io_uring: shut io_prep_async_work warning
[platform/kernel/linux-starfive.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86
87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89
90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92
93 DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94
95 /*
96  * This one is magic, it will get called even when PMU init fails (because
97  * there is no PMU), in which case it should simply return NULL.
98  */
99 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100
101 u64 __read_mostly hw_cache_event_ids
102                                 [PERF_COUNT_HW_CACHE_MAX]
103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
105 u64 __read_mostly hw_cache_extra_regs
106                                 [PERF_COUNT_HW_CACHE_MAX]
107                                 [PERF_COUNT_HW_CACHE_OP_MAX]
108                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
109
110 /*
111  * Propagate event elapsed time into the generic event.
112  * Can only be executed on the CPU where the event is active.
113  * Returns the delta events processed.
114  */
115 u64 x86_perf_event_update(struct perf_event *event)
116 {
117         struct hw_perf_event *hwc = &event->hw;
118         int shift = 64 - x86_pmu.cntval_bits;
119         u64 prev_raw_count, new_raw_count;
120         u64 delta;
121
122         if (unlikely(!hwc->event_base))
123                 return 0;
124
125         /*
126          * Careful: an NMI might modify the previous event value.
127          *
128          * Our tactic to handle this is to first atomically read and
129          * exchange a new raw count - then add that new-prev delta
130          * count to the generic event atomically:
131          */
132 again:
133         prev_raw_count = local64_read(&hwc->prev_count);
134         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135
136         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
137                                         new_raw_count) != prev_raw_count)
138                 goto again;
139
140         /*
141          * Now we have the new raw value and have updated the prev
142          * timestamp already. We can now calculate the elapsed delta
143          * (event-)time and add that to the generic event.
144          *
145          * Careful, not all hw sign-extends above the physical width
146          * of the count.
147          */
148         delta = (new_raw_count << shift) - (prev_raw_count << shift);
149         delta >>= shift;
150
151         local64_add(delta, &event->count);
152         local64_sub(delta, &hwc->period_left);
153
154         return new_raw_count;
155 }
156
157 /*
158  * Find and validate any extra registers to set up.
159  */
160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163         struct hw_perf_event_extra *reg;
164         struct extra_reg *er;
165
166         reg = &event->hw.extra_reg;
167
168         if (!extra_regs)
169                 return 0;
170
171         for (er = extra_regs; er->msr; er++) {
172                 if (er->event != (config & er->config_mask))
173                         continue;
174                 if (event->attr.config1 & ~er->valid_mask)
175                         return -EINVAL;
176                 /* Check if the extra msrs can be safely accessed*/
177                 if (!er->extra_msr_access)
178                         return -ENXIO;
179
180                 reg->idx = er->idx;
181                 reg->config = event->attr.config1;
182                 reg->reg = er->msr;
183                 break;
184         }
185         return 0;
186 }
187
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191
192 #ifdef CONFIG_X86_LOCAL_APIC
193
194 static inline int get_possible_num_counters(void)
195 {
196         int i, num_counters = x86_pmu.num_counters;
197
198         if (!is_hybrid())
199                 return num_counters;
200
201         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
202                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
203
204         return num_counters;
205 }
206
207 static bool reserve_pmc_hardware(void)
208 {
209         int i, num_counters = get_possible_num_counters();
210
211         for (i = 0; i < num_counters; i++) {
212                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
213                         goto perfctr_fail;
214         }
215
216         for (i = 0; i < num_counters; i++) {
217                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
218                         goto eventsel_fail;
219         }
220
221         return true;
222
223 eventsel_fail:
224         for (i--; i >= 0; i--)
225                 release_evntsel_nmi(x86_pmu_config_addr(i));
226
227         i = num_counters;
228
229 perfctr_fail:
230         for (i--; i >= 0; i--)
231                 release_perfctr_nmi(x86_pmu_event_addr(i));
232
233         return false;
234 }
235
236 static void release_pmc_hardware(void)
237 {
238         int i, num_counters = get_possible_num_counters();
239
240         for (i = 0; i < num_counters; i++) {
241                 release_perfctr_nmi(x86_pmu_event_addr(i));
242                 release_evntsel_nmi(x86_pmu_config_addr(i));
243         }
244 }
245
246 #else
247
248 static bool reserve_pmc_hardware(void) { return true; }
249 static void release_pmc_hardware(void) {}
250
251 #endif
252
253 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
254 {
255         u64 val, val_fail = -1, val_new= ~0;
256         int i, reg, reg_fail = -1, ret = 0;
257         int bios_fail = 0;
258         int reg_safe = -1;
259
260         /*
261          * Check to see if the BIOS enabled any of the counters, if so
262          * complain and bail.
263          */
264         for (i = 0; i < num_counters; i++) {
265                 reg = x86_pmu_config_addr(i);
266                 ret = rdmsrl_safe(reg, &val);
267                 if (ret)
268                         goto msr_fail;
269                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
270                         bios_fail = 1;
271                         val_fail = val;
272                         reg_fail = reg;
273                 } else {
274                         reg_safe = i;
275                 }
276         }
277
278         if (num_counters_fixed) {
279                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
280                 ret = rdmsrl_safe(reg, &val);
281                 if (ret)
282                         goto msr_fail;
283                 for (i = 0; i < num_counters_fixed; i++) {
284                         if (fixed_counter_disabled(i, pmu))
285                                 continue;
286                         if (val & (0x03ULL << i*4)) {
287                                 bios_fail = 1;
288                                 val_fail = val;
289                                 reg_fail = reg;
290                         }
291                 }
292         }
293
294         /*
295          * If all the counters are enabled, the below test will always
296          * fail.  The tools will also become useless in this scenario.
297          * Just fail and disable the hardware counters.
298          */
299
300         if (reg_safe == -1) {
301                 reg = reg_safe;
302                 goto msr_fail;
303         }
304
305         /*
306          * Read the current value, change it and read it back to see if it
307          * matches, this is needed to detect certain hardware emulators
308          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
309          */
310         reg = x86_pmu_event_addr(reg_safe);
311         if (rdmsrl_safe(reg, &val))
312                 goto msr_fail;
313         val ^= 0xffffUL;
314         ret = wrmsrl_safe(reg, val);
315         ret |= rdmsrl_safe(reg, &val_new);
316         if (ret || val != val_new)
317                 goto msr_fail;
318
319         /*
320          * We still allow the PMU driver to operate:
321          */
322         if (bios_fail) {
323                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
324                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
325                               reg_fail, val_fail);
326         }
327
328         return true;
329
330 msr_fail:
331         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
332                 pr_cont("PMU not available due to virtualization, using software events only.\n");
333         } else {
334                 pr_cont("Broken PMU hardware detected, using software events only.\n");
335                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
336                        reg, val_new);
337         }
338
339         return false;
340 }
341
342 static void hw_perf_event_destroy(struct perf_event *event)
343 {
344         x86_release_hardware();
345         atomic_dec(&active_events);
346 }
347
348 void hw_perf_lbr_event_destroy(struct perf_event *event)
349 {
350         hw_perf_event_destroy(event);
351
352         /* undo the lbr/bts event accounting */
353         x86_del_exclusive(x86_lbr_exclusive_lbr);
354 }
355
356 static inline int x86_pmu_initialized(void)
357 {
358         return x86_pmu.handle_irq != NULL;
359 }
360
361 static inline int
362 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
363 {
364         struct perf_event_attr *attr = &event->attr;
365         unsigned int cache_type, cache_op, cache_result;
366         u64 config, val;
367
368         config = attr->config;
369
370         cache_type = (config >> 0) & 0xff;
371         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
372                 return -EINVAL;
373         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
374
375         cache_op = (config >>  8) & 0xff;
376         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
377                 return -EINVAL;
378         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
379
380         cache_result = (config >> 16) & 0xff;
381         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
382                 return -EINVAL;
383         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
384
385         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
386         if (val == 0)
387                 return -ENOENT;
388
389         if (val == -1)
390                 return -EINVAL;
391
392         hwc->config |= val;
393         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
394         return x86_pmu_extra_regs(val, event);
395 }
396
397 int x86_reserve_hardware(void)
398 {
399         int err = 0;
400
401         if (!atomic_inc_not_zero(&pmc_refcount)) {
402                 mutex_lock(&pmc_reserve_mutex);
403                 if (atomic_read(&pmc_refcount) == 0) {
404                         if (!reserve_pmc_hardware()) {
405                                 err = -EBUSY;
406                         } else {
407                                 reserve_ds_buffers();
408                                 reserve_lbr_buffers();
409                         }
410                 }
411                 if (!err)
412                         atomic_inc(&pmc_refcount);
413                 mutex_unlock(&pmc_reserve_mutex);
414         }
415
416         return err;
417 }
418
419 void x86_release_hardware(void)
420 {
421         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
422                 release_pmc_hardware();
423                 release_ds_buffers();
424                 release_lbr_buffers();
425                 mutex_unlock(&pmc_reserve_mutex);
426         }
427 }
428
429 /*
430  * Check if we can create event of a certain type (that no conflicting events
431  * are present).
432  */
433 int x86_add_exclusive(unsigned int what)
434 {
435         int i;
436
437         /*
438          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
439          * LBR and BTS are still mutually exclusive.
440          */
441         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
442                 goto out;
443
444         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
445                 mutex_lock(&pmc_reserve_mutex);
446                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
447                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
448                                 goto fail_unlock;
449                 }
450                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
451                 mutex_unlock(&pmc_reserve_mutex);
452         }
453
454 out:
455         atomic_inc(&active_events);
456         return 0;
457
458 fail_unlock:
459         mutex_unlock(&pmc_reserve_mutex);
460         return -EBUSY;
461 }
462
463 void x86_del_exclusive(unsigned int what)
464 {
465         atomic_dec(&active_events);
466
467         /*
468          * See the comment in x86_add_exclusive().
469          */
470         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
471                 return;
472
473         atomic_dec(&x86_pmu.lbr_exclusive[what]);
474 }
475
476 int x86_setup_perfctr(struct perf_event *event)
477 {
478         struct perf_event_attr *attr = &event->attr;
479         struct hw_perf_event *hwc = &event->hw;
480         u64 config;
481
482         if (!is_sampling_event(event)) {
483                 hwc->sample_period = x86_pmu.max_period;
484                 hwc->last_period = hwc->sample_period;
485                 local64_set(&hwc->period_left, hwc->sample_period);
486         }
487
488         if (attr->type == event->pmu->type)
489                 return x86_pmu_extra_regs(event->attr.config, event);
490
491         if (attr->type == PERF_TYPE_HW_CACHE)
492                 return set_ext_hw_attr(hwc, event);
493
494         if (attr->config >= x86_pmu.max_events)
495                 return -EINVAL;
496
497         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
498
499         /*
500          * The generic map:
501          */
502         config = x86_pmu.event_map(attr->config);
503
504         if (config == 0)
505                 return -ENOENT;
506
507         if (config == -1LL)
508                 return -EINVAL;
509
510         hwc->config |= config;
511
512         return 0;
513 }
514
515 /*
516  * check that branch_sample_type is compatible with
517  * settings needed for precise_ip > 1 which implies
518  * using the LBR to capture ALL taken branches at the
519  * priv levels of the measurement
520  */
521 static inline int precise_br_compat(struct perf_event *event)
522 {
523         u64 m = event->attr.branch_sample_type;
524         u64 b = 0;
525
526         /* must capture all branches */
527         if (!(m & PERF_SAMPLE_BRANCH_ANY))
528                 return 0;
529
530         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
531
532         if (!event->attr.exclude_user)
533                 b |= PERF_SAMPLE_BRANCH_USER;
534
535         if (!event->attr.exclude_kernel)
536                 b |= PERF_SAMPLE_BRANCH_KERNEL;
537
538         /*
539          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
540          */
541
542         return m == b;
543 }
544
545 int x86_pmu_max_precise(void)
546 {
547         int precise = 0;
548
549         /* Support for constant skid */
550         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
551                 precise++;
552
553                 /* Support for IP fixup */
554                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
555                         precise++;
556
557                 if (x86_pmu.pebs_prec_dist)
558                         precise++;
559         }
560         return precise;
561 }
562
563 int x86_pmu_hw_config(struct perf_event *event)
564 {
565         if (event->attr.precise_ip) {
566                 int precise = x86_pmu_max_precise();
567
568                 if (event->attr.precise_ip > precise)
569                         return -EOPNOTSUPP;
570
571                 /* There's no sense in having PEBS for non sampling events: */
572                 if (!is_sampling_event(event))
573                         return -EINVAL;
574         }
575         /*
576          * check that PEBS LBR correction does not conflict with
577          * whatever the user is asking with attr->branch_sample_type
578          */
579         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
580                 u64 *br_type = &event->attr.branch_sample_type;
581
582                 if (has_branch_stack(event)) {
583                         if (!precise_br_compat(event))
584                                 return -EOPNOTSUPP;
585
586                         /* branch_sample_type is compatible */
587
588                 } else {
589                         /*
590                          * user did not specify  branch_sample_type
591                          *
592                          * For PEBS fixups, we capture all
593                          * the branches at the priv level of the
594                          * event.
595                          */
596                         *br_type = PERF_SAMPLE_BRANCH_ANY;
597
598                         if (!event->attr.exclude_user)
599                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
600
601                         if (!event->attr.exclude_kernel)
602                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
603                 }
604         }
605
606         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
607                 event->attach_state |= PERF_ATTACH_TASK_DATA;
608
609         /*
610          * Generate PMC IRQs:
611          * (keep 'enabled' bit clear for now)
612          */
613         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
614
615         /*
616          * Count user and OS events unless requested not to
617          */
618         if (!event->attr.exclude_user)
619                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
620         if (!event->attr.exclude_kernel)
621                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
622
623         if (event->attr.type == event->pmu->type)
624                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
625
626         if (event->attr.sample_period && x86_pmu.limit_period) {
627                 s64 left = event->attr.sample_period;
628                 x86_pmu.limit_period(event, &left);
629                 if (left > event->attr.sample_period)
630                         return -EINVAL;
631         }
632
633         /* sample_regs_user never support XMM registers */
634         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
635                 return -EINVAL;
636         /*
637          * Besides the general purpose registers, XMM registers may
638          * be collected in PEBS on some platforms, e.g. Icelake
639          */
640         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
641                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
642                         return -EINVAL;
643
644                 if (!event->attr.precise_ip)
645                         return -EINVAL;
646         }
647
648         return x86_setup_perfctr(event);
649 }
650
651 /*
652  * Setup the hardware configuration for a given attr_type
653  */
654 static int __x86_pmu_event_init(struct perf_event *event)
655 {
656         int err;
657
658         if (!x86_pmu_initialized())
659                 return -ENODEV;
660
661         err = x86_reserve_hardware();
662         if (err)
663                 return err;
664
665         atomic_inc(&active_events);
666         event->destroy = hw_perf_event_destroy;
667
668         event->hw.idx = -1;
669         event->hw.last_cpu = -1;
670         event->hw.last_tag = ~0ULL;
671
672         /* mark unused */
673         event->hw.extra_reg.idx = EXTRA_REG_NONE;
674         event->hw.branch_reg.idx = EXTRA_REG_NONE;
675
676         return x86_pmu.hw_config(event);
677 }
678
679 void x86_pmu_disable_all(void)
680 {
681         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
682         int idx;
683
684         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
685                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
686                 u64 val;
687
688                 if (!test_bit(idx, cpuc->active_mask))
689                         continue;
690                 rdmsrl(x86_pmu_config_addr(idx), val);
691                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
692                         continue;
693                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
694                 wrmsrl(x86_pmu_config_addr(idx), val);
695                 if (is_counter_pair(hwc))
696                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
697         }
698 }
699
700 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
701 {
702         return static_call(x86_pmu_guest_get_msrs)(nr, data);
703 }
704 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
705
706 /*
707  * There may be PMI landing after enabled=0. The PMI hitting could be before or
708  * after disable_all.
709  *
710  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
711  * It will not be re-enabled in the NMI handler again, because enabled=0. After
712  * handling the NMI, disable_all will be called, which will not change the
713  * state either. If PMI hits after disable_all, the PMU is already disabled
714  * before entering NMI handler. The NMI handler will not change the state
715  * either.
716  *
717  * So either situation is harmless.
718  */
719 static void x86_pmu_disable(struct pmu *pmu)
720 {
721         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722
723         if (!x86_pmu_initialized())
724                 return;
725
726         if (!cpuc->enabled)
727                 return;
728
729         cpuc->n_added = 0;
730         cpuc->enabled = 0;
731         barrier();
732
733         static_call(x86_pmu_disable_all)();
734 }
735
736 void x86_pmu_enable_all(int added)
737 {
738         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
739         int idx;
740
741         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
742                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
743
744                 if (!test_bit(idx, cpuc->active_mask))
745                         continue;
746
747                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
748         }
749 }
750
751 static inline int is_x86_event(struct perf_event *event)
752 {
753         int i;
754
755         if (!is_hybrid())
756                 return event->pmu == &pmu;
757
758         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
759                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
760                         return true;
761         }
762
763         return false;
764 }
765
766 struct pmu *x86_get_pmu(unsigned int cpu)
767 {
768         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
769
770         /*
771          * All CPUs of the hybrid type have been offline.
772          * The x86_get_pmu() should not be invoked.
773          */
774         if (WARN_ON_ONCE(!cpuc->pmu))
775                 return &pmu;
776
777         return cpuc->pmu;
778 }
779 /*
780  * Event scheduler state:
781  *
782  * Assign events iterating over all events and counters, beginning
783  * with events with least weights first. Keep the current iterator
784  * state in struct sched_state.
785  */
786 struct sched_state {
787         int     weight;
788         int     event;          /* event index */
789         int     counter;        /* counter index */
790         int     unassigned;     /* number of events to be assigned left */
791         int     nr_gp;          /* number of GP counters used */
792         u64     used;
793 };
794
795 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
796 #define SCHED_STATES_MAX        2
797
798 struct perf_sched {
799         int                     max_weight;
800         int                     max_events;
801         int                     max_gp;
802         int                     saved_states;
803         struct event_constraint **constraints;
804         struct sched_state      state;
805         struct sched_state      saved[SCHED_STATES_MAX];
806 };
807
808 /*
809  * Initialize iterator that runs through all events and counters.
810  */
811 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
812                             int num, int wmin, int wmax, int gpmax)
813 {
814         int idx;
815
816         memset(sched, 0, sizeof(*sched));
817         sched->max_events       = num;
818         sched->max_weight       = wmax;
819         sched->max_gp           = gpmax;
820         sched->constraints      = constraints;
821
822         for (idx = 0; idx < num; idx++) {
823                 if (constraints[idx]->weight == wmin)
824                         break;
825         }
826
827         sched->state.event      = idx;          /* start with min weight */
828         sched->state.weight     = wmin;
829         sched->state.unassigned = num;
830 }
831
832 static void perf_sched_save_state(struct perf_sched *sched)
833 {
834         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
835                 return;
836
837         sched->saved[sched->saved_states] = sched->state;
838         sched->saved_states++;
839 }
840
841 static bool perf_sched_restore_state(struct perf_sched *sched)
842 {
843         if (!sched->saved_states)
844                 return false;
845
846         sched->saved_states--;
847         sched->state = sched->saved[sched->saved_states];
848
849         /* this assignment didn't work out */
850         /* XXX broken vs EVENT_PAIR */
851         sched->state.used &= ~BIT_ULL(sched->state.counter);
852
853         /* try the next one */
854         sched->state.counter++;
855
856         return true;
857 }
858
859 /*
860  * Select a counter for the current event to schedule. Return true on
861  * success.
862  */
863 static bool __perf_sched_find_counter(struct perf_sched *sched)
864 {
865         struct event_constraint *c;
866         int idx;
867
868         if (!sched->state.unassigned)
869                 return false;
870
871         if (sched->state.event >= sched->max_events)
872                 return false;
873
874         c = sched->constraints[sched->state.event];
875         /* Prefer fixed purpose counters */
876         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
877                 idx = INTEL_PMC_IDX_FIXED;
878                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
879                         u64 mask = BIT_ULL(idx);
880
881                         if (sched->state.used & mask)
882                                 continue;
883
884                         sched->state.used |= mask;
885                         goto done;
886                 }
887         }
888
889         /* Grab the first unused counter starting with idx */
890         idx = sched->state.counter;
891         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
892                 u64 mask = BIT_ULL(idx);
893
894                 if (c->flags & PERF_X86_EVENT_PAIR)
895                         mask |= mask << 1;
896
897                 if (sched->state.used & mask)
898                         continue;
899
900                 if (sched->state.nr_gp++ >= sched->max_gp)
901                         return false;
902
903                 sched->state.used |= mask;
904                 goto done;
905         }
906
907         return false;
908
909 done:
910         sched->state.counter = idx;
911
912         if (c->overlap)
913                 perf_sched_save_state(sched);
914
915         return true;
916 }
917
918 static bool perf_sched_find_counter(struct perf_sched *sched)
919 {
920         while (!__perf_sched_find_counter(sched)) {
921                 if (!perf_sched_restore_state(sched))
922                         return false;
923         }
924
925         return true;
926 }
927
928 /*
929  * Go through all unassigned events and find the next one to schedule.
930  * Take events with the least weight first. Return true on success.
931  */
932 static bool perf_sched_next_event(struct perf_sched *sched)
933 {
934         struct event_constraint *c;
935
936         if (!sched->state.unassigned || !--sched->state.unassigned)
937                 return false;
938
939         do {
940                 /* next event */
941                 sched->state.event++;
942                 if (sched->state.event >= sched->max_events) {
943                         /* next weight */
944                         sched->state.event = 0;
945                         sched->state.weight++;
946                         if (sched->state.weight > sched->max_weight)
947                                 return false;
948                 }
949                 c = sched->constraints[sched->state.event];
950         } while (c->weight != sched->state.weight);
951
952         sched->state.counter = 0;       /* start with first counter */
953
954         return true;
955 }
956
957 /*
958  * Assign a counter for each event.
959  */
960 int perf_assign_events(struct event_constraint **constraints, int n,
961                         int wmin, int wmax, int gpmax, int *assign)
962 {
963         struct perf_sched sched;
964
965         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
966
967         do {
968                 if (!perf_sched_find_counter(&sched))
969                         break;  /* failed */
970                 if (assign)
971                         assign[sched.state.event] = sched.state.counter;
972         } while (perf_sched_next_event(&sched));
973
974         return sched.state.unassigned;
975 }
976 EXPORT_SYMBOL_GPL(perf_assign_events);
977
978 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
979 {
980         int num_counters = hybrid(cpuc->pmu, num_counters);
981         struct event_constraint *c;
982         struct perf_event *e;
983         int n0, i, wmin, wmax, unsched = 0;
984         struct hw_perf_event *hwc;
985         u64 used_mask = 0;
986
987         /*
988          * Compute the number of events already present; see x86_pmu_add(),
989          * validate_group() and x86_pmu_commit_txn(). For the former two
990          * cpuc->n_events hasn't been updated yet, while for the latter
991          * cpuc->n_txn contains the number of events added in the current
992          * transaction.
993          */
994         n0 = cpuc->n_events;
995         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
996                 n0 -= cpuc->n_txn;
997
998         static_call_cond(x86_pmu_start_scheduling)(cpuc);
999
1000         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1001                 c = cpuc->event_constraint[i];
1002
1003                 /*
1004                  * Previously scheduled events should have a cached constraint,
1005                  * while new events should not have one.
1006                  */
1007                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1008
1009                 /*
1010                  * Request constraints for new events; or for those events that
1011                  * have a dynamic constraint -- for those the constraint can
1012                  * change due to external factors (sibling state, allow_tfa).
1013                  */
1014                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1015                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1016                         cpuc->event_constraint[i] = c;
1017                 }
1018
1019                 wmin = min(wmin, c->weight);
1020                 wmax = max(wmax, c->weight);
1021         }
1022
1023         /*
1024          * fastpath, try to reuse previous register
1025          */
1026         for (i = 0; i < n; i++) {
1027                 u64 mask;
1028
1029                 hwc = &cpuc->event_list[i]->hw;
1030                 c = cpuc->event_constraint[i];
1031
1032                 /* never assigned */
1033                 if (hwc->idx == -1)
1034                         break;
1035
1036                 /* constraint still honored */
1037                 if (!test_bit(hwc->idx, c->idxmsk))
1038                         break;
1039
1040                 mask = BIT_ULL(hwc->idx);
1041                 if (is_counter_pair(hwc))
1042                         mask |= mask << 1;
1043
1044                 /* not already used */
1045                 if (used_mask & mask)
1046                         break;
1047
1048                 used_mask |= mask;
1049
1050                 if (assign)
1051                         assign[i] = hwc->idx;
1052         }
1053
1054         /* slow path */
1055         if (i != n) {
1056                 int gpmax = num_counters;
1057
1058                 /*
1059                  * Do not allow scheduling of more than half the available
1060                  * generic counters.
1061                  *
1062                  * This helps avoid counter starvation of sibling thread by
1063                  * ensuring at most half the counters cannot be in exclusive
1064                  * mode. There is no designated counters for the limits. Any
1065                  * N/2 counters can be used. This helps with events with
1066                  * specific counter constraints.
1067                  */
1068                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1069                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1070                         gpmax /= 2;
1071
1072                 /*
1073                  * Reduce the amount of available counters to allow fitting
1074                  * the extra Merge events needed by large increment events.
1075                  */
1076                 if (x86_pmu.flags & PMU_FL_PAIR) {
1077                         gpmax = num_counters - cpuc->n_pair;
1078                         WARN_ON(gpmax <= 0);
1079                 }
1080
1081                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1082                                              wmax, gpmax, assign);
1083         }
1084
1085         /*
1086          * In case of success (unsched = 0), mark events as committed,
1087          * so we do not put_constraint() in case new events are added
1088          * and fail to be scheduled
1089          *
1090          * We invoke the lower level commit callback to lock the resource
1091          *
1092          * We do not need to do all of this in case we are called to
1093          * validate an event group (assign == NULL)
1094          */
1095         if (!unsched && assign) {
1096                 for (i = 0; i < n; i++)
1097                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1098         } else {
1099                 for (i = n0; i < n; i++) {
1100                         e = cpuc->event_list[i];
1101
1102                         /*
1103                          * release events that failed scheduling
1104                          */
1105                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1106
1107                         cpuc->event_constraint[i] = NULL;
1108                 }
1109         }
1110
1111         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1112
1113         return unsched ? -EINVAL : 0;
1114 }
1115
1116 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1117                                struct perf_event *event)
1118 {
1119         if (is_metric_event(event)) {
1120                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1121                         return -EINVAL;
1122                 cpuc->n_metric++;
1123                 cpuc->n_txn_metric++;
1124         }
1125
1126         return 0;
1127 }
1128
1129 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1130                                 struct perf_event *event)
1131 {
1132         if (is_metric_event(event))
1133                 cpuc->n_metric--;
1134 }
1135
1136 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1137                          int max_count, int n)
1138 {
1139         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1140
1141         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1142                 return -EINVAL;
1143
1144         if (n >= max_count + cpuc->n_metric)
1145                 return -EINVAL;
1146
1147         cpuc->event_list[n] = event;
1148         if (is_counter_pair(&event->hw)) {
1149                 cpuc->n_pair++;
1150                 cpuc->n_txn_pair++;
1151         }
1152
1153         return 0;
1154 }
1155
1156 /*
1157  * dogrp: true if must collect siblings events (group)
1158  * returns total number of events and error code
1159  */
1160 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1161 {
1162         int num_counters = hybrid(cpuc->pmu, num_counters);
1163         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1164         struct perf_event *event;
1165         int n, max_count;
1166
1167         max_count = num_counters + num_counters_fixed;
1168
1169         /* current number of events already accepted */
1170         n = cpuc->n_events;
1171         if (!cpuc->n_events)
1172                 cpuc->pebs_output = 0;
1173
1174         if (!cpuc->is_fake && leader->attr.precise_ip) {
1175                 /*
1176                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1177                  * away, the group was broken down and this singleton event
1178                  * can't schedule any more.
1179                  */
1180                 if (is_pebs_pt(leader) && !leader->aux_event)
1181                         return -EINVAL;
1182
1183                 /*
1184                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1185                  */
1186                 if (cpuc->pebs_output &&
1187                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1188                         return -EINVAL;
1189
1190                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1191         }
1192
1193         if (is_x86_event(leader)) {
1194                 if (collect_event(cpuc, leader, max_count, n))
1195                         return -EINVAL;
1196                 n++;
1197         }
1198
1199         if (!dogrp)
1200                 return n;
1201
1202         for_each_sibling_event(event, leader) {
1203                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1204                         continue;
1205
1206                 if (collect_event(cpuc, event, max_count, n))
1207                         return -EINVAL;
1208
1209                 n++;
1210         }
1211         return n;
1212 }
1213
1214 static inline void x86_assign_hw_event(struct perf_event *event,
1215                                 struct cpu_hw_events *cpuc, int i)
1216 {
1217         struct hw_perf_event *hwc = &event->hw;
1218         int idx;
1219
1220         idx = hwc->idx = cpuc->assign[i];
1221         hwc->last_cpu = smp_processor_id();
1222         hwc->last_tag = ++cpuc->tags[i];
1223
1224         static_call_cond(x86_pmu_assign)(event, idx);
1225
1226         switch (hwc->idx) {
1227         case INTEL_PMC_IDX_FIXED_BTS:
1228         case INTEL_PMC_IDX_FIXED_VLBR:
1229                 hwc->config_base = 0;
1230                 hwc->event_base = 0;
1231                 break;
1232
1233         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1234                 /* All the metric events are mapped onto the fixed counter 3. */
1235                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1236                 fallthrough;
1237         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1238                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1239                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1240                                 (idx - INTEL_PMC_IDX_FIXED);
1241                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1242                                         INTEL_PMC_FIXED_RDPMC_BASE;
1243                 break;
1244
1245         default:
1246                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1247                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1248                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1249                 break;
1250         }
1251 }
1252
1253 /**
1254  * x86_perf_rdpmc_index - Return PMC counter used for event
1255  * @event: the perf_event to which the PMC counter was assigned
1256  *
1257  * The counter assigned to this performance event may change if interrupts
1258  * are enabled. This counter should thus never be used while interrupts are
1259  * enabled. Before this function is used to obtain the assigned counter the
1260  * event should be checked for validity using, for example,
1261  * perf_event_read_local(), within the same interrupt disabled section in
1262  * which this counter is planned to be used.
1263  *
1264  * Return: The index of the performance monitoring counter assigned to
1265  * @perf_event.
1266  */
1267 int x86_perf_rdpmc_index(struct perf_event *event)
1268 {
1269         lockdep_assert_irqs_disabled();
1270
1271         return event->hw.event_base_rdpmc;
1272 }
1273
1274 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1275                                         struct cpu_hw_events *cpuc,
1276                                         int i)
1277 {
1278         return hwc->idx == cpuc->assign[i] &&
1279                 hwc->last_cpu == smp_processor_id() &&
1280                 hwc->last_tag == cpuc->tags[i];
1281 }
1282
1283 static void x86_pmu_start(struct perf_event *event, int flags);
1284
1285 static void x86_pmu_enable(struct pmu *pmu)
1286 {
1287         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1288         struct perf_event *event;
1289         struct hw_perf_event *hwc;
1290         int i, added = cpuc->n_added;
1291
1292         if (!x86_pmu_initialized())
1293                 return;
1294
1295         if (cpuc->enabled)
1296                 return;
1297
1298         if (cpuc->n_added) {
1299                 int n_running = cpuc->n_events - cpuc->n_added;
1300                 /*
1301                  * apply assignment obtained either from
1302                  * hw_perf_group_sched_in() or x86_pmu_enable()
1303                  *
1304                  * step1: save events moving to new counters
1305                  */
1306                 for (i = 0; i < n_running; i++) {
1307                         event = cpuc->event_list[i];
1308                         hwc = &event->hw;
1309
1310                         /*
1311                          * we can avoid reprogramming counter if:
1312                          * - assigned same counter as last time
1313                          * - running on same CPU as last time
1314                          * - no other event has used the counter since
1315                          */
1316                         if (hwc->idx == -1 ||
1317                             match_prev_assignment(hwc, cpuc, i))
1318                                 continue;
1319
1320                         /*
1321                          * Ensure we don't accidentally enable a stopped
1322                          * counter simply because we rescheduled.
1323                          */
1324                         if (hwc->state & PERF_HES_STOPPED)
1325                                 hwc->state |= PERF_HES_ARCH;
1326
1327                         x86_pmu_stop(event, PERF_EF_UPDATE);
1328                 }
1329
1330                 /*
1331                  * step2: reprogram moved events into new counters
1332                  */
1333                 for (i = 0; i < cpuc->n_events; i++) {
1334                         event = cpuc->event_list[i];
1335                         hwc = &event->hw;
1336
1337                         if (!match_prev_assignment(hwc, cpuc, i))
1338                                 x86_assign_hw_event(event, cpuc, i);
1339                         else if (i < n_running)
1340                                 continue;
1341
1342                         if (hwc->state & PERF_HES_ARCH)
1343                                 continue;
1344
1345                         /*
1346                          * if cpuc->enabled = 0, then no wrmsr as
1347                          * per x86_pmu_enable_event()
1348                          */
1349                         x86_pmu_start(event, PERF_EF_RELOAD);
1350                 }
1351                 cpuc->n_added = 0;
1352                 perf_events_lapic_init();
1353         }
1354
1355         cpuc->enabled = 1;
1356         barrier();
1357
1358         static_call(x86_pmu_enable_all)(added);
1359 }
1360
1361 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1362
1363 /*
1364  * Set the next IRQ period, based on the hwc->period_left value.
1365  * To be called with the event disabled in hw:
1366  */
1367 int x86_perf_event_set_period(struct perf_event *event)
1368 {
1369         struct hw_perf_event *hwc = &event->hw;
1370         s64 left = local64_read(&hwc->period_left);
1371         s64 period = hwc->sample_period;
1372         int ret = 0, idx = hwc->idx;
1373
1374         if (unlikely(!hwc->event_base))
1375                 return 0;
1376
1377         /*
1378          * If we are way outside a reasonable range then just skip forward:
1379          */
1380         if (unlikely(left <= -period)) {
1381                 left = period;
1382                 local64_set(&hwc->period_left, left);
1383                 hwc->last_period = period;
1384                 ret = 1;
1385         }
1386
1387         if (unlikely(left <= 0)) {
1388                 left += period;
1389                 local64_set(&hwc->period_left, left);
1390                 hwc->last_period = period;
1391                 ret = 1;
1392         }
1393         /*
1394          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395          */
1396         if (unlikely(left < 2))
1397                 left = 2;
1398
1399         if (left > x86_pmu.max_period)
1400                 left = x86_pmu.max_period;
1401
1402         static_call_cond(x86_pmu_limit_period)(event, &left);
1403
1404         this_cpu_write(pmc_prev_left[idx], left);
1405
1406         /*
1407          * The hw event starts counting from this event offset,
1408          * mark it to be able to extra future deltas:
1409          */
1410         local64_set(&hwc->prev_count, (u64)-left);
1411
1412         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1413
1414         /*
1415          * Sign extend the Merge event counter's upper 16 bits since
1416          * we currently declare a 48-bit counter width
1417          */
1418         if (is_counter_pair(hwc))
1419                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1420
1421         perf_event_update_userpage(event);
1422
1423         return ret;
1424 }
1425
1426 void x86_pmu_enable_event(struct perf_event *event)
1427 {
1428         if (__this_cpu_read(cpu_hw_events.enabled))
1429                 __x86_pmu_enable_event(&event->hw,
1430                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1431 }
1432
1433 /*
1434  * Add a single event to the PMU.
1435  *
1436  * The event is added to the group of enabled events
1437  * but only if it can be scheduled with existing events.
1438  */
1439 static int x86_pmu_add(struct perf_event *event, int flags)
1440 {
1441         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1442         struct hw_perf_event *hwc;
1443         int assign[X86_PMC_IDX_MAX];
1444         int n, n0, ret;
1445
1446         hwc = &event->hw;
1447
1448         n0 = cpuc->n_events;
1449         ret = n = collect_events(cpuc, event, false);
1450         if (ret < 0)
1451                 goto out;
1452
1453         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1454         if (!(flags & PERF_EF_START))
1455                 hwc->state |= PERF_HES_ARCH;
1456
1457         /*
1458          * If group events scheduling transaction was started,
1459          * skip the schedulability test here, it will be performed
1460          * at commit time (->commit_txn) as a whole.
1461          *
1462          * If commit fails, we'll call ->del() on all events
1463          * for which ->add() was called.
1464          */
1465         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1466                 goto done_collect;
1467
1468         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1469         if (ret)
1470                 goto out;
1471         /*
1472          * copy new assignment, now we know it is possible
1473          * will be used by hw_perf_enable()
1474          */
1475         memcpy(cpuc->assign, assign, n*sizeof(int));
1476
1477 done_collect:
1478         /*
1479          * Commit the collect_events() state. See x86_pmu_del() and
1480          * x86_pmu_*_txn().
1481          */
1482         cpuc->n_events = n;
1483         cpuc->n_added += n - n0;
1484         cpuc->n_txn += n - n0;
1485
1486         /*
1487          * This is before x86_pmu_enable() will call x86_pmu_start(),
1488          * so we enable LBRs before an event needs them etc..
1489          */
1490         static_call_cond(x86_pmu_add)(event);
1491
1492         ret = 0;
1493 out:
1494         return ret;
1495 }
1496
1497 static void x86_pmu_start(struct perf_event *event, int flags)
1498 {
1499         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1500         int idx = event->hw.idx;
1501
1502         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1503                 return;
1504
1505         if (WARN_ON_ONCE(idx == -1))
1506                 return;
1507
1508         if (flags & PERF_EF_RELOAD) {
1509                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1510                 static_call(x86_pmu_set_period)(event);
1511         }
1512
1513         event->hw.state = 0;
1514
1515         cpuc->events[idx] = event;
1516         __set_bit(idx, cpuc->active_mask);
1517         static_call(x86_pmu_enable)(event);
1518         perf_event_update_userpage(event);
1519 }
1520
1521 void perf_event_print_debug(void)
1522 {
1523         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1524         u64 pebs, debugctl;
1525         int cpu = smp_processor_id();
1526         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1527         int num_counters = hybrid(cpuc->pmu, num_counters);
1528         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1529         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1530         unsigned long flags;
1531         int idx;
1532
1533         if (!num_counters)
1534                 return;
1535
1536         local_irq_save(flags);
1537
1538         if (x86_pmu.version >= 2) {
1539                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1540                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1541                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1542                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1543
1544                 pr_info("\n");
1545                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1546                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1547                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1548                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1549                 if (pebs_constraints) {
1550                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1551                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1552                 }
1553                 if (x86_pmu.lbr_nr) {
1554                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1555                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1556                 }
1557         }
1558         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1559
1560         for (idx = 0; idx < num_counters; idx++) {
1561                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1562                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1563
1564                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1565
1566                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1567                         cpu, idx, pmc_ctrl);
1568                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1569                         cpu, idx, pmc_count);
1570                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1571                         cpu, idx, prev_left);
1572         }
1573         for (idx = 0; idx < num_counters_fixed; idx++) {
1574                 if (fixed_counter_disabled(idx, cpuc->pmu))
1575                         continue;
1576                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1577
1578                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1579                         cpu, idx, pmc_count);
1580         }
1581         local_irq_restore(flags);
1582 }
1583
1584 void x86_pmu_stop(struct perf_event *event, int flags)
1585 {
1586         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1587         struct hw_perf_event *hwc = &event->hw;
1588
1589         if (test_bit(hwc->idx, cpuc->active_mask)) {
1590                 static_call(x86_pmu_disable)(event);
1591                 __clear_bit(hwc->idx, cpuc->active_mask);
1592                 cpuc->events[hwc->idx] = NULL;
1593                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1594                 hwc->state |= PERF_HES_STOPPED;
1595         }
1596
1597         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1598                 /*
1599                  * Drain the remaining delta count out of a event
1600                  * that we are disabling:
1601                  */
1602                 static_call(x86_pmu_update)(event);
1603                 hwc->state |= PERF_HES_UPTODATE;
1604         }
1605 }
1606
1607 static void x86_pmu_del(struct perf_event *event, int flags)
1608 {
1609         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1610         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1611         int i;
1612
1613         /*
1614          * If we're called during a txn, we only need to undo x86_pmu.add.
1615          * The events never got scheduled and ->cancel_txn will truncate
1616          * the event_list.
1617          *
1618          * XXX assumes any ->del() called during a TXN will only be on
1619          * an event added during that same TXN.
1620          */
1621         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1622                 goto do_del;
1623
1624         __set_bit(event->hw.idx, cpuc->dirty);
1625
1626         /*
1627          * Not a TXN, therefore cleanup properly.
1628          */
1629         x86_pmu_stop(event, PERF_EF_UPDATE);
1630
1631         for (i = 0; i < cpuc->n_events; i++) {
1632                 if (event == cpuc->event_list[i])
1633                         break;
1634         }
1635
1636         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1637                 return;
1638
1639         /* If we have a newly added event; make sure to decrease n_added. */
1640         if (i >= cpuc->n_events - cpuc->n_added)
1641                 --cpuc->n_added;
1642
1643         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1644
1645         /* Delete the array entry. */
1646         while (++i < cpuc->n_events) {
1647                 cpuc->event_list[i-1] = cpuc->event_list[i];
1648                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1649         }
1650         cpuc->event_constraint[i-1] = NULL;
1651         --cpuc->n_events;
1652         if (intel_cap.perf_metrics)
1653                 del_nr_metric_event(cpuc, event);
1654
1655         perf_event_update_userpage(event);
1656
1657 do_del:
1658
1659         /*
1660          * This is after x86_pmu_stop(); so we disable LBRs after any
1661          * event can need them etc..
1662          */
1663         static_call_cond(x86_pmu_del)(event);
1664 }
1665
1666 int x86_pmu_handle_irq(struct pt_regs *regs)
1667 {
1668         struct perf_sample_data data;
1669         struct cpu_hw_events *cpuc;
1670         struct perf_event *event;
1671         int idx, handled = 0;
1672         u64 val;
1673
1674         cpuc = this_cpu_ptr(&cpu_hw_events);
1675
1676         /*
1677          * Some chipsets need to unmask the LVTPC in a particular spot
1678          * inside the nmi handler.  As a result, the unmasking was pushed
1679          * into all the nmi handlers.
1680          *
1681          * This generic handler doesn't seem to have any issues where the
1682          * unmasking occurs so it was left at the top.
1683          */
1684         apic_write(APIC_LVTPC, APIC_DM_NMI);
1685
1686         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1687                 if (!test_bit(idx, cpuc->active_mask))
1688                         continue;
1689
1690                 event = cpuc->events[idx];
1691
1692                 val = static_call(x86_pmu_update)(event);
1693                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1694                         continue;
1695
1696                 /*
1697                  * event overflow
1698                  */
1699                 handled++;
1700
1701                 if (!static_call(x86_pmu_set_period)(event))
1702                         continue;
1703
1704                 perf_sample_data_init(&data, 0, event->hw.last_period);
1705
1706                 if (has_branch_stack(event)) {
1707                         data.br_stack = &cpuc->lbr_stack;
1708                         data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1709                 }
1710
1711                 if (perf_event_overflow(event, &data, regs))
1712                         x86_pmu_stop(event, 0);
1713         }
1714
1715         if (handled)
1716                 inc_irq_stat(apic_perf_irqs);
1717
1718         return handled;
1719 }
1720
1721 void perf_events_lapic_init(void)
1722 {
1723         if (!x86_pmu.apic || !x86_pmu_initialized())
1724                 return;
1725
1726         /*
1727          * Always use NMI for PMU
1728          */
1729         apic_write(APIC_LVTPC, APIC_DM_NMI);
1730 }
1731
1732 static int
1733 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1734 {
1735         u64 start_clock;
1736         u64 finish_clock;
1737         int ret;
1738
1739         /*
1740          * All PMUs/events that share this PMI handler should make sure to
1741          * increment active_events for their events.
1742          */
1743         if (!atomic_read(&active_events))
1744                 return NMI_DONE;
1745
1746         start_clock = sched_clock();
1747         ret = static_call(x86_pmu_handle_irq)(regs);
1748         finish_clock = sched_clock();
1749
1750         perf_sample_event_took(finish_clock - start_clock);
1751
1752         return ret;
1753 }
1754 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1755
1756 struct event_constraint emptyconstraint;
1757 struct event_constraint unconstrained;
1758
1759 static int x86_pmu_prepare_cpu(unsigned int cpu)
1760 {
1761         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1762         int i;
1763
1764         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1765                 cpuc->kfree_on_online[i] = NULL;
1766         if (x86_pmu.cpu_prepare)
1767                 return x86_pmu.cpu_prepare(cpu);
1768         return 0;
1769 }
1770
1771 static int x86_pmu_dead_cpu(unsigned int cpu)
1772 {
1773         if (x86_pmu.cpu_dead)
1774                 x86_pmu.cpu_dead(cpu);
1775         return 0;
1776 }
1777
1778 static int x86_pmu_online_cpu(unsigned int cpu)
1779 {
1780         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1781         int i;
1782
1783         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1784                 kfree(cpuc->kfree_on_online[i]);
1785                 cpuc->kfree_on_online[i] = NULL;
1786         }
1787         return 0;
1788 }
1789
1790 static int x86_pmu_starting_cpu(unsigned int cpu)
1791 {
1792         if (x86_pmu.cpu_starting)
1793                 x86_pmu.cpu_starting(cpu);
1794         return 0;
1795 }
1796
1797 static int x86_pmu_dying_cpu(unsigned int cpu)
1798 {
1799         if (x86_pmu.cpu_dying)
1800                 x86_pmu.cpu_dying(cpu);
1801         return 0;
1802 }
1803
1804 static void __init pmu_check_apic(void)
1805 {
1806         if (boot_cpu_has(X86_FEATURE_APIC))
1807                 return;
1808
1809         x86_pmu.apic = 0;
1810         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1811         pr_info("no hardware sampling interrupt available.\n");
1812
1813         /*
1814          * If we have a PMU initialized but no APIC
1815          * interrupts, we cannot sample hardware
1816          * events (user-space has to fall back and
1817          * sample via a hrtimer based software event):
1818          */
1819         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1820
1821 }
1822
1823 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1824         .name = "format",
1825         .attrs = NULL,
1826 };
1827
1828 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1829 {
1830         struct perf_pmu_events_attr *pmu_attr =
1831                 container_of(attr, struct perf_pmu_events_attr, attr);
1832         u64 config = 0;
1833
1834         if (pmu_attr->id < x86_pmu.max_events)
1835                 config = x86_pmu.event_map(pmu_attr->id);
1836
1837         /* string trumps id */
1838         if (pmu_attr->event_str)
1839                 return sprintf(page, "%s\n", pmu_attr->event_str);
1840
1841         return x86_pmu.events_sysfs_show(page, config);
1842 }
1843 EXPORT_SYMBOL_GPL(events_sysfs_show);
1844
1845 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1846                           char *page)
1847 {
1848         struct perf_pmu_events_ht_attr *pmu_attr =
1849                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1850
1851         /*
1852          * Report conditional events depending on Hyper-Threading.
1853          *
1854          * This is overly conservative as usually the HT special
1855          * handling is not needed if the other CPU thread is idle.
1856          *
1857          * Note this does not (and cannot) handle the case when thread
1858          * siblings are invisible, for example with virtualization
1859          * if they are owned by some other guest.  The user tool
1860          * has to re-read when a thread sibling gets onlined later.
1861          */
1862         return sprintf(page, "%s",
1863                         topology_max_smt_threads() > 1 ?
1864                         pmu_attr->event_str_ht :
1865                         pmu_attr->event_str_noht);
1866 }
1867
1868 ssize_t events_hybrid_sysfs_show(struct device *dev,
1869                                  struct device_attribute *attr,
1870                                  char *page)
1871 {
1872         struct perf_pmu_events_hybrid_attr *pmu_attr =
1873                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1874         struct x86_hybrid_pmu *pmu;
1875         const char *str, *next_str;
1876         int i;
1877
1878         if (hweight64(pmu_attr->pmu_type) == 1)
1879                 return sprintf(page, "%s", pmu_attr->event_str);
1880
1881         /*
1882          * Hybrid PMUs may support the same event name, but with different
1883          * event encoding, e.g., the mem-loads event on an Atom PMU has
1884          * different event encoding from a Core PMU.
1885          *
1886          * The event_str includes all event encodings. Each event encoding
1887          * is divided by ";". The order of the event encodings must follow
1888          * the order of the hybrid PMU index.
1889          */
1890         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1891
1892         str = pmu_attr->event_str;
1893         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1894                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1895                         continue;
1896                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1897                         next_str = strchr(str, ';');
1898                         if (next_str)
1899                                 return snprintf(page, next_str - str + 1, "%s", str);
1900                         else
1901                                 return sprintf(page, "%s", str);
1902                 }
1903                 str = strchr(str, ';');
1904                 str++;
1905         }
1906
1907         return 0;
1908 }
1909 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1910
1911 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1912 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1913 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1914 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1915 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1916 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1917 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1918 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1919 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1920 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1921
1922 static struct attribute *empty_attrs;
1923
1924 static struct attribute *events_attr[] = {
1925         EVENT_PTR(CPU_CYCLES),
1926         EVENT_PTR(INSTRUCTIONS),
1927         EVENT_PTR(CACHE_REFERENCES),
1928         EVENT_PTR(CACHE_MISSES),
1929         EVENT_PTR(BRANCH_INSTRUCTIONS),
1930         EVENT_PTR(BRANCH_MISSES),
1931         EVENT_PTR(BUS_CYCLES),
1932         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1933         EVENT_PTR(STALLED_CYCLES_BACKEND),
1934         EVENT_PTR(REF_CPU_CYCLES),
1935         NULL,
1936 };
1937
1938 /*
1939  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1940  * out of events_attr attributes.
1941  */
1942 static umode_t
1943 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1944 {
1945         struct perf_pmu_events_attr *pmu_attr;
1946
1947         if (idx >= x86_pmu.max_events)
1948                 return 0;
1949
1950         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1951         /* str trumps id */
1952         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1953 }
1954
1955 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1956         .name = "events",
1957         .attrs = events_attr,
1958         .is_visible = is_visible,
1959 };
1960
1961 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1962 {
1963         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1964         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1965         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1966         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1967         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1968         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1969         ssize_t ret;
1970
1971         /*
1972         * We have whole page size to spend and just little data
1973         * to write, so we can safely use sprintf.
1974         */
1975         ret = sprintf(page, "event=0x%02llx", event);
1976
1977         if (umask)
1978                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1979
1980         if (edge)
1981                 ret += sprintf(page + ret, ",edge");
1982
1983         if (pc)
1984                 ret += sprintf(page + ret, ",pc");
1985
1986         if (any)
1987                 ret += sprintf(page + ret, ",any");
1988
1989         if (inv)
1990                 ret += sprintf(page + ret, ",inv");
1991
1992         if (cmask)
1993                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1994
1995         ret += sprintf(page + ret, "\n");
1996
1997         return ret;
1998 }
1999
2000 static struct attribute_group x86_pmu_attr_group;
2001 static struct attribute_group x86_pmu_caps_group;
2002
2003 static void x86_pmu_static_call_update(void)
2004 {
2005         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2006         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2007         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2008         static_call_update(x86_pmu_enable, x86_pmu.enable);
2009         static_call_update(x86_pmu_disable, x86_pmu.disable);
2010
2011         static_call_update(x86_pmu_assign, x86_pmu.assign);
2012
2013         static_call_update(x86_pmu_add, x86_pmu.add);
2014         static_call_update(x86_pmu_del, x86_pmu.del);
2015         static_call_update(x86_pmu_read, x86_pmu.read);
2016
2017         static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2018         static_call_update(x86_pmu_update, x86_pmu.update);
2019         static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2020
2021         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2022         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2023         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2024
2025         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2026         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2027         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2028
2029         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2030         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2031
2032         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2033         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2034
2035         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2036         static_call_update(x86_pmu_filter, x86_pmu.filter);
2037 }
2038
2039 static void _x86_pmu_read(struct perf_event *event)
2040 {
2041         static_call(x86_pmu_update)(event);
2042 }
2043
2044 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2045                           u64 intel_ctrl)
2046 {
2047         pr_info("... version:                %d\n",     x86_pmu.version);
2048         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2049         pr_info("... generic registers:      %d\n",     num_counters);
2050         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2051         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2052         pr_info("... fixed-purpose events:   %lu\n",
2053                         hweight64((((1ULL << num_counters_fixed) - 1)
2054                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2055         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2056 }
2057
2058 static int __init init_hw_perf_events(void)
2059 {
2060         struct x86_pmu_quirk *quirk;
2061         int err;
2062
2063         pr_info("Performance Events: ");
2064
2065         switch (boot_cpu_data.x86_vendor) {
2066         case X86_VENDOR_INTEL:
2067                 err = intel_pmu_init();
2068                 break;
2069         case X86_VENDOR_AMD:
2070                 err = amd_pmu_init();
2071                 break;
2072         case X86_VENDOR_HYGON:
2073                 err = amd_pmu_init();
2074                 x86_pmu.name = "HYGON";
2075                 break;
2076         case X86_VENDOR_ZHAOXIN:
2077         case X86_VENDOR_CENTAUR:
2078                 err = zhaoxin_pmu_init();
2079                 break;
2080         default:
2081                 err = -ENOTSUPP;
2082         }
2083         if (err != 0) {
2084                 pr_cont("no PMU driver, software events only.\n");
2085                 err = 0;
2086                 goto out_bad_pmu;
2087         }
2088
2089         pmu_check_apic();
2090
2091         /* sanity check that the hardware exists or is emulated */
2092         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2093                 goto out_bad_pmu;
2094
2095         pr_cont("%s PMU driver.\n", x86_pmu.name);
2096
2097         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2098
2099         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2100                 quirk->func();
2101
2102         if (!x86_pmu.intel_ctrl)
2103                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2104
2105         perf_events_lapic_init();
2106         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2107
2108         unconstrained = (struct event_constraint)
2109                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2110                                    0, x86_pmu.num_counters, 0, 0);
2111
2112         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2113
2114         if (!x86_pmu.events_sysfs_show)
2115                 x86_pmu_events_group.attrs = &empty_attrs;
2116
2117         pmu.attr_update = x86_pmu.attr_update;
2118
2119         if (!is_hybrid()) {
2120                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2121                                      x86_pmu.num_counters_fixed,
2122                                      x86_pmu.intel_ctrl);
2123         }
2124
2125         if (!x86_pmu.read)
2126                 x86_pmu.read = _x86_pmu_read;
2127
2128         if (!x86_pmu.guest_get_msrs)
2129                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2130
2131         if (!x86_pmu.set_period)
2132                 x86_pmu.set_period = x86_perf_event_set_period;
2133
2134         if (!x86_pmu.update)
2135                 x86_pmu.update = x86_perf_event_update;
2136
2137         x86_pmu_static_call_update();
2138
2139         /*
2140          * Install callbacks. Core will call them for each online
2141          * cpu.
2142          */
2143         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2144                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2145         if (err)
2146                 return err;
2147
2148         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2149                                 "perf/x86:starting", x86_pmu_starting_cpu,
2150                                 x86_pmu_dying_cpu);
2151         if (err)
2152                 goto out;
2153
2154         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2155                                 x86_pmu_online_cpu, NULL);
2156         if (err)
2157                 goto out1;
2158
2159         if (!is_hybrid()) {
2160                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2161                 if (err)
2162                         goto out2;
2163         } else {
2164                 struct x86_hybrid_pmu *hybrid_pmu;
2165                 int i, j;
2166
2167                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2168                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2169
2170                         hybrid_pmu->pmu = pmu;
2171                         hybrid_pmu->pmu.type = -1;
2172                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2173                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2174                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2175
2176                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2177                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2178                         if (err)
2179                                 break;
2180                 }
2181
2182                 if (i < x86_pmu.num_hybrid_pmus) {
2183                         for (j = 0; j < i; j++)
2184                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2185                         pr_warn("Failed to register hybrid PMUs\n");
2186                         kfree(x86_pmu.hybrid_pmu);
2187                         x86_pmu.hybrid_pmu = NULL;
2188                         x86_pmu.num_hybrid_pmus = 0;
2189                         goto out2;
2190                 }
2191         }
2192
2193         return 0;
2194
2195 out2:
2196         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2197 out1:
2198         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2199 out:
2200         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2201 out_bad_pmu:
2202         memset(&x86_pmu, 0, sizeof(x86_pmu));
2203         return err;
2204 }
2205 early_initcall(init_hw_perf_events);
2206
2207 static void x86_pmu_read(struct perf_event *event)
2208 {
2209         static_call(x86_pmu_read)(event);
2210 }
2211
2212 /*
2213  * Start group events scheduling transaction
2214  * Set the flag to make pmu::enable() not perform the
2215  * schedulability test, it will be performed at commit time
2216  *
2217  * We only support PERF_PMU_TXN_ADD transactions. Save the
2218  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2219  * transactions.
2220  */
2221 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2222 {
2223         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2224
2225         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2226
2227         cpuc->txn_flags = txn_flags;
2228         if (txn_flags & ~PERF_PMU_TXN_ADD)
2229                 return;
2230
2231         perf_pmu_disable(pmu);
2232         __this_cpu_write(cpu_hw_events.n_txn, 0);
2233         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2234         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2235 }
2236
2237 /*
2238  * Stop group events scheduling transaction
2239  * Clear the flag and pmu::enable() will perform the
2240  * schedulability test.
2241  */
2242 static void x86_pmu_cancel_txn(struct pmu *pmu)
2243 {
2244         unsigned int txn_flags;
2245         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2246
2247         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2248
2249         txn_flags = cpuc->txn_flags;
2250         cpuc->txn_flags = 0;
2251         if (txn_flags & ~PERF_PMU_TXN_ADD)
2252                 return;
2253
2254         /*
2255          * Truncate collected array by the number of events added in this
2256          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2257          */
2258         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2259         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2260         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2261         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2262         perf_pmu_enable(pmu);
2263 }
2264
2265 /*
2266  * Commit group events scheduling transaction
2267  * Perform the group schedulability test as a whole
2268  * Return 0 if success
2269  *
2270  * Does not cancel the transaction on failure; expects the caller to do this.
2271  */
2272 static int x86_pmu_commit_txn(struct pmu *pmu)
2273 {
2274         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2275         int assign[X86_PMC_IDX_MAX];
2276         int n, ret;
2277
2278         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2279
2280         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2281                 cpuc->txn_flags = 0;
2282                 return 0;
2283         }
2284
2285         n = cpuc->n_events;
2286
2287         if (!x86_pmu_initialized())
2288                 return -EAGAIN;
2289
2290         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2291         if (ret)
2292                 return ret;
2293
2294         /*
2295          * copy new assignment, now we know it is possible
2296          * will be used by hw_perf_enable()
2297          */
2298         memcpy(cpuc->assign, assign, n*sizeof(int));
2299
2300         cpuc->txn_flags = 0;
2301         perf_pmu_enable(pmu);
2302         return 0;
2303 }
2304 /*
2305  * a fake_cpuc is used to validate event groups. Due to
2306  * the extra reg logic, we need to also allocate a fake
2307  * per_core and per_cpu structure. Otherwise, group events
2308  * using extra reg may conflict without the kernel being
2309  * able to catch this when the last event gets added to
2310  * the group.
2311  */
2312 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2313 {
2314         intel_cpuc_finish(cpuc);
2315         kfree(cpuc);
2316 }
2317
2318 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2319 {
2320         struct cpu_hw_events *cpuc;
2321         int cpu;
2322
2323         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2324         if (!cpuc)
2325                 return ERR_PTR(-ENOMEM);
2326         cpuc->is_fake = 1;
2327
2328         if (is_hybrid()) {
2329                 struct x86_hybrid_pmu *h_pmu;
2330
2331                 h_pmu = hybrid_pmu(event_pmu);
2332                 if (cpumask_empty(&h_pmu->supported_cpus))
2333                         goto error;
2334                 cpu = cpumask_first(&h_pmu->supported_cpus);
2335         } else
2336                 cpu = raw_smp_processor_id();
2337         cpuc->pmu = event_pmu;
2338
2339         if (intel_cpuc_prepare(cpuc, cpu))
2340                 goto error;
2341
2342         return cpuc;
2343 error:
2344         free_fake_cpuc(cpuc);
2345         return ERR_PTR(-ENOMEM);
2346 }
2347
2348 /*
2349  * validate that we can schedule this event
2350  */
2351 static int validate_event(struct perf_event *event)
2352 {
2353         struct cpu_hw_events *fake_cpuc;
2354         struct event_constraint *c;
2355         int ret = 0;
2356
2357         fake_cpuc = allocate_fake_cpuc(event->pmu);
2358         if (IS_ERR(fake_cpuc))
2359                 return PTR_ERR(fake_cpuc);
2360
2361         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2362
2363         if (!c || !c->weight)
2364                 ret = -EINVAL;
2365
2366         if (x86_pmu.put_event_constraints)
2367                 x86_pmu.put_event_constraints(fake_cpuc, event);
2368
2369         free_fake_cpuc(fake_cpuc);
2370
2371         return ret;
2372 }
2373
2374 /*
2375  * validate a single event group
2376  *
2377  * validation include:
2378  *      - check events are compatible which each other
2379  *      - events do not compete for the same counter
2380  *      - number of events <= number of counters
2381  *
2382  * validation ensures the group can be loaded onto the
2383  * PMU if it was the only group available.
2384  */
2385 static int validate_group(struct perf_event *event)
2386 {
2387         struct perf_event *leader = event->group_leader;
2388         struct cpu_hw_events *fake_cpuc;
2389         int ret = -EINVAL, n;
2390
2391         /*
2392          * Reject events from different hybrid PMUs.
2393          */
2394         if (is_hybrid()) {
2395                 struct perf_event *sibling;
2396                 struct pmu *pmu = NULL;
2397
2398                 if (is_x86_event(leader))
2399                         pmu = leader->pmu;
2400
2401                 for_each_sibling_event(sibling, leader) {
2402                         if (!is_x86_event(sibling))
2403                                 continue;
2404                         if (!pmu)
2405                                 pmu = sibling->pmu;
2406                         else if (pmu != sibling->pmu)
2407                                 return ret;
2408                 }
2409         }
2410
2411         fake_cpuc = allocate_fake_cpuc(event->pmu);
2412         if (IS_ERR(fake_cpuc))
2413                 return PTR_ERR(fake_cpuc);
2414         /*
2415          * the event is not yet connected with its
2416          * siblings therefore we must first collect
2417          * existing siblings, then add the new event
2418          * before we can simulate the scheduling
2419          */
2420         n = collect_events(fake_cpuc, leader, true);
2421         if (n < 0)
2422                 goto out;
2423
2424         fake_cpuc->n_events = n;
2425         n = collect_events(fake_cpuc, event, false);
2426         if (n < 0)
2427                 goto out;
2428
2429         fake_cpuc->n_events = 0;
2430         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2431
2432 out:
2433         free_fake_cpuc(fake_cpuc);
2434         return ret;
2435 }
2436
2437 static int x86_pmu_event_init(struct perf_event *event)
2438 {
2439         struct x86_hybrid_pmu *pmu = NULL;
2440         int err;
2441
2442         if ((event->attr.type != event->pmu->type) &&
2443             (event->attr.type != PERF_TYPE_HARDWARE) &&
2444             (event->attr.type != PERF_TYPE_HW_CACHE))
2445                 return -ENOENT;
2446
2447         if (is_hybrid() && (event->cpu != -1)) {
2448                 pmu = hybrid_pmu(event->pmu);
2449                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2450                         return -ENOENT;
2451         }
2452
2453         err = __x86_pmu_event_init(event);
2454         if (!err) {
2455                 if (event->group_leader != event)
2456                         err = validate_group(event);
2457                 else
2458                         err = validate_event(event);
2459         }
2460         if (err) {
2461                 if (event->destroy)
2462                         event->destroy(event);
2463                 event->destroy = NULL;
2464         }
2465
2466         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2467             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2468                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2469
2470         return err;
2471 }
2472
2473 void perf_clear_dirty_counters(void)
2474 {
2475         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2476         int i;
2477
2478          /* Don't need to clear the assigned counter. */
2479         for (i = 0; i < cpuc->n_events; i++)
2480                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2481
2482         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2483                 return;
2484
2485         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2486                 if (i >= INTEL_PMC_IDX_FIXED) {
2487                         /* Metrics and fake events don't have corresponding HW counters. */
2488                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2489                                 continue;
2490
2491                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2492                 } else {
2493                         wrmsrl(x86_pmu_event_addr(i), 0);
2494                 }
2495         }
2496
2497         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2498 }
2499
2500 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2501 {
2502         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2503                 return;
2504
2505         /*
2506          * This function relies on not being called concurrently in two
2507          * tasks in the same mm.  Otherwise one task could observe
2508          * perf_rdpmc_allowed > 1 and return all the way back to
2509          * userspace with CR4.PCE clear while another task is still
2510          * doing on_each_cpu_mask() to propagate CR4.PCE.
2511          *
2512          * For now, this can't happen because all callers hold mmap_lock
2513          * for write.  If this changes, we'll need a different solution.
2514          */
2515         mmap_assert_write_locked(mm);
2516
2517         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2518                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2519 }
2520
2521 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2522 {
2523         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2524                 return;
2525
2526         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2527                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2528 }
2529
2530 static int x86_pmu_event_idx(struct perf_event *event)
2531 {
2532         struct hw_perf_event *hwc = &event->hw;
2533
2534         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2535                 return 0;
2536
2537         if (is_metric_idx(hwc->idx))
2538                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2539         else
2540                 return hwc->event_base_rdpmc + 1;
2541 }
2542
2543 static ssize_t get_attr_rdpmc(struct device *cdev,
2544                               struct device_attribute *attr,
2545                               char *buf)
2546 {
2547         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2548 }
2549
2550 static ssize_t set_attr_rdpmc(struct device *cdev,
2551                               struct device_attribute *attr,
2552                               const char *buf, size_t count)
2553 {
2554         unsigned long val;
2555         ssize_t ret;
2556
2557         ret = kstrtoul(buf, 0, &val);
2558         if (ret)
2559                 return ret;
2560
2561         if (val > 2)
2562                 return -EINVAL;
2563
2564         if (x86_pmu.attr_rdpmc_broken)
2565                 return -ENOTSUPP;
2566
2567         if (val != x86_pmu.attr_rdpmc) {
2568                 /*
2569                  * Changing into or out of never available or always available,
2570                  * aka perf-event-bypassing mode. This path is extremely slow,
2571                  * but only root can trigger it, so it's okay.
2572                  */
2573                 if (val == 0)
2574                         static_branch_inc(&rdpmc_never_available_key);
2575                 else if (x86_pmu.attr_rdpmc == 0)
2576                         static_branch_dec(&rdpmc_never_available_key);
2577
2578                 if (val == 2)
2579                         static_branch_inc(&rdpmc_always_available_key);
2580                 else if (x86_pmu.attr_rdpmc == 2)
2581                         static_branch_dec(&rdpmc_always_available_key);
2582
2583                 on_each_cpu(cr4_update_pce, NULL, 1);
2584                 x86_pmu.attr_rdpmc = val;
2585         }
2586
2587         return count;
2588 }
2589
2590 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2591
2592 static struct attribute *x86_pmu_attrs[] = {
2593         &dev_attr_rdpmc.attr,
2594         NULL,
2595 };
2596
2597 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2598         .attrs = x86_pmu_attrs,
2599 };
2600
2601 static ssize_t max_precise_show(struct device *cdev,
2602                                   struct device_attribute *attr,
2603                                   char *buf)
2604 {
2605         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2606 }
2607
2608 static DEVICE_ATTR_RO(max_precise);
2609
2610 static struct attribute *x86_pmu_caps_attrs[] = {
2611         &dev_attr_max_precise.attr,
2612         NULL
2613 };
2614
2615 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2616         .name = "caps",
2617         .attrs = x86_pmu_caps_attrs,
2618 };
2619
2620 static const struct attribute_group *x86_pmu_attr_groups[] = {
2621         &x86_pmu_attr_group,
2622         &x86_pmu_format_group,
2623         &x86_pmu_events_group,
2624         &x86_pmu_caps_group,
2625         NULL,
2626 };
2627
2628 static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2629 {
2630         static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2631 }
2632
2633 static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2634                                   struct perf_event_pmu_context *next_epc)
2635 {
2636         static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2637 }
2638
2639 void perf_check_microcode(void)
2640 {
2641         if (x86_pmu.check_microcode)
2642                 x86_pmu.check_microcode();
2643 }
2644
2645 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2646 {
2647         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2648                 return -EINVAL;
2649
2650         if (value && x86_pmu.limit_period) {
2651                 s64 left = value;
2652                 x86_pmu.limit_period(event, &left);
2653                 if (left > value)
2654                         return -EINVAL;
2655         }
2656
2657         return 0;
2658 }
2659
2660 static int x86_pmu_aux_output_match(struct perf_event *event)
2661 {
2662         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2663                 return 0;
2664
2665         if (x86_pmu.aux_output_match)
2666                 return x86_pmu.aux_output_match(event);
2667
2668         return 0;
2669 }
2670
2671 static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2672 {
2673         bool ret = false;
2674
2675         static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2676
2677         return ret;
2678 }
2679
2680 static struct pmu pmu = {
2681         .pmu_enable             = x86_pmu_enable,
2682         .pmu_disable            = x86_pmu_disable,
2683
2684         .attr_groups            = x86_pmu_attr_groups,
2685
2686         .event_init             = x86_pmu_event_init,
2687
2688         .event_mapped           = x86_pmu_event_mapped,
2689         .event_unmapped         = x86_pmu_event_unmapped,
2690
2691         .add                    = x86_pmu_add,
2692         .del                    = x86_pmu_del,
2693         .start                  = x86_pmu_start,
2694         .stop                   = x86_pmu_stop,
2695         .read                   = x86_pmu_read,
2696
2697         .start_txn              = x86_pmu_start_txn,
2698         .cancel_txn             = x86_pmu_cancel_txn,
2699         .commit_txn             = x86_pmu_commit_txn,
2700
2701         .event_idx              = x86_pmu_event_idx,
2702         .sched_task             = x86_pmu_sched_task,
2703         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2704         .check_period           = x86_pmu_check_period,
2705
2706         .aux_output_match       = x86_pmu_aux_output_match,
2707
2708         .filter                 = x86_pmu_filter,
2709 };
2710
2711 void arch_perf_update_userpage(struct perf_event *event,
2712                                struct perf_event_mmap_page *userpg, u64 now)
2713 {
2714         struct cyc2ns_data data;
2715         u64 offset;
2716
2717         userpg->cap_user_time = 0;
2718         userpg->cap_user_time_zero = 0;
2719         userpg->cap_user_rdpmc =
2720                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2721         userpg->pmc_width = x86_pmu.cntval_bits;
2722
2723         if (!using_native_sched_clock() || !sched_clock_stable())
2724                 return;
2725
2726         cyc2ns_read_begin(&data);
2727
2728         offset = data.cyc2ns_offset + __sched_clock_offset;
2729
2730         /*
2731          * Internal timekeeping for enabled/running/stopped times
2732          * is always in the local_clock domain.
2733          */
2734         userpg->cap_user_time = 1;
2735         userpg->time_mult = data.cyc2ns_mul;
2736         userpg->time_shift = data.cyc2ns_shift;
2737         userpg->time_offset = offset - now;
2738
2739         /*
2740          * cap_user_time_zero doesn't make sense when we're using a different
2741          * time base for the records.
2742          */
2743         if (!event->attr.use_clockid) {
2744                 userpg->cap_user_time_zero = 1;
2745                 userpg->time_zero = offset;
2746         }
2747
2748         cyc2ns_read_end();
2749 }
2750
2751 /*
2752  * Determine whether the regs were taken from an irq/exception handler rather
2753  * than from perf_arch_fetch_caller_regs().
2754  */
2755 static bool perf_hw_regs(struct pt_regs *regs)
2756 {
2757         return regs->flags & X86_EFLAGS_FIXED;
2758 }
2759
2760 void
2761 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2762 {
2763         struct unwind_state state;
2764         unsigned long addr;
2765
2766         if (perf_guest_state()) {
2767                 /* TODO: We don't support guest os callchain now */
2768                 return;
2769         }
2770
2771         if (perf_callchain_store(entry, regs->ip))
2772                 return;
2773
2774         if (perf_hw_regs(regs))
2775                 unwind_start(&state, current, regs, NULL);
2776         else
2777                 unwind_start(&state, current, NULL, (void *)regs->sp);
2778
2779         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2780                 addr = unwind_get_return_address(&state);
2781                 if (!addr || perf_callchain_store(entry, addr))
2782                         return;
2783         }
2784 }
2785
2786 static inline int
2787 valid_user_frame(const void __user *fp, unsigned long size)
2788 {
2789         return __access_ok(fp, size);
2790 }
2791
2792 static unsigned long get_segment_base(unsigned int segment)
2793 {
2794         struct desc_struct *desc;
2795         unsigned int idx = segment >> 3;
2796
2797         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2798 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2799                 struct ldt_struct *ldt;
2800
2801                 /* IRQs are off, so this synchronizes with smp_store_release */
2802                 ldt = READ_ONCE(current->active_mm->context.ldt);
2803                 if (!ldt || idx >= ldt->nr_entries)
2804                         return 0;
2805
2806                 desc = &ldt->entries[idx];
2807 #else
2808                 return 0;
2809 #endif
2810         } else {
2811                 if (idx >= GDT_ENTRIES)
2812                         return 0;
2813
2814                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2815         }
2816
2817         return get_desc_base(desc);
2818 }
2819
2820 #ifdef CONFIG_IA32_EMULATION
2821
2822 #include <linux/compat.h>
2823
2824 static inline int
2825 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2826 {
2827         /* 32-bit process in 64-bit kernel. */
2828         unsigned long ss_base, cs_base;
2829         struct stack_frame_ia32 frame;
2830         const struct stack_frame_ia32 __user *fp;
2831
2832         if (user_64bit_mode(regs))
2833                 return 0;
2834
2835         cs_base = get_segment_base(regs->cs);
2836         ss_base = get_segment_base(regs->ss);
2837
2838         fp = compat_ptr(ss_base + regs->bp);
2839         pagefault_disable();
2840         while (entry->nr < entry->max_stack) {
2841                 if (!valid_user_frame(fp, sizeof(frame)))
2842                         break;
2843
2844                 if (__get_user(frame.next_frame, &fp->next_frame))
2845                         break;
2846                 if (__get_user(frame.return_address, &fp->return_address))
2847                         break;
2848
2849                 perf_callchain_store(entry, cs_base + frame.return_address);
2850                 fp = compat_ptr(ss_base + frame.next_frame);
2851         }
2852         pagefault_enable();
2853         return 1;
2854 }
2855 #else
2856 static inline int
2857 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2858 {
2859     return 0;
2860 }
2861 #endif
2862
2863 void
2864 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2865 {
2866         struct stack_frame frame;
2867         const struct stack_frame __user *fp;
2868
2869         if (perf_guest_state()) {
2870                 /* TODO: We don't support guest os callchain now */
2871                 return;
2872         }
2873
2874         /*
2875          * We don't know what to do with VM86 stacks.. ignore them for now.
2876          */
2877         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2878                 return;
2879
2880         fp = (void __user *)regs->bp;
2881
2882         perf_callchain_store(entry, regs->ip);
2883
2884         if (!nmi_uaccess_okay())
2885                 return;
2886
2887         if (perf_callchain_user32(regs, entry))
2888                 return;
2889
2890         pagefault_disable();
2891         while (entry->nr < entry->max_stack) {
2892                 if (!valid_user_frame(fp, sizeof(frame)))
2893                         break;
2894
2895                 if (__get_user(frame.next_frame, &fp->next_frame))
2896                         break;
2897                 if (__get_user(frame.return_address, &fp->return_address))
2898                         break;
2899
2900                 perf_callchain_store(entry, frame.return_address);
2901                 fp = (void __user *)frame.next_frame;
2902         }
2903         pagefault_enable();
2904 }
2905
2906 /*
2907  * Deal with code segment offsets for the various execution modes:
2908  *
2909  *   VM86 - the good olde 16 bit days, where the linear address is
2910  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2911  *
2912  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2913  *          to figure out what the 32bit base address is.
2914  *
2915  *    X32 - has TIF_X32 set, but is running in x86_64
2916  *
2917  * X86_64 - CS,DS,SS,ES are all zero based.
2918  */
2919 static unsigned long code_segment_base(struct pt_regs *regs)
2920 {
2921         /*
2922          * For IA32 we look at the GDT/LDT segment base to convert the
2923          * effective IP to a linear address.
2924          */
2925
2926 #ifdef CONFIG_X86_32
2927         /*
2928          * If we are in VM86 mode, add the segment offset to convert to a
2929          * linear address.
2930          */
2931         if (regs->flags & X86_VM_MASK)
2932                 return 0x10 * regs->cs;
2933
2934         if (user_mode(regs) && regs->cs != __USER_CS)
2935                 return get_segment_base(regs->cs);
2936 #else
2937         if (user_mode(regs) && !user_64bit_mode(regs) &&
2938             regs->cs != __USER32_CS)
2939                 return get_segment_base(regs->cs);
2940 #endif
2941         return 0;
2942 }
2943
2944 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2945 {
2946         if (perf_guest_state())
2947                 return perf_guest_get_ip();
2948
2949         return regs->ip + code_segment_base(regs);
2950 }
2951
2952 unsigned long perf_misc_flags(struct pt_regs *regs)
2953 {
2954         unsigned int guest_state = perf_guest_state();
2955         int misc = 0;
2956
2957         if (guest_state) {
2958                 if (guest_state & PERF_GUEST_USER)
2959                         misc |= PERF_RECORD_MISC_GUEST_USER;
2960                 else
2961                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2962         } else {
2963                 if (user_mode(regs))
2964                         misc |= PERF_RECORD_MISC_USER;
2965                 else
2966                         misc |= PERF_RECORD_MISC_KERNEL;
2967         }
2968
2969         if (regs->flags & PERF_EFLAGS_EXACT)
2970                 misc |= PERF_RECORD_MISC_EXACT_IP;
2971
2972         return misc;
2973 }
2974
2975 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2976 {
2977         /* This API doesn't currently support enumerating hybrid PMUs. */
2978         if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2979             !x86_pmu_initialized()) {
2980                 memset(cap, 0, sizeof(*cap));
2981                 return;
2982         }
2983
2984         /*
2985          * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2986          * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2987          * base PMU holds the correct number of counters for P-cores.
2988          */
2989         cap->version            = x86_pmu.version;
2990         cap->num_counters_gp    = x86_pmu.num_counters;
2991         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2992         cap->bit_width_gp       = x86_pmu.cntval_bits;
2993         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2994         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2995         cap->events_mask_len    = x86_pmu.events_mask_len;
2996         cap->pebs_ept           = x86_pmu.pebs_ept;
2997 }
2998 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2999
3000 u64 perf_get_hw_event_config(int hw_event)
3001 {
3002         int max = x86_pmu.max_events;
3003
3004         if (hw_event < max)
3005                 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3006
3007         return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);