                 __x86_pmu_enable_event(&event->hw,
1354                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1355 }
1356
1357 /*
1358  * Add a single event to the PMU.
1359  *
1360  * The event is added to the group of enabled events
1361  * but only if it can be scheduled with existing events.
1362  */
1363 static int x86_pmu_add(struct perf_event *event, int flags)
1364 {
1365         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1366         struct hw_perf_event *hwc;
1367         int assign[X86_PMC_IDX_MAX];
1368         int n, n0, ret;
1369
1370         hwc = &event->hw;
1371
1372         n0 = cpuc->n_events;
1373         ret = n = collect_events(cpuc, event, false);
1374         if (ret < 0)
1375                 goto out;
1376
1377         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1378         if (!(flags & PERF_EF_START))
1379                 hwc->state |= PERF_HES_ARCH;
1380
1381         /*
1382          * If group events scheduling transaction was started,
1383          * skip the schedulability test here, it will be performed
1384          * at commit time (->commit_txn) as a whole.
1385          *
1386          * If commit fails, we'll call ->del() on all events
1387          * for which ->add() was called.
1388          */
1389         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1390                 goto done_collect;
1391
1392         ret = x86_pmu.schedule_events(cpuc, n, assign);
1393         if (ret)
1394                 goto out;
1395         /*
1396          * copy new assignment, now we know it is possible
1397          * will be used by hw_perf_enable()
1398          */
1399         memcpy(cpuc->assign, assign, n*sizeof(int));
1400
1401 done_collect:
1402         /*
1403          * Commit the collect_events() state. See x86_pmu_del() and
1404          * x86_pmu_*_txn().
1405          */
1406         cpuc->n_events = n;
1407         cpuc->n_added += n - n0;
1408         cpuc->n_txn += n - n0;
1409
1410         if (x86_pmu.add) {
1411                 /*
1412                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1413                  * so we enable LBRs before an event needs them etc..
1414                  */
1415                 x86_pmu.add(event);
1416         }
1417
1418         ret = 0;
1419 out:
1420         return ret;
1421 }
1422
1423 static void x86_pmu_start(struct perf_event *event, int flags)
1424 {
1425         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1426         int idx = event->hw.idx;
1427
1428         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1429                 return;
1430
1431         if (WARN_ON_ONCE(idx == -1))
1432                 return;
1433
1434         if (flags & PERF_EF_RELOAD) {
1435                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1436                 x86_perf_event_set_period(event);
1437         }
1438
1439         event->hw.state = 0;
1440
1441         cpuc->events[idx] = event;
1442         __set_bit(idx, cpuc->active_mask);
1443         __set_bit(idx, cpuc->running);
1444         x86_pmu.enable(event);
1445         perf_event_update_userpage(event);
1446 }
1447
1448 void perf_event_print_debug(void)
1449 {
1450         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1451         u64 pebs, debugctl;
1452         struct cpu_hw_events *cpuc;
1453         unsigned long flags;
1454         int cpu, idx;
1455
1456         if (!x86_pmu.num_counters)
1457                 return;
1458
1459         local_irq_save(flags);
1460
1461         cpu = smp_processor_id();
1462         cpuc = &per_cpu(cpu_hw_events, cpu);
1463
1464         if (x86_pmu.version >= 2) {
1465                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1466                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1467                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1468                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1469
1470                 pr_info("\n");
1471                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1472                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1473                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1474                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1475                 if (x86_pmu.pebs_constraints) {
1476                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1477                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1478                 }
1479                 if (x86_pmu.lbr_nr) {
1480                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1481                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1482                 }
1483         }
1484         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1485
1486         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1487                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1488                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1489
1490                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1491
1492                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1493                         cpu, idx, pmc_ctrl);
1494                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1495                         cpu, idx, pmc_count);
1496                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1497                         cpu, idx, prev_left);
1498         }
1499         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1500                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1501
1502                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1503                         cpu, idx, pmc_count);
1504         }
1505         local_irq_restore(flags);
1506 }
1507
1508 void x86_pmu_stop(struct perf_event *event, int flags)
1509 {
1510         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511         struct hw_perf_event *hwc = &event->hw;
1512
1513         if (test_bit(hwc->idx, cpuc->active_mask)) {
1514                 x86_pmu.disable(event);
1515                 __clear_bit(hwc->idx, cpuc->active_mask);
1516                 cpuc->events[hwc->idx] = NULL;
1517                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1518                 hwc->state |= PERF_HES_STOPPED;
1519         }
1520
1521         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1522                 /*
1523                  * Drain the remaining delta count out of a event
1524                  * that we are disabling:
1525                  */
1526                 x86_perf_event_update(event);
1527                 hwc->state |= PERF_HES_UPTODATE;
1528         }
1529 }
1530
1531 static void x86_pmu_del(struct perf_event *event, int flags)
1532 {
1533         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1534         int i;
1535
1536         /*
1537          * If we're called during a txn, we only need to undo x86_pmu.add.
1538          * The events never got scheduled and ->cancel_txn will truncate
1539          * the event_list.
1540          *
1541          * XXX assumes any ->del() called during a TXN will only be on
1542          * an event added during that same TXN.
1543          */
1544         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1545                 goto do_del;
1546
1547         /*
1548          * Not a TXN, therefore cleanup properly.
1549          */
1550         x86_pmu_stop(event, PERF_EF_UPDATE);
1551
1552         for (i = 0; i < cpuc->n_events; i++) {
1553                 if (event == cpuc->event_list[i])
1554                         break;
1555         }
1556
1557         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1558                 return;
1559
1560         /* If we have a newly added event; make sure to decrease n_added. */
1561         if (i >= cpuc->n_events - cpuc->n_added)
1562                 --cpuc->n_added;
1563
1564         if (x86_pmu.put_event_constraints)
1565                 x86_pmu.put_event_constraints(cpuc, event);
1566
1567         /* Delete the array entry. */
1568         while (++i < cpuc->n_events) {
1569                 cpuc->event_list[i-1] = cpuc->event_list[i];
1570                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1571         }
1572         cpuc->event_constraint[i-1] = NULL;
1573         --cpuc->n_events;
1574         if (x86_pmu.intel_cap.perf_metrics)
1575                 del_nr_metric_event(cpuc, event);
1576
1577         perf_event_update_userpage(event);
1578
1579 do_del:
1580         if (x86_pmu.del) {
1581                 /*
1582                  * This is after x86_pmu_stop(); so we disable LBRs after any
1583                  * event can need them etc..
1584                  */
1585                 x86_pmu.del(event);
1586         }
1587 }
1588
1589 int x86_pmu_handle_irq(struct pt_regs *regs)
1590 {
1591         struct perf_sample_data data;
1592         struct cpu_hw_events *cpuc;
1593         struct perf_event *event;
1594         int idx, handled = 0;
1595         u64 val;
1596
1597         cpuc = this_cpu_ptr(&cpu_hw_events);
1598
1599         /*
1600          * Some chipsets need to unmask the LVTPC in a particular spot
1601          * inside the nmi handler.  As a result, the unmasking was pushed
1602          * into all the nmi handlers.
1603          *
1604          * This generic handler doesn't seem to have any issues where the
1605          * unmasking occurs so it was left at the top.
1606          */
1607         apic_write(APIC_LVTPC, APIC_DM_NMI);
1608
1609         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1610                 if (!test_bit(idx, cpuc->active_mask))
1611                         continue;
1612
1613                 event = cpuc->events[idx];
1614
1615                 val = x86_perf_event_update(event);
1616                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1617                         continue;
1618
1619                 /*
1620                  * event overflow
1621                  */
1622                 handled++;
1623                 perf_sample_data_init(&data, 0, event->hw.last_period);
1624
1625                 if (!x86_perf_event_set_period(event))
1626                         continue;
1627
1628                 if (perf_event_overflow(event, &data, regs))
1629                         x86_pmu_stop(event, 0);
1630         }
1631
1632         if (handled)
1633                 inc_irq_stat(apic_perf_irqs);
1634
1635         return handled;
1636 }
1637
1638 void perf_events_lapic_init(void)
1639 {
1640         if (!x86_pmu.apic || !x86_pmu_initialized())
1641                 return;
1642
1643         /*
1644          * Always use NMI for PMU
1645          */
1646         apic_write(APIC_LVTPC, APIC_DM_NMI);
1647 }
1648
1649 static int
1650 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1651 {
1652         u64 start_clock;
1653         u64 finish_clock;
1654         int ret;
1655
1656         /*
1657          * All PMUs/events that share this PMI handler should make sure to
1658          * increment active_events for their events.
1659          */
1660         if (!atomic_read(&active_events))
1661                 return NMI_DONE;
1662
1663         start_clock = sched_clock();
1664         ret = x86_pmu.handle_irq(regs);
1665         finish_clock = sched_clock();
1666
1667         perf_sample_event_took(finish_clock - start_clock);
1668
1669         return ret;
1670 }
1671 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1672
1673 struct event_constraint emptyconstraint;
1674 struct event_constraint unconstrained;
1675
1676 static int x86_pmu_prepare_cpu(unsigned int cpu)
1677 {
1678         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1679         int i;
1680
1681         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1682                 cpuc->kfree_on_online[i] = NULL;
1683         if (x86_pmu.cpu_prepare)
1684                 return x86_pmu.cpu_prepare(cpu);
1685         return 0;
1686 }
1687
1688 static int x86_pmu_dead_cpu(unsigned int cpu)
1689 {
1690         if (x86_pmu.cpu_dead)
1691                 x86_pmu.cpu_dead(cpu);
1692         return 0;
1693 }
1694
1695 static int x86_pmu_online_cpu(unsigned int cpu)
1696 {
1697         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1698         int i;
1699
1700         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1701                 kfree(cpuc->kfree_on_online[i]);
1702                 cpuc->kfree_on_online[i] = NULL;
1703         }
1704         return 0;
1705 }
1706
1707 static int x86_pmu_starting_cpu(unsigned int cpu)
1708 {
1709         if (x86_pmu.cpu_starting)
1710                 x86_pmu.cpu_starting(cpu);
1711         return 0;
1712 }
1713
1714 static int x86_pmu_dying_cpu(unsigned int cpu)
1715 {
1716         if (x86_pmu.cpu_dying)
1717                 x86_pmu.cpu_dying(cpu);
1718         return 0;
1719 }
1720
1721 static void __init pmu_check_apic(void)
1722 {
1723         if (boot_cpu_has(X86_FEATURE_APIC))
1724                 return;
1725
1726         x86_pmu.apic = 0;
1727         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1728         pr_info("no hardware sampling interrupt available.\n");
1729
1730         /*
1731          * If we have a PMU initialized but no APIC
1732          * interrupts, we cannot sample hardware
1733          * events (user-space has to fall back and
1734          * sample via a hrtimer based software event):
1735          */
1736         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1737
1738 }
1739
1740 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1741         .name = "format",
1742         .attrs = NULL,
1743 };
1744
1745 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1746 {
1747         struct perf_pmu_events_attr *pmu_attr =
1748                 container_of(attr, struct perf_pmu_events_attr, attr);
1749         u64 config = 0;
1750
1751         if (pmu_attr->id < x86_pmu.max_events)
1752                 config = x86_pmu.event_map(pmu_attr->id);
1753
1754         /* string trumps id */
1755         if (pmu_attr->event_str)
1756                 return sprintf(page, "%s", pmu_attr->event_str);
1757
1758         return x86_pmu.events_sysfs_show(page, config);
1759 }
1760 EXPORT_SYMBOL_GPL(events_sysfs_show);
1761
1762 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1763                           char *page)
1764 {
1765         struct perf_pmu_events_ht_attr *pmu_attr =
1766                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1767
1768         /*
1769          * Report conditional events depending on Hyper-Threading.
1770          *
1771          * This is overly conservative as usually the HT special
1772          * handling is not needed if the other CPU thread is idle.
1773          *
1774          * Note this does not (and cannot) handle the case when thread
1775          * siblings are invisible, for example with virtualization
1776          * if they are owned by some other guest.  The user tool
1777          * has to re-read when a thread sibling gets onlined later.
1778          */
1779         return sprintf(page, "%s",
1780                         topology_max_smt_threads() > 1 ?
1781                         pmu_attr->event_str_ht :
1782                         pmu_attr->event_str_noht);
1783 }
1784
1785 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1786 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1787 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1788 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1789 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1790 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1791 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1792 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1793 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1794 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1795
1796 static struct attribute *empty_attrs;
1797
1798 static struct attribute *events_attr[] = {
1799         EVENT_PTR(CPU_CYCLES),
1800         EVENT_PTR(INSTRUCTIONS),
1801         EVENT_PTR(CACHE_REFERENCES),
1802         EVENT_PTR(CACHE_MISSES),
1803         EVENT_PTR(BRANCH_INSTRUCTIONS),
1804         EVENT_PTR(BRANCH_MISSES),
1805         EVENT_PTR(BUS_CYCLES),
1806         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1807         EVENT_PTR(STALLED_CYCLES_BACKEND),
1808         EVENT_PTR(REF_CPU_CYCLES),
1809         NULL,
1810 };
1811
1812 /*
1813  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1814  * out of events_attr attributes.
1815  */
1816 static umode_t
1817 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1818 {
1819         struct perf_pmu_events_attr *pmu_attr;
1820
1821         if (idx >= x86_pmu.max_events)
1822                 return 0;
1823
1824         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1825         /* str trumps id */
1826         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1827 }
1828
1829 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1830         .name = "events",
1831         .attrs = events_attr,
1832         .is_visible = is_visible,
1833 };
1834
1835 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1836 {
1837         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1838         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1839         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1840         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1841         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1842         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1843         ssize_t ret;
1844
1845         /*
1846         * We have whole page size to spend and just little data
1847         * to write, so we can safely use sprintf.
1848         */
1849         ret = sprintf(page, "event=0x%02llx", event);
1850
1851         if (umask)
1852                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1853
1854         if (edge)
1855                 ret += sprintf(page + ret, ",edge");
1856
1857         if (pc)
1858                 ret += sprintf(page + ret, ",pc");
1859
1860         if (any)
1861                 ret += sprintf(page + ret, ",any");
1862
1863         if (inv)
1864                 ret += sprintf(page + ret, ",inv");
1865
1866         if (cmask)
1867                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1868
1869         ret += sprintf(page + ret, "\n");
1870
1871         return ret;
1872 }
1873
1874 static struct attribute_group x86_pmu_attr_group;
1875 static struct attribute_group x86_pmu_caps_group;
1876
1877 static int __init init_hw_perf_events(void)
1878 {
1879         struct x86_pmu_quirk *quirk;
1880         int err;
1881
1882         pr_info("Performance Events: ");
1883
1884         switch (boot_cpu_data.x86_vendor) {
1885         case X86_VENDOR_INTEL:
1886                 err = intel_pmu_init();
1887                 break;
1888         case X86_VENDOR_AMD:
1889                 err = amd_pmu_init();
1890                 break;
1891         case X86_VENDOR_HYGON:
1892                 err = amd_pmu_init();
1893                 x86_pmu.name = "HYGON";
1894                 break;
1895         case X86_VENDOR_ZHAOXIN:
1896         case X86_VENDOR_CENTAUR:
1897                 err = zhaoxin_pmu_init();
1898                 break;
1899         default:
1900                 err = -ENOTSUPP;
1901         }
1902         if (err != 0) {
1903                 pr_cont("no PMU driver, software events only.\n");
1904                 return 0;
1905         }
1906
1907         pmu_check_apic();
1908
1909         /* sanity check that the hardware exists or is emulated */
1910         if (!check_hw_exists())
1911                 return 0;
1912
1913         pr_cont("%s PMU driver.\n", x86_pmu.name);
1914
1915         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1916
1917         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1918                 quirk->func();
1919
1920         if (!x86_pmu.intel_ctrl)
1921                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1922
1923         perf_events_lapic_init();
1924         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1925
1926         unconstrained = (struct event_constraint)
1927                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1928                                    0, x86_pmu.num_counters, 0, 0);
1929
1930         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1931
1932         if (!x86_pmu.events_sysfs_show)
1933                 x86_pmu_events_group.attrs = &empty_attrs;
1934
1935         pmu.attr_update = x86_pmu.attr_update;
1936
1937         pr_info("... version:                %d\n",     x86_pmu.version);
1938         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1939         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1940         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1941         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1942         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1943         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1944
1945         /*
1946          * Install callbacks. Core will call them for each online
1947          * cpu.
1948          */
1949         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1950                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1951         if (err)
1952                 return err;
1953
1954         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1955                                 "perf/x86:starting", x86_pmu_starting_cpu,
1956                                 x86_pmu_dying_cpu);
1957         if (err)
1958                 goto out;
1959
1960         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1961                                 x86_pmu_online_cpu, NULL);
1962         if (err)
1963                 goto out1;
1964
1965         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1966         if (err)
1967                 goto out2;
1968
1969         return 0;
1970
1971 out2:
1972         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1973 out1:
1974         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1975 out:
1976         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1977         return err;
1978 }
1979 early_initcall(init_hw_perf_events);
1980
1981 static inline void x86_pmu_read(struct perf_event *event)
1982 {
1983         if (x86_pmu.read)
1984                 return x86_pmu.read(event);
1985         x86_perf_event_update(event);
1986 }
1987
1988 /*
1989  * Start group events scheduling transaction
1990  * Set the flag to make pmu::enable() not perform the
1991  * schedulability test, it will be performed at commit time
1992  *
1993  * We only support PERF_PMU_TXN_ADD transactions. Save the
1994  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1995  * transactions.
1996  */
1997 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1998 {
1999         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2000
2001         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2002
2003         cpuc->txn_flags = txn_flags;
2004         if (txn_flags & ~PERF_PMU_TXN_ADD)
2005                 return;
2006
2007         perf_pmu_disable(pmu);
2008         __this_cpu_write(cpu_hw_events.n_txn, 0);
2009 }
2010
2011 /*
2012  * Stop group events scheduling transaction
2013  * Clear the flag and pmu::enable() will perform the
2014  * schedulability test.
2015  */
2016 static void x86_pmu_cancel_txn(struct pmu *pmu)
2017 {
2018         unsigned int txn_flags;
2019         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2020
2021         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2022
2023         txn_flags = cpuc->txn_flags;
2024         cpuc->txn_flags = 0;
2025         if (txn_flags & ~PERF_PMU_TXN_ADD)
2026                 return;
2027
2028         /*
2029          * Truncate collected array by the number of events added in this
2030          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2031          */
2032         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2033         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2034         perf_pmu_enable(pmu);
2035 }
2036
2037 /*
2038  * Commit group events scheduling transaction
2039  * Perform the group schedulability test as a whole
2040  * Return 0 if success
2041  *
2042  * Does not cancel the transaction on failure; expects the caller to do this.
2043  */
2044 static int x86_pmu_commit_txn(struct pmu *pmu)
2045 {
2046         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2047         int assign[X86_PMC_IDX_MAX];
2048         int n, ret;
2049
2050         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2051
2052         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2053                 cpuc->txn_flags = 0;
2054                 return 0;
2055         }
2056
2057         n = cpuc->n_events;
2058
2059         if (!x86_pmu_initialized())
2060                 return -EAGAIN;
2061
2062         ret = x86_pmu.schedule_events(cpuc, n, assign);
2063         if (ret)
2064                 return ret;
2065
2066         /*
2067          * copy new assignment, now we know it is possible
2068          * will be used by hw_perf_enable()
2069          */
2070         memcpy(cpuc->assign, assign, n*sizeof(int));
2071
2072         cpuc->txn_flags = 0;
2073         perf_pmu_enable(pmu);
2074         return 0;
2075 }
2076 /*
2077  * a fake_cpuc is used to validate event groups. Due to
2078  * the extra reg logic, we need to also allocate a fake
2079  * per_core and per_cpu structure. Otherwise, group events
2080  * using extra reg may conflict without the kernel being
2081  * able to catch this when the last event gets added to
2082  * the group.
2083  */
2084 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2085 {
2086         intel_cpuc_finish(cpuc);
2087         kfree(cpuc);
2088 }
2089
2090 static struct cpu_hw_events *allocate_fake_cpuc(void)
2091 {
2092         struct cpu_hw_events *cpuc;
2093         int cpu = raw_smp_processor_id();
2094
2095         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2096         if (!cpuc)
2097                 return ERR_PTR(-ENOMEM);
2098         cpuc->is_fake = 1;
2099
2100         if (intel_cpuc_prepare(cpuc, cpu))
2101                 goto error;
2102
2103         return cpuc;
2104 error:
2105         free_fake_cpuc(cpuc);
2106         return ERR_PTR(-ENOMEM);
2107 }
2108
2109 /*
2110  * validate that we can schedule this event
2111  */
2112 static int validate_event(struct perf_event *event)
2113 {
2114         struct cpu_hw_events *fake_cpuc;
2115         struct event_constraint *c;
2116         int ret = 0;
2117
2118         fake_cpuc = allocate_fake_cpuc();
2119         if (IS_ERR(fake_cpuc))
2120                 return PTR_ERR(fake_cpuc);
2121
2122         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2123
2124         if (!c || !c->weight)
2125                 ret = -EINVAL;
2126
2127         if (x86_pmu.put_event_constraints)
2128                 x86_pmu.put_event_constraints(fake_cpuc, event);
2129
2130         free_fake_cpuc(fake_cpuc);
2131
2132         return ret;
2133 }
2134
2135 /*
2136  * validate a single event group
2137  *
2138  * validation include:
2139  *      - check events are compatible which each other
2140  *      - events do not compete for the same counter
2141  *      - number of events <= number of counters
2142  *
2143  * validation ensures the group can be loaded onto the
2144  * PMU if it was the only group available.
2145  */
2146 static int validate_group(struct perf_event *event)
2147 {
2148         struct perf_event *leader = event->group_leader;
2149         struct cpu_hw_events *fake_cpuc;
2150         int ret = -EINVAL, n;
2151
2152         fake_cpuc = allocate_fake_cpuc();
2153         if (IS_ERR(fake_cpuc))
2154                 return PTR_ERR(fake_cpuc);
2155         /*
2156          * the event is not yet connected with its
2157          * siblings therefore we must first collect
2158          * existing siblings, then add the new event
2159          * before we can simulate the scheduling
2160          */
2161         n = collect_events(fake_cpuc, leader, true);
2162         if (n < 0)
2163                 goto out;
2164
2165         fake_cpuc->n_events = n;
2166         n = collect_events(fake_cpuc, event, false);
2167         if (n < 0)
2168                 goto out;
2169
2170         fake_cpuc->n_events = 0;
2171         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2172
2173 out:
2174         free_fake_cpuc(fake_cpuc);
2175         return ret;
2176 }
2177
2178 static int x86_pmu_event_init(struct perf_event *event)
2179 {
2180         struct pmu *tmp;
2181         int err;
2182
2183         switch (event->attr.type) {
2184         case PERF_TYPE_RAW:
2185         case PERF_TYPE_HARDWARE:
2186         case PERF_TYPE_HW_CACHE:
2187                 break;
2188
2189         default:
2190                 return -ENOENT;
2191         }
2192
2193         err = __x86_pmu_event_init(event);
2194         if (!err) {
2195                 /*
2196                  * we temporarily connect event to its pmu
2197                  * such that validate_group() can classify
2198                  * it as an x86 event using is_x86_event()
2199                  */
2200                 tmp = event->pmu;
2201                 event->pmu = &pmu;
2202
2203                 if (event->group_leader != event)
2204                         err = validate_group(event);
2205                 else
2206                         err = validate_event(event);
2207
2208                 event->pmu = tmp;
2209         }
2210         if (err) {
2211                 if (event->destroy)
2212                         event->destroy(event);
2213         }
2214
2215         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2216             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2217                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2218
2219         return err;
2220 }
2221
2222 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2223 {
2224         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2225                 return;
2226
2227         /*
2228          * This function relies on not being called concurrently in two
2229          * tasks in the same mm.  Otherwise one task could observe
2230          * perf_rdpmc_allowed > 1 and return all the way back to
2231          * userspace with CR4.PCE clear while another task is still
2232          * doing on_each_cpu_mask() to propagate CR4.PCE.
2233          *
2234          * For now, this can't happen because all callers hold mmap_lock
2235          * for write.  If this changes, we'll need a different solution.
2236          */
2237         mmap_assert_write_locked(mm);
2238
2239         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2240                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2241 }
2242
2243 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2244 {
2245
2246         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2247                 return;
2248
2249         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2250                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2251 }
2252
2253 static int x86_pmu_event_idx(struct perf_event *event)
2254 {
2255         struct hw_perf_event *hwc = &event->hw;
2256
2257         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2258                 return 0;
2259
2260         if (is_metric_idx(hwc->idx))
2261                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2262         else
2263                 return hwc->event_base_rdpmc + 1;
2264 }
2265
2266 static ssize_t get_attr_rdpmc(struct device *cdev,
2267                               struct device_attribute *attr,
2268                               char *buf)
2269 {
2270         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2271 }
2272
2273 static ssize_t set_attr_rdpmc(struct device *cdev,
2274                               struct device_attribute *attr,
2275                               const char *buf, size_t count)
2276 {
2277         unsigned long val;
2278         ssize_t ret;
2279
2280         ret = kstrtoul(buf, 0, &val);
2281         if (ret)
2282                 return ret;
2283
2284         if (val > 2)
2285                 return -EINVAL;
2286
2287         if (x86_pmu.attr_rdpmc_broken)
2288                 return -ENOTSUPP;
2289
2290         if (val != x86_pmu.attr_rdpmc) {
2291                 /*
2292                  * Changing into or out of never available or always available,
2293                  * aka perf-event-bypassing mode. This path is extremely slow,
2294                  * but only root can trigger it, so it's okay.
2295                  */
2296                 if (val == 0)
2297                         static_branch_inc(&rdpmc_never_available_key);
2298                 else if (x86_pmu.attr_rdpmc == 0)
2299                         static_branch_dec(&rdpmc_never_available_key);
2300
2301                 if (val == 2)
2302                         static_branch_inc(&rdpmc_always_available_key);
2303                 else if (x86_pmu.attr_rdpmc == 2)
2304                         static_branch_dec(&rdpmc_always_available_key);
2305
2306                 on_each_cpu(cr4_update_pce, NULL, 1);
2307                 x86_pmu.attr_rdpmc = val;
2308         }
2309
2310         return count;
2311 }
2312
2313 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2314
2315 static struct attribute *x86_pmu_attrs[] = {
2316         &dev_attr_rdpmc.attr,
2317         NULL,
2318 };
2319
2320 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2321         .attrs = x86_pmu_attrs,
2322 };
2323
2324 static ssize_t max_precise_show(struct device *cdev,
2325                                   struct device_attribute *attr,
2326                                   char *buf)
2327 {
2328         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2329 }
2330
2331 static DEVICE_ATTR_RO(max_precise);
2332
2333 static struct attribute *x86_pmu_caps_attrs[] = {
2334         &dev_attr_max_precise.attr,
2335         NULL
2336 };
2337
2338 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2339         .name = "caps",
2340         .attrs = x86_pmu_caps_attrs,
2341 };
2342
2343 static const struct attribute_group *x86_pmu_attr_groups[] = {
2344         &x86_pmu_attr_group,
2345         &x86_pmu_format_group,
2346         &x86_pmu_events_group,
2347         &x86_pmu_caps_group,
2348         NULL,
2349 };
2350
2351 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2352 {
2353         if (x86_pmu.sched_task)
2354                 x86_pmu.sched_task(ctx, sched_in);
2355 }
2356
2357 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2358                                   struct perf_event_context *next)
2359 {
2360         if (x86_pmu.swap_task_ctx)
2361                 x86_pmu.swap_task_ctx(prev, next);
2362 }
2363
2364 void perf_check_microcode(void)
2365 {
2366         if (x86_pmu.check_microcode)
2367                 x86_pmu.check_microcode();
2368 }
2369
2370 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2371 {
2372         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2373                 return -EINVAL;
2374
2375         if (value && x86_pmu.limit_period) {
2376                 if (x86_pmu.limit_period(event, value) > value)
2377                         return -EINVAL;
2378         }
2379
2380         return 0;
2381 }
2382
2383 static int x86_pmu_aux_output_match(struct perf_event *event)
2384 {
2385         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2386                 return 0;
2387
2388         if (x86_pmu.aux_output_match)
2389                 return x86_pmu.aux_output_match(event);
2390
2391         return 0;
2392 }
2393
2394 static struct pmu pmu = {
2395         .pmu_enable             = x86_pmu_enable,
2396         .pmu_disable            = x86_pmu_disable,
2397
2398         .attr_groups            = x86_pmu_attr_groups,
2399
2400         .event_init             = x86_pmu_event_init,
2401
2402         .event_mapped           = x86_pmu_event_mapped,
2403         .event_unmapped         = x86_pmu_event_unmapped,
2404
2405         .add                    = x86_pmu_add,
2406         .del                    = x86_pmu_del,
2407         .start                  = x86_pmu_start,
2408         .stop                   = x86_pmu_stop,
2409         .read                   = x86_pmu_read,
2410
2411         .start_txn              = x86_pmu_start_txn,
2412         .cancel_txn             = x86_pmu_cancel_txn,
2413         .commit_txn             = x86_pmu_commit_txn,
2414
2415         .event_idx              = x86_pmu_event_idx,
2416         .sched_task             = x86_pmu_sched_task,
2417         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2418         .check_period           = x86_pmu_check_period,
2419
2420         .aux_output_match       = x86_pmu_aux_output_match,
2421 };
2422
2423 void arch_perf_update_userpage(struct perf_event *event,
2424                                struct perf_event_mmap_page *userpg, u64 now)
2425 {
2426         struct cyc2ns_data data;
2427         u64 offset;
2428
2429         userpg->cap_user_time = 0;
2430         userpg->cap_user_time_zero = 0;
2431         userpg->cap_user_rdpmc =
2432                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2433         userpg->pmc_width = x86_pmu.cntval_bits;
2434
2435         if (!using_native_sched_clock() || !sched_clock_stable())
2436                 return;
2437
2438         cyc2ns_read_begin(&data);
2439
2440         offset = data.cyc2ns_offset + __sched_clock_offset;
2441
2442         /*
2443          * Internal timekeeping for enabled/running/stopped times
2444          * is always in the local_clock domain.
2445          */
2446         userpg->cap_user_time = 1;
2447         userpg->time_mult = data.cyc2ns_mul;
2448         userpg->time_shift = data.cyc2ns_shift;
2449         userpg->time_offset = offset - now;
2450
2451         /*
2452          * cap_user_time_zero doesn't make sense when we're using a different
2453          * time base for the records.
2454          */
2455         if (!event->attr.use_clockid) {
2456                 userpg->cap_user_time_zero = 1;
2457                 userpg->time_zero = offset;
2458         }
2459
2460         cyc2ns_read_end();
2461 }
2462
2463 /*
2464  * Determine whether the regs were taken from an irq/exception handler rather
2465  * than from perf_arch_fetch_caller_regs().
2466  */
2467 static bool perf_hw_regs(struct pt_regs *regs)
2468 {
2469         return regs->flags & X86_EFLAGS_FIXED;
2470 }
2471
2472 void
2473 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2474 {
2475         struct unwind_state state;
2476         unsigned long addr;
2477
2478         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2479                 /* TODO: We don't support guest os callchain now */
2480                 return;
2481         }
2482
2483         if (perf_callchain_store(entry, regs->ip))
2484                 return;
2485
2486         if (perf_hw_regs(regs))
2487                 unwind_start(&state, current, regs, NULL);
2488         else
2489                 unwind_start(&state, current, NULL, (void *)regs->sp);
2490
2491         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2492                 addr = unwind_get_return_address(&state);
2493                 if (!addr || perf_callchain_store(entry, addr))
2494                         return;
2495         }
2496 }
2497
2498 static inline int
2499 valid_user_frame(const void __user *fp, unsigned long size)
2500 {
2501         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2502 }
2503
2504 static unsigned long get_segment_base(unsigned int segment)
2505 {
2506         struct desc_struct *desc;
2507         unsigned int idx = segment >> 3;
2508
2509         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2510 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2511                 struct ldt_struct *ldt;
2512
2513                 /* IRQs are off, so this synchronizes with smp_store_release */
2514                 ldt = READ_ONCE(current->active_mm->context.ldt);
2515                 if (!ldt || idx >= ldt->nr_entries)
2516                         return 0;
2517
2518                 desc = &ldt->entries[idx];
2519 #else
2520                 return 0;
2521 #endif
2522         } else {
2523                 if (idx >= GDT_ENTRIES)
2524                         return 0;
2525
2526                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2527         }
2528
2529         return get_desc_base(desc);
2530 }
2531
2532 #ifdef CONFIG_IA32_EMULATION
2533
2534 #include <linux/compat.h>
2535
2536 static inline int
2537 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2538 {
2539         /* 32-bit process in 64-bit kernel. */
2540         unsigned long ss_base, cs_base;
2541         struct stack_frame_ia32 frame;
2542         const struct stack_frame_ia32 __user *fp;
2543
2544         if (!test_thread_flag(TIF_IA32))
2545                 return 0;
2546
2547         cs_base = get_segment_base(regs->cs);
2548         ss_base = get_segment_base(regs->ss);
2549
2550         fp = compat_ptr(ss_base + regs->bp);
2551         pagefault_disable();
2552         while (entry->nr < entry->max_stack) {
2553                 if (!valid_user_frame(fp, sizeof(frame)))
2554                         break;
2555
2556                 if (__get_user(frame.next_frame, &fp->next_frame))
2557                         break;
2558                 if (__get_user(frame.return_address, &fp->return_address))
2559                         break;
2560
2561                 perf_callchain_store(entry, cs_base + frame.return_address);
2562                 fp = compat_ptr(ss_base + frame.next_frame);
2563         }
2564         pagefault_enable();
2565         return 1;
2566 }
2567 #else
2568 static inline int
2569 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2570 {
2571     return 0;
2572 }
2573 #endif
2574
2575 void
2576 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2577 {
2578         struct stack_frame frame;
2579         const struct stack_frame __user *fp;
2580
2581         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2582                 /* TODO: We don't support guest os callchain now */
2583                 return;
2584         }
2585
2586         /*
2587          * We don't know what to do with VM86 stacks.. ignore them for now.
2588          */
2589         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2590                 return;
2591
2592         fp = (void __user *)regs->bp;
2593
2594         perf_callchain_store(entry, regs->ip);
2595
2596         if (!nmi_uaccess_okay())
2597                 return;
2598
2599         if (perf_callchain_user32(regs, entry))
2600                 return;
2601
2602         pagefault_disable();
2603         while (entry->nr < entry->max_stack) {
2604                 if (!valid_user_frame(fp, sizeof(frame)))
2605                         break;
2606
2607                 if (__get_user(frame.next_frame, &fp->next_frame))
2608                         break;
2609                 if (__get_user(frame.return_address, &fp->return_address))
2610                         break;
2611
2612                 perf_callchain_store(entry, frame.return_address);
2613                 fp = (void __user *)frame.next_frame;
2614         }
2615         pagefault_enable();
2616 }
2617
2618 /*
2619  * Deal with code segment offsets for the various execution modes:
2620  *
2621  *   VM86 - the good olde 16 bit days, where the linear address is
2622  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2623  *
2624  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2625  *          to figure out what the 32bit base address is.
2626  *
2627  *    X32 - has TIF_X32 set, but is running in x86_64
2628  *
2629  * X86_64 - CS,DS,SS,ES are all zero based.
2630  */
2631 static unsigned long code_segment_base(struct pt_regs *regs)
2632 {
2633         /*
2634          * For IA32 we look at the GDT/LDT segment base to convert the
2635          * effective IP to a linear address.
2636          */
2637
2638 #ifdef CONFIG_X86_32
2639         /*
2640          * If we are in VM86 mode, add the segment offset to convert to a
2641          * linear address.
2642          */
2643         if (regs->flags & X86_VM_MASK)
2644                 return 0x10 * regs->cs;
2645
2646         if (user_mode(regs) && regs->cs != __USER_CS)
2647                 return get_segment_base(regs->cs);
2648 #else
2649         if (user_mode(regs) && !user_64bit_mode(regs) &&
2650             regs->cs != __USER32_CS)
2651                 return get_segment_base(regs->cs);
2652 #endif
2653         return 0;
2654 }
2655
2656 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2657 {
2658         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2659                 return perf_guest_cbs->get_guest_ip();
2660
2661         return regs->ip + code_segment_base(regs);
2662 }
2663
2664 unsigned long perf_misc_flags(struct pt_regs *regs)
2665 {
2666         int misc = 0;
2667
2668         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2669                 if (perf_guest_cbs->is_user_mode())
2670                         misc |= PERF_RECORD_MISC_GUEST_USER;
2671                 else
2672                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2673         } else {
2674                 if (user_mode(regs))
2675                         misc |= PERF_RECORD_MISC_USER;
2676                 else
2677                         misc |= PERF_RECORD_MISC_KERNEL;
2678         }
2679
2680         if (regs->flags & PERF_EFLAGS_EXACT)
2681                 misc |= PERF_RECORD_MISC_EXACT_IP;
2682
2683         return misc;
2684 }
2685
2686 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2687 {
2688         cap->version            = x86_pmu.version;
2689         cap->num_counters_gp    = x86_pmu.num_counters;
2690         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2691         cap->bit_width_gp       = x86_pmu.cntval_bits;
2692         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2693         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2694         cap->events_mask_len    = x86_pmu.events_mask_len;
2695 }
2696 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);