perf: Use sample_flags for branch stack
[platform/kernel/linux-starfive.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
85
86 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
88
89 /*
90  * This one is magic, it will get called even when PMU init fails (because
91  * there is no PMU), in which case it should simply return NULL.
92  */
93 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
94
95 u64 __read_mostly hw_cache_event_ids
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 u64 __read_mostly hw_cache_extra_regs
100                                 [PERF_COUNT_HW_CACHE_MAX]
101                                 [PERF_COUNT_HW_CACHE_OP_MAX]
102                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
103
104 /*
105  * Propagate event elapsed time into the generic event.
106  * Can only be executed on the CPU where the event is active.
107  * Returns the delta events processed.
108  */
109 u64 x86_perf_event_update(struct perf_event *event)
110 {
111         struct hw_perf_event *hwc = &event->hw;
112         int shift = 64 - x86_pmu.cntval_bits;
113         u64 prev_raw_count, new_raw_count;
114         u64 delta;
115
116         if (unlikely(!hwc->event_base))
117                 return 0;
118
119         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
120                 return x86_pmu.update_topdown_event(event);
121
122         /*
123          * Careful: an NMI might modify the previous event value.
124          *
125          * Our tactic to handle this is to first atomically read and
126          * exchange a new raw count - then add that new-prev delta
127          * count to the generic event atomically:
128          */
129 again:
130         prev_raw_count = local64_read(&hwc->prev_count);
131         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
132
133         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
134                                         new_raw_count) != prev_raw_count)
135                 goto again;
136
137         /*
138          * Now we have the new raw value and have updated the prev
139          * timestamp already. We can now calculate the elapsed delta
140          * (event-)time and add that to the generic event.
141          *
142          * Careful, not all hw sign-extends above the physical width
143          * of the count.
144          */
145         delta = (new_raw_count << shift) - (prev_raw_count << shift);
146         delta >>= shift;
147
148         local64_add(delta, &event->count);
149         local64_sub(delta, &hwc->period_left);
150
151         return new_raw_count;
152 }
153
154 /*
155  * Find and validate any extra registers to set up.
156  */
157 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
158 {
159         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
160         struct hw_perf_event_extra *reg;
161         struct extra_reg *er;
162
163         reg = &event->hw.extra_reg;
164
165         if (!extra_regs)
166                 return 0;
167
168         for (er = extra_regs; er->msr; er++) {
169                 if (er->event != (config & er->config_mask))
170                         continue;
171                 if (event->attr.config1 & ~er->valid_mask)
172                         return -EINVAL;
173                 /* Check if the extra msrs can be safely accessed*/
174                 if (!er->extra_msr_access)
175                         return -ENXIO;
176
177                 reg->idx = er->idx;
178                 reg->config = event->attr.config1;
179                 reg->reg = er->msr;
180                 break;
181         }
182         return 0;
183 }
184
185 static atomic_t active_events;
186 static atomic_t pmc_refcount;
187 static DEFINE_MUTEX(pmc_reserve_mutex);
188
189 #ifdef CONFIG_X86_LOCAL_APIC
190
191 static inline int get_possible_num_counters(void)
192 {
193         int i, num_counters = x86_pmu.num_counters;
194
195         if (!is_hybrid())
196                 return num_counters;
197
198         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
199                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
200
201         return num_counters;
202 }
203
204 static bool reserve_pmc_hardware(void)
205 {
206         int i, num_counters = get_possible_num_counters();
207
208         for (i = 0; i < num_counters; i++) {
209                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
210                         goto perfctr_fail;
211         }
212
213         for (i = 0; i < num_counters; i++) {
214                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
215                         goto eventsel_fail;
216         }
217
218         return true;
219
220 eventsel_fail:
221         for (i--; i >= 0; i--)
222                 release_evntsel_nmi(x86_pmu_config_addr(i));
223
224         i = num_counters;
225
226 perfctr_fail:
227         for (i--; i >= 0; i--)
228                 release_perfctr_nmi(x86_pmu_event_addr(i));
229
230         return false;
231 }
232
233 static void release_pmc_hardware(void)
234 {
235         int i, num_counters = get_possible_num_counters();
236
237         for (i = 0; i < num_counters; i++) {
238                 release_perfctr_nmi(x86_pmu_event_addr(i));
239                 release_evntsel_nmi(x86_pmu_config_addr(i));
240         }
241 }
242
243 #else
244
245 static bool reserve_pmc_hardware(void) { return true; }
246 static void release_pmc_hardware(void) {}
247
248 #endif
249
250 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
251 {
252         u64 val, val_fail = -1, val_new= ~0;
253         int i, reg, reg_fail = -1, ret = 0;
254         int bios_fail = 0;
255         int reg_safe = -1;
256
257         /*
258          * Check to see if the BIOS enabled any of the counters, if so
259          * complain and bail.
260          */
261         for (i = 0; i < num_counters; i++) {
262                 reg = x86_pmu_config_addr(i);
263                 ret = rdmsrl_safe(reg, &val);
264                 if (ret)
265                         goto msr_fail;
266                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
267                         bios_fail = 1;
268                         val_fail = val;
269                         reg_fail = reg;
270                 } else {
271                         reg_safe = i;
272                 }
273         }
274
275         if (num_counters_fixed) {
276                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
277                 ret = rdmsrl_safe(reg, &val);
278                 if (ret)
279                         goto msr_fail;
280                 for (i = 0; i < num_counters_fixed; i++) {
281                         if (fixed_counter_disabled(i, pmu))
282                                 continue;
283                         if (val & (0x03ULL << i*4)) {
284                                 bios_fail = 1;
285                                 val_fail = val;
286                                 reg_fail = reg;
287                         }
288                 }
289         }
290
291         /*
292          * If all the counters are enabled, the below test will always
293          * fail.  The tools will also become useless in this scenario.
294          * Just fail and disable the hardware counters.
295          */
296
297         if (reg_safe == -1) {
298                 reg = reg_safe;
299                 goto msr_fail;
300         }
301
302         /*
303          * Read the current value, change it and read it back to see if it
304          * matches, this is needed to detect certain hardware emulators
305          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
306          */
307         reg = x86_pmu_event_addr(reg_safe);
308         if (rdmsrl_safe(reg, &val))
309                 goto msr_fail;
310         val ^= 0xffffUL;
311         ret = wrmsrl_safe(reg, val);
312         ret |= rdmsrl_safe(reg, &val_new);
313         if (ret || val != val_new)
314                 goto msr_fail;
315
316         /*
317          * We still allow the PMU driver to operate:
318          */
319         if (bios_fail) {
320                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
321                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
322                               reg_fail, val_fail);
323         }
324
325         return true;
326
327 msr_fail:
328         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
329                 pr_cont("PMU not available due to virtualization, using software events only.\n");
330         } else {
331                 pr_cont("Broken PMU hardware detected, using software events only.\n");
332                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
333                        reg, val_new);
334         }
335
336         return false;
337 }
338
339 static void hw_perf_event_destroy(struct perf_event *event)
340 {
341         x86_release_hardware();
342         atomic_dec(&active_events);
343 }
344
345 void hw_perf_lbr_event_destroy(struct perf_event *event)
346 {
347         hw_perf_event_destroy(event);
348
349         /* undo the lbr/bts event accounting */
350         x86_del_exclusive(x86_lbr_exclusive_lbr);
351 }
352
353 static inline int x86_pmu_initialized(void)
354 {
355         return x86_pmu.handle_irq != NULL;
356 }
357
358 static inline int
359 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
360 {
361         struct perf_event_attr *attr = &event->attr;
362         unsigned int cache_type, cache_op, cache_result;
363         u64 config, val;
364
365         config = attr->config;
366
367         cache_type = (config >> 0) & 0xff;
368         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
369                 return -EINVAL;
370         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
371
372         cache_op = (config >>  8) & 0xff;
373         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
374                 return -EINVAL;
375         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
376
377         cache_result = (config >> 16) & 0xff;
378         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
379                 return -EINVAL;
380         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
381
382         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
383         if (val == 0)
384                 return -ENOENT;
385
386         if (val == -1)
387                 return -EINVAL;
388
389         hwc->config |= val;
390         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
391         return x86_pmu_extra_regs(val, event);
392 }
393
394 int x86_reserve_hardware(void)
395 {
396         int err = 0;
397
398         if (!atomic_inc_not_zero(&pmc_refcount)) {
399                 mutex_lock(&pmc_reserve_mutex);
400                 if (atomic_read(&pmc_refcount) == 0) {
401                         if (!reserve_pmc_hardware()) {
402                                 err = -EBUSY;
403                         } else {
404                                 reserve_ds_buffers();
405                                 reserve_lbr_buffers();
406                         }
407                 }
408                 if (!err)
409                         atomic_inc(&pmc_refcount);
410                 mutex_unlock(&pmc_reserve_mutex);
411         }
412
413         return err;
414 }
415
416 void x86_release_hardware(void)
417 {
418         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
419                 release_pmc_hardware();
420                 release_ds_buffers();
421                 release_lbr_buffers();
422                 mutex_unlock(&pmc_reserve_mutex);
423         }
424 }
425
426 /*
427  * Check if we can create event of a certain type (that no conflicting events
428  * are present).
429  */
430 int x86_add_exclusive(unsigned int what)
431 {
432         int i;
433
434         /*
435          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
436          * LBR and BTS are still mutually exclusive.
437          */
438         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
439                 goto out;
440
441         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
442                 mutex_lock(&pmc_reserve_mutex);
443                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
444                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
445                                 goto fail_unlock;
446                 }
447                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
448                 mutex_unlock(&pmc_reserve_mutex);
449         }
450
451 out:
452         atomic_inc(&active_events);
453         return 0;
454
455 fail_unlock:
456         mutex_unlock(&pmc_reserve_mutex);
457         return -EBUSY;
458 }
459
460 void x86_del_exclusive(unsigned int what)
461 {
462         atomic_dec(&active_events);
463
464         /*
465          * See the comment in x86_add_exclusive().
466          */
467         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
468                 return;
469
470         atomic_dec(&x86_pmu.lbr_exclusive[what]);
471 }
472
473 int x86_setup_perfctr(struct perf_event *event)
474 {
475         struct perf_event_attr *attr = &event->attr;
476         struct hw_perf_event *hwc = &event->hw;
477         u64 config;
478
479         if (!is_sampling_event(event)) {
480                 hwc->sample_period = x86_pmu.max_period;
481                 hwc->last_period = hwc->sample_period;
482                 local64_set(&hwc->period_left, hwc->sample_period);
483         }
484
485         if (attr->type == event->pmu->type)
486                 return x86_pmu_extra_regs(event->attr.config, event);
487
488         if (attr->type == PERF_TYPE_HW_CACHE)
489                 return set_ext_hw_attr(hwc, event);
490
491         if (attr->config >= x86_pmu.max_events)
492                 return -EINVAL;
493
494         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
495
496         /*
497          * The generic map:
498          */
499         config = x86_pmu.event_map(attr->config);
500
501         if (config == 0)
502                 return -ENOENT;
503
504         if (config == -1LL)
505                 return -EINVAL;
506
507         hwc->config |= config;
508
509         return 0;
510 }
511
512 /*
513  * check that branch_sample_type is compatible with
514  * settings needed for precise_ip > 1 which implies
515  * using the LBR to capture ALL taken branches at the
516  * priv levels of the measurement
517  */
518 static inline int precise_br_compat(struct perf_event *event)
519 {
520         u64 m = event->attr.branch_sample_type;
521         u64 b = 0;
522
523         /* must capture all branches */
524         if (!(m & PERF_SAMPLE_BRANCH_ANY))
525                 return 0;
526
527         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
528
529         if (!event->attr.exclude_user)
530                 b |= PERF_SAMPLE_BRANCH_USER;
531
532         if (!event->attr.exclude_kernel)
533                 b |= PERF_SAMPLE_BRANCH_KERNEL;
534
535         /*
536          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
537          */
538
539         return m == b;
540 }
541
542 int x86_pmu_max_precise(void)
543 {
544         int precise = 0;
545
546         /* Support for constant skid */
547         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
548                 precise++;
549
550                 /* Support for IP fixup */
551                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
552                         precise++;
553
554                 if (x86_pmu.pebs_prec_dist)
555                         precise++;
556         }
557         return precise;
558 }
559
560 int x86_pmu_hw_config(struct perf_event *event)
561 {
562         if (event->attr.precise_ip) {
563                 int precise = x86_pmu_max_precise();
564
565                 if (event->attr.precise_ip > precise)
566                         return -EOPNOTSUPP;
567
568                 /* There's no sense in having PEBS for non sampling events: */
569                 if (!is_sampling_event(event))
570                         return -EINVAL;
571         }
572         /*
573          * check that PEBS LBR correction does not conflict with
574          * whatever the user is asking with attr->branch_sample_type
575          */
576         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
577                 u64 *br_type = &event->attr.branch_sample_type;
578
579                 if (has_branch_stack(event)) {
580                         if (!precise_br_compat(event))
581                                 return -EOPNOTSUPP;
582
583                         /* branch_sample_type is compatible */
584
585                 } else {
586                         /*
587                          * user did not specify  branch_sample_type
588                          *
589                          * For PEBS fixups, we capture all
590                          * the branches at the priv level of the
591                          * event.
592                          */
593                         *br_type = PERF_SAMPLE_BRANCH_ANY;
594
595                         if (!event->attr.exclude_user)
596                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
597
598                         if (!event->attr.exclude_kernel)
599                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
600                 }
601         }
602
603         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
604                 event->attach_state |= PERF_ATTACH_TASK_DATA;
605
606         /*
607          * Generate PMC IRQs:
608          * (keep 'enabled' bit clear for now)
609          */
610         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
611
612         /*
613          * Count user and OS events unless requested not to
614          */
615         if (!event->attr.exclude_user)
616                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
617         if (!event->attr.exclude_kernel)
618                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
619
620         if (event->attr.type == event->pmu->type)
621                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
622
623         if (event->attr.sample_period && x86_pmu.limit_period) {
624                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
625                                 event->attr.sample_period)
626                         return -EINVAL;
627         }
628
629         /* sample_regs_user never support XMM registers */
630         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
631                 return -EINVAL;
632         /*
633          * Besides the general purpose registers, XMM registers may
634          * be collected in PEBS on some platforms, e.g. Icelake
635          */
636         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
637                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
638                         return -EINVAL;
639
640                 if (!event->attr.precise_ip)
641                         return -EINVAL;
642         }
643
644         return x86_setup_perfctr(event);
645 }
646
647 /*
648  * Setup the hardware configuration for a given attr_type
649  */
650 static int __x86_pmu_event_init(struct perf_event *event)
651 {
652         int err;
653
654         if (!x86_pmu_initialized())
655                 return -ENODEV;
656
657         err = x86_reserve_hardware();
658         if (err)
659                 return err;
660
661         atomic_inc(&active_events);
662         event->destroy = hw_perf_event_destroy;
663
664         event->hw.idx = -1;
665         event->hw.last_cpu = -1;
666         event->hw.last_tag = ~0ULL;
667
668         /* mark unused */
669         event->hw.extra_reg.idx = EXTRA_REG_NONE;
670         event->hw.branch_reg.idx = EXTRA_REG_NONE;
671
672         return x86_pmu.hw_config(event);
673 }
674
675 void x86_pmu_disable_all(void)
676 {
677         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
678         int idx;
679
680         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
681                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
682                 u64 val;
683
684                 if (!test_bit(idx, cpuc->active_mask))
685                         continue;
686                 rdmsrl(x86_pmu_config_addr(idx), val);
687                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
688                         continue;
689                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
690                 wrmsrl(x86_pmu_config_addr(idx), val);
691                 if (is_counter_pair(hwc))
692                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
693         }
694 }
695
696 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
697 {
698         return static_call(x86_pmu_guest_get_msrs)(nr, data);
699 }
700 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
701
702 /*
703  * There may be PMI landing after enabled=0. The PMI hitting could be before or
704  * after disable_all.
705  *
706  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
707  * It will not be re-enabled in the NMI handler again, because enabled=0. After
708  * handling the NMI, disable_all will be called, which will not change the
709  * state either. If PMI hits after disable_all, the PMU is already disabled
710  * before entering NMI handler. The NMI handler will not change the state
711  * either.
712  *
713  * So either situation is harmless.
714  */
715 static void x86_pmu_disable(struct pmu *pmu)
716 {
717         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
718
719         if (!x86_pmu_initialized())
720                 return;
721
722         if (!cpuc->enabled)
723                 return;
724
725         cpuc->n_added = 0;
726         cpuc->enabled = 0;
727         barrier();
728
729         static_call(x86_pmu_disable_all)();
730 }
731
732 void x86_pmu_enable_all(int added)
733 {
734         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
735         int idx;
736
737         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
738                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
739
740                 if (!test_bit(idx, cpuc->active_mask))
741                         continue;
742
743                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
744         }
745 }
746
747 static inline int is_x86_event(struct perf_event *event)
748 {
749         int i;
750
751         if (!is_hybrid())
752                 return event->pmu == &pmu;
753
754         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
755                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
756                         return true;
757         }
758
759         return false;
760 }
761
762 struct pmu *x86_get_pmu(unsigned int cpu)
763 {
764         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
765
766         /*
767          * All CPUs of the hybrid type have been offline.
768          * The x86_get_pmu() should not be invoked.
769          */
770         if (WARN_ON_ONCE(!cpuc->pmu))
771                 return &pmu;
772
773         return cpuc->pmu;
774 }
775 /*
776  * Event scheduler state:
777  *
778  * Assign events iterating over all events and counters, beginning
779  * with events with least weights first. Keep the current iterator
780  * state in struct sched_state.
781  */
782 struct sched_state {
783         int     weight;
784         int     event;          /* event index */
785         int     counter;        /* counter index */
786         int     unassigned;     /* number of events to be assigned left */
787         int     nr_gp;          /* number of GP counters used */
788         u64     used;
789 };
790
791 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
792 #define SCHED_STATES_MAX        2
793
794 struct perf_sched {
795         int                     max_weight;
796         int                     max_events;
797         int                     max_gp;
798         int                     saved_states;
799         struct event_constraint **constraints;
800         struct sched_state      state;
801         struct sched_state      saved[SCHED_STATES_MAX];
802 };
803
804 /*
805  * Initialize iterator that runs through all events and counters.
806  */
807 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
808                             int num, int wmin, int wmax, int gpmax)
809 {
810         int idx;
811
812         memset(sched, 0, sizeof(*sched));
813         sched->max_events       = num;
814         sched->max_weight       = wmax;
815         sched->max_gp           = gpmax;
816         sched->constraints      = constraints;
817
818         for (idx = 0; idx < num; idx++) {
819                 if (constraints[idx]->weight == wmin)
820                         break;
821         }
822
823         sched->state.event      = idx;          /* start with min weight */
824         sched->state.weight     = wmin;
825         sched->state.unassigned = num;
826 }
827
828 static void perf_sched_save_state(struct perf_sched *sched)
829 {
830         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
831                 return;
832
833         sched->saved[sched->saved_states] = sched->state;
834         sched->saved_states++;
835 }
836
837 static bool perf_sched_restore_state(struct perf_sched *sched)
838 {
839         if (!sched->saved_states)
840                 return false;
841
842         sched->saved_states--;
843         sched->state = sched->saved[sched->saved_states];
844
845         /* this assignment didn't work out */
846         /* XXX broken vs EVENT_PAIR */
847         sched->state.used &= ~BIT_ULL(sched->state.counter);
848
849         /* try the next one */
850         sched->state.counter++;
851
852         return true;
853 }
854
855 /*
856  * Select a counter for the current event to schedule. Return true on
857  * success.
858  */
859 static bool __perf_sched_find_counter(struct perf_sched *sched)
860 {
861         struct event_constraint *c;
862         int idx;
863
864         if (!sched->state.unassigned)
865                 return false;
866
867         if (sched->state.event >= sched->max_events)
868                 return false;
869
870         c = sched->constraints[sched->state.event];
871         /* Prefer fixed purpose counters */
872         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
873                 idx = INTEL_PMC_IDX_FIXED;
874                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
875                         u64 mask = BIT_ULL(idx);
876
877                         if (sched->state.used & mask)
878                                 continue;
879
880                         sched->state.used |= mask;
881                         goto done;
882                 }
883         }
884
885         /* Grab the first unused counter starting with idx */
886         idx = sched->state.counter;
887         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
888                 u64 mask = BIT_ULL(idx);
889
890                 if (c->flags & PERF_X86_EVENT_PAIR)
891                         mask |= mask << 1;
892
893                 if (sched->state.used & mask)
894                         continue;
895
896                 if (sched->state.nr_gp++ >= sched->max_gp)
897                         return false;
898
899                 sched->state.used |= mask;
900                 goto done;
901         }
902
903         return false;
904
905 done:
906         sched->state.counter = idx;
907
908         if (c->overlap)
909                 perf_sched_save_state(sched);
910
911         return true;
912 }
913
914 static bool perf_sched_find_counter(struct perf_sched *sched)
915 {
916         while (!__perf_sched_find_counter(sched)) {
917                 if (!perf_sched_restore_state(sched))
918                         return false;
919         }
920
921         return true;
922 }
923
924 /*
925  * Go through all unassigned events and find the next one to schedule.
926  * Take events with the least weight first. Return true on success.
927  */
928 static bool perf_sched_next_event(struct perf_sched *sched)
929 {
930         struct event_constraint *c;
931
932         if (!sched->state.unassigned || !--sched->state.unassigned)
933                 return false;
934
935         do {
936                 /* next event */
937                 sched->state.event++;
938                 if (sched->state.event >= sched->max_events) {
939                         /* next weight */
940                         sched->state.event = 0;
941                         sched->state.weight++;
942                         if (sched->state.weight > sched->max_weight)
943                                 return false;
944                 }
945                 c = sched->constraints[sched->state.event];
946         } while (c->weight != sched->state.weight);
947
948         sched->state.counter = 0;       /* start with first counter */
949
950         return true;
951 }
952
953 /*
954  * Assign a counter for each event.
955  */
956 int perf_assign_events(struct event_constraint **constraints, int n,
957                         int wmin, int wmax, int gpmax, int *assign)
958 {
959         struct perf_sched sched;
960
961         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
962
963         do {
964                 if (!perf_sched_find_counter(&sched))
965                         break;  /* failed */
966                 if (assign)
967                         assign[sched.state.event] = sched.state.counter;
968         } while (perf_sched_next_event(&sched));
969
970         return sched.state.unassigned;
971 }
972 EXPORT_SYMBOL_GPL(perf_assign_events);
973
974 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
975 {
976         int num_counters = hybrid(cpuc->pmu, num_counters);
977         struct event_constraint *c;
978         struct perf_event *e;
979         int n0, i, wmin, wmax, unsched = 0;
980         struct hw_perf_event *hwc;
981         u64 used_mask = 0;
982
983         /*
984          * Compute the number of events already present; see x86_pmu_add(),
985          * validate_group() and x86_pmu_commit_txn(). For the former two
986          * cpuc->n_events hasn't been updated yet, while for the latter
987          * cpuc->n_txn contains the number of events added in the current
988          * transaction.
989          */
990         n0 = cpuc->n_events;
991         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
992                 n0 -= cpuc->n_txn;
993
994         static_call_cond(x86_pmu_start_scheduling)(cpuc);
995
996         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
997                 c = cpuc->event_constraint[i];
998
999                 /*
1000                  * Previously scheduled events should have a cached constraint,
1001                  * while new events should not have one.
1002                  */
1003                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004
1005                 /*
1006                  * Request constraints for new events; or for those events that
1007                  * have a dynamic constraint -- for those the constraint can
1008                  * change due to external factors (sibling state, allow_tfa).
1009                  */
1010                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012                         cpuc->event_constraint[i] = c;
1013                 }
1014
1015                 wmin = min(wmin, c->weight);
1016                 wmax = max(wmax, c->weight);
1017         }
1018
1019         /*
1020          * fastpath, try to reuse previous register
1021          */
1022         for (i = 0; i < n; i++) {
1023                 u64 mask;
1024
1025                 hwc = &cpuc->event_list[i]->hw;
1026                 c = cpuc->event_constraint[i];
1027
1028                 /* never assigned */
1029                 if (hwc->idx == -1)
1030                         break;
1031
1032                 /* constraint still honored */
1033                 if (!test_bit(hwc->idx, c->idxmsk))
1034                         break;
1035
1036                 mask = BIT_ULL(hwc->idx);
1037                 if (is_counter_pair(hwc))
1038                         mask |= mask << 1;
1039
1040                 /* not already used */
1041                 if (used_mask & mask)
1042                         break;
1043
1044                 used_mask |= mask;
1045
1046                 if (assign)
1047                         assign[i] = hwc->idx;
1048         }
1049
1050         /* slow path */
1051         if (i != n) {
1052                 int gpmax = num_counters;
1053
1054                 /*
1055                  * Do not allow scheduling of more than half the available
1056                  * generic counters.
1057                  *
1058                  * This helps avoid counter starvation of sibling thread by
1059                  * ensuring at most half the counters cannot be in exclusive
1060                  * mode. There is no designated counters for the limits. Any
1061                  * N/2 counters can be used. This helps with events with
1062                  * specific counter constraints.
1063                  */
1064                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066                         gpmax /= 2;
1067
1068                 /*
1069                  * Reduce the amount of available counters to allow fitting
1070                  * the extra Merge events needed by large increment events.
1071                  */
1072                 if (x86_pmu.flags & PMU_FL_PAIR) {
1073                         gpmax = num_counters - cpuc->n_pair;
1074                         WARN_ON(gpmax <= 0);
1075                 }
1076
1077                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078                                              wmax, gpmax, assign);
1079         }
1080
1081         /*
1082          * In case of success (unsched = 0), mark events as committed,
1083          * so we do not put_constraint() in case new events are added
1084          * and fail to be scheduled
1085          *
1086          * We invoke the lower level commit callback to lock the resource
1087          *
1088          * We do not need to do all of this in case we are called to
1089          * validate an event group (assign == NULL)
1090          */
1091         if (!unsched && assign) {
1092                 for (i = 0; i < n; i++)
1093                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094         } else {
1095                 for (i = n0; i < n; i++) {
1096                         e = cpuc->event_list[i];
1097
1098                         /*
1099                          * release events that failed scheduling
1100                          */
1101                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102
1103                         cpuc->event_constraint[i] = NULL;
1104                 }
1105         }
1106
1107         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108
1109         return unsched ? -EINVAL : 0;
1110 }
1111
1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113                                struct perf_event *event)
1114 {
1115         if (is_metric_event(event)) {
1116                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117                         return -EINVAL;
1118                 cpuc->n_metric++;
1119                 cpuc->n_txn_metric++;
1120         }
1121
1122         return 0;
1123 }
1124
1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126                                 struct perf_event *event)
1127 {
1128         if (is_metric_event(event))
1129                 cpuc->n_metric--;
1130 }
1131
1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133                          int max_count, int n)
1134 {
1135         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136
1137         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138                 return -EINVAL;
1139
1140         if (n >= max_count + cpuc->n_metric)
1141                 return -EINVAL;
1142
1143         cpuc->event_list[n] = event;
1144         if (is_counter_pair(&event->hw)) {
1145                 cpuc->n_pair++;
1146                 cpuc->n_txn_pair++;
1147         }
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * dogrp: true if must collect siblings events (group)
1154  * returns total number of events and error code
1155  */
1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158         int num_counters = hybrid(cpuc->pmu, num_counters);
1159         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160         struct perf_event *event;
1161         int n, max_count;
1162
1163         max_count = num_counters + num_counters_fixed;
1164
1165         /* current number of events already accepted */
1166         n = cpuc->n_events;
1167         if (!cpuc->n_events)
1168                 cpuc->pebs_output = 0;
1169
1170         if (!cpuc->is_fake && leader->attr.precise_ip) {
1171                 /*
1172                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1173                  * away, the group was broken down and this singleton event
1174                  * can't schedule any more.
1175                  */
1176                 if (is_pebs_pt(leader) && !leader->aux_event)
1177                         return -EINVAL;
1178
1179                 /*
1180                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181                  */
1182                 if (cpuc->pebs_output &&
1183                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184                         return -EINVAL;
1185
1186                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187         }
1188
1189         if (is_x86_event(leader)) {
1190                 if (collect_event(cpuc, leader, max_count, n))
1191                         return -EINVAL;
1192                 n++;
1193         }
1194
1195         if (!dogrp)
1196                 return n;
1197
1198         for_each_sibling_event(event, leader) {
1199                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200                         continue;
1201
1202                 if (collect_event(cpuc, event, max_count, n))
1203                         return -EINVAL;
1204
1205                 n++;
1206         }
1207         return n;
1208 }
1209
1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211                                 struct cpu_hw_events *cpuc, int i)
1212 {
1213         struct hw_perf_event *hwc = &event->hw;
1214         int idx;
1215
1216         idx = hwc->idx = cpuc->assign[i];
1217         hwc->last_cpu = smp_processor_id();
1218         hwc->last_tag = ++cpuc->tags[i];
1219
1220         static_call_cond(x86_pmu_assign)(event, idx);
1221
1222         switch (hwc->idx) {
1223         case INTEL_PMC_IDX_FIXED_BTS:
1224         case INTEL_PMC_IDX_FIXED_VLBR:
1225                 hwc->config_base = 0;
1226                 hwc->event_base = 0;
1227                 break;
1228
1229         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230                 /* All the metric events are mapped onto the fixed counter 3. */
1231                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232                 fallthrough;
1233         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236                                 (idx - INTEL_PMC_IDX_FIXED);
1237                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238                                         INTEL_PMC_FIXED_RDPMC_BASE;
1239                 break;
1240
1241         default:
1242                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1244                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245                 break;
1246         }
1247 }
1248
1249 /**
1250  * x86_perf_rdpmc_index - Return PMC counter used for event
1251  * @event: the perf_event to which the PMC counter was assigned
1252  *
1253  * The counter assigned to this performance event may change if interrupts
1254  * are enabled. This counter should thus never be used while interrupts are
1255  * enabled. Before this function is used to obtain the assigned counter the
1256  * event should be checked for validity using, for example,
1257  * perf_event_read_local(), within the same interrupt disabled section in
1258  * which this counter is planned to be used.
1259  *
1260  * Return: The index of the performance monitoring counter assigned to
1261  * @perf_event.
1262  */
1263 int x86_perf_rdpmc_index(struct perf_event *event)
1264 {
1265         lockdep_assert_irqs_disabled();
1266
1267         return event->hw.event_base_rdpmc;
1268 }
1269
1270 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271                                         struct cpu_hw_events *cpuc,
1272                                         int i)
1273 {
1274         return hwc->idx == cpuc->assign[i] &&
1275                 hwc->last_cpu == smp_processor_id() &&
1276                 hwc->last_tag == cpuc->tags[i];
1277 }
1278
1279 static void x86_pmu_start(struct perf_event *event, int flags);
1280
1281 static void x86_pmu_enable(struct pmu *pmu)
1282 {
1283         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284         struct perf_event *event;
1285         struct hw_perf_event *hwc;
1286         int i, added = cpuc->n_added;
1287
1288         if (!x86_pmu_initialized())
1289                 return;
1290
1291         if (cpuc->enabled)
1292                 return;
1293
1294         if (cpuc->n_added) {
1295                 int n_running = cpuc->n_events - cpuc->n_added;
1296                 /*
1297                  * apply assignment obtained either from
1298                  * hw_perf_group_sched_in() or x86_pmu_enable()
1299                  *
1300                  * step1: save events moving to new counters
1301                  */
1302                 for (i = 0; i < n_running; i++) {
1303                         event = cpuc->event_list[i];
1304                         hwc = &event->hw;
1305
1306                         /*
1307                          * we can avoid reprogramming counter if:
1308                          * - assigned same counter as last time
1309                          * - running on same CPU as last time
1310                          * - no other event has used the counter since
1311                          */
1312                         if (hwc->idx == -1 ||
1313                             match_prev_assignment(hwc, cpuc, i))
1314                                 continue;
1315
1316                         /*
1317                          * Ensure we don't accidentally enable a stopped
1318                          * counter simply because we rescheduled.
1319                          */
1320                         if (hwc->state & PERF_HES_STOPPED)
1321                                 hwc->state |= PERF_HES_ARCH;
1322
1323                         x86_pmu_stop(event, PERF_EF_UPDATE);
1324                 }
1325
1326                 /*
1327                  * step2: reprogram moved events into new counters
1328                  */
1329                 for (i = 0; i < cpuc->n_events; i++) {
1330                         event = cpuc->event_list[i];
1331                         hwc = &event->hw;
1332
1333                         if (!match_prev_assignment(hwc, cpuc, i))
1334                                 x86_assign_hw_event(event, cpuc, i);
1335                         else if (i < n_running)
1336                                 continue;
1337
1338                         if (hwc->state & PERF_HES_ARCH)
1339                                 continue;
1340
1341                         /*
1342                          * if cpuc->enabled = 0, then no wrmsr as
1343                          * per x86_pmu_enable_event()
1344                          */
1345                         x86_pmu_start(event, PERF_EF_RELOAD);
1346                 }
1347                 cpuc->n_added = 0;
1348                 perf_events_lapic_init();
1349         }
1350
1351         cpuc->enabled = 1;
1352         barrier();
1353
1354         static_call(x86_pmu_enable_all)(added);
1355 }
1356
1357 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1358
1359 /*
1360  * Set the next IRQ period, based on the hwc->period_left value.
1361  * To be called with the event disabled in hw:
1362  */
1363 int x86_perf_event_set_period(struct perf_event *event)
1364 {
1365         struct hw_perf_event *hwc = &event->hw;
1366         s64 left = local64_read(&hwc->period_left);
1367         s64 period = hwc->sample_period;
1368         int ret = 0, idx = hwc->idx;
1369
1370         if (unlikely(!hwc->event_base))
1371                 return 0;
1372
1373         if (unlikely(is_topdown_count(event)) &&
1374             x86_pmu.set_topdown_event_period)
1375                 return x86_pmu.set_topdown_event_period(event);
1376
1377         /*
1378          * If we are way outside a reasonable range then just skip forward:
1379          */
1380         if (unlikely(left <= -period)) {
1381                 left = period;
1382                 local64_set(&hwc->period_left, left);
1383                 hwc->last_period = period;
1384                 ret = 1;
1385         }
1386
1387         if (unlikely(left <= 0)) {
1388                 left += period;
1389                 local64_set(&hwc->period_left, left);
1390                 hwc->last_period = period;
1391                 ret = 1;
1392         }
1393         /*
1394          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1395          */
1396         if (unlikely(left < 2))
1397                 left = 2;
1398
1399         if (left > x86_pmu.max_period)
1400                 left = x86_pmu.max_period;
1401
1402         if (x86_pmu.limit_period)
1403                 left = x86_pmu.limit_period(event, left);
1404
1405         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1406
1407         /*
1408          * The hw event starts counting from this event offset,
1409          * mark it to be able to extra future deltas:
1410          */
1411         local64_set(&hwc->prev_count, (u64)-left);
1412
1413         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1414
1415         /*
1416          * Sign extend the Merge event counter's upper 16 bits since
1417          * we currently declare a 48-bit counter width
1418          */
1419         if (is_counter_pair(hwc))
1420                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1421
1422         /*
1423          * Due to erratum on certan cpu we need
1424          * a second write to be sure the register
1425          * is updated properly
1426          */
1427         if (x86_pmu.perfctr_second_write) {
1428                 wrmsrl(hwc->event_base,
1429                         (u64)(-left) & x86_pmu.cntval_mask);
1430         }
1431
1432         perf_event_update_userpage(event);
1433
1434         return ret;
1435 }
1436
1437 void x86_pmu_enable_event(struct perf_event *event)
1438 {
1439         if (__this_cpu_read(cpu_hw_events.enabled))
1440                 __x86_pmu_enable_event(&event->hw,
1441                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1442 }
1443
1444 /*
1445  * Add a single event to the PMU.
1446  *
1447  * The event is added to the group of enabled events
1448  * but only if it can be scheduled with existing events.
1449  */
1450 static int x86_pmu_add(struct perf_event *event, int flags)
1451 {
1452         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453         struct hw_perf_event *hwc;
1454         int assign[X86_PMC_IDX_MAX];
1455         int n, n0, ret;
1456
1457         hwc = &event->hw;
1458
1459         n0 = cpuc->n_events;
1460         ret = n = collect_events(cpuc, event, false);
1461         if (ret < 0)
1462                 goto out;
1463
1464         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1465         if (!(flags & PERF_EF_START))
1466                 hwc->state |= PERF_HES_ARCH;
1467
1468         /*
1469          * If group events scheduling transaction was started,
1470          * skip the schedulability test here, it will be performed
1471          * at commit time (->commit_txn) as a whole.
1472          *
1473          * If commit fails, we'll call ->del() on all events
1474          * for which ->add() was called.
1475          */
1476         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1477                 goto done_collect;
1478
1479         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1480         if (ret)
1481                 goto out;
1482         /*
1483          * copy new assignment, now we know it is possible
1484          * will be used by hw_perf_enable()
1485          */
1486         memcpy(cpuc->assign, assign, n*sizeof(int));
1487
1488 done_collect:
1489         /*
1490          * Commit the collect_events() state. See x86_pmu_del() and
1491          * x86_pmu_*_txn().
1492          */
1493         cpuc->n_events = n;
1494         cpuc->n_added += n - n0;
1495         cpuc->n_txn += n - n0;
1496
1497         /*
1498          * This is before x86_pmu_enable() will call x86_pmu_start(),
1499          * so we enable LBRs before an event needs them etc..
1500          */
1501         static_call_cond(x86_pmu_add)(event);
1502
1503         ret = 0;
1504 out:
1505         return ret;
1506 }
1507
1508 static void x86_pmu_start(struct perf_event *event, int flags)
1509 {
1510         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1511         int idx = event->hw.idx;
1512
1513         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1514                 return;
1515
1516         if (WARN_ON_ONCE(idx == -1))
1517                 return;
1518
1519         if (flags & PERF_EF_RELOAD) {
1520                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1521                 x86_perf_event_set_period(event);
1522         }
1523
1524         event->hw.state = 0;
1525
1526         cpuc->events[idx] = event;
1527         __set_bit(idx, cpuc->active_mask);
1528         static_call(x86_pmu_enable)(event);
1529         perf_event_update_userpage(event);
1530 }
1531
1532 void perf_event_print_debug(void)
1533 {
1534         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1535         u64 pebs, debugctl;
1536         int cpu = smp_processor_id();
1537         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1538         int num_counters = hybrid(cpuc->pmu, num_counters);
1539         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1540         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1541         unsigned long flags;
1542         int idx;
1543
1544         if (!num_counters)
1545                 return;
1546
1547         local_irq_save(flags);
1548
1549         if (x86_pmu.version >= 2) {
1550                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1551                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1552                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1553                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1554
1555                 pr_info("\n");
1556                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1557                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1558                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1559                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1560                 if (pebs_constraints) {
1561                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1562                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1563                 }
1564                 if (x86_pmu.lbr_nr) {
1565                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1566                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1567                 }
1568         }
1569         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1570
1571         for (idx = 0; idx < num_counters; idx++) {
1572                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1573                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1574
1575                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1576
1577                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1578                         cpu, idx, pmc_ctrl);
1579                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1580                         cpu, idx, pmc_count);
1581                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1582                         cpu, idx, prev_left);
1583         }
1584         for (idx = 0; idx < num_counters_fixed; idx++) {
1585                 if (fixed_counter_disabled(idx, cpuc->pmu))
1586                         continue;
1587                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1588
1589                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1590                         cpu, idx, pmc_count);
1591         }
1592         local_irq_restore(flags);
1593 }
1594
1595 void x86_pmu_stop(struct perf_event *event, int flags)
1596 {
1597         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1598         struct hw_perf_event *hwc = &event->hw;
1599
1600         if (test_bit(hwc->idx, cpuc->active_mask)) {
1601                 static_call(x86_pmu_disable)(event);
1602                 __clear_bit(hwc->idx, cpuc->active_mask);
1603                 cpuc->events[hwc->idx] = NULL;
1604                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1605                 hwc->state |= PERF_HES_STOPPED;
1606         }
1607
1608         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1609                 /*
1610                  * Drain the remaining delta count out of a event
1611                  * that we are disabling:
1612                  */
1613                 x86_perf_event_update(event);
1614                 hwc->state |= PERF_HES_UPTODATE;
1615         }
1616 }
1617
1618 static void x86_pmu_del(struct perf_event *event, int flags)
1619 {
1620         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1622         int i;
1623
1624         /*
1625          * If we're called during a txn, we only need to undo x86_pmu.add.
1626          * The events never got scheduled and ->cancel_txn will truncate
1627          * the event_list.
1628          *
1629          * XXX assumes any ->del() called during a TXN will only be on
1630          * an event added during that same TXN.
1631          */
1632         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1633                 goto do_del;
1634
1635         __set_bit(event->hw.idx, cpuc->dirty);
1636
1637         /*
1638          * Not a TXN, therefore cleanup properly.
1639          */
1640         x86_pmu_stop(event, PERF_EF_UPDATE);
1641
1642         for (i = 0; i < cpuc->n_events; i++) {
1643                 if (event == cpuc->event_list[i])
1644                         break;
1645         }
1646
1647         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1648                 return;
1649
1650         /* If we have a newly added event; make sure to decrease n_added. */
1651         if (i >= cpuc->n_events - cpuc->n_added)
1652                 --cpuc->n_added;
1653
1654         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1655
1656         /* Delete the array entry. */
1657         while (++i < cpuc->n_events) {
1658                 cpuc->event_list[i-1] = cpuc->event_list[i];
1659                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1660         }
1661         cpuc->event_constraint[i-1] = NULL;
1662         --cpuc->n_events;
1663         if (intel_cap.perf_metrics)
1664                 del_nr_metric_event(cpuc, event);
1665
1666         perf_event_update_userpage(event);
1667
1668 do_del:
1669
1670         /*
1671          * This is after x86_pmu_stop(); so we disable LBRs after any
1672          * event can need them etc..
1673          */
1674         static_call_cond(x86_pmu_del)(event);
1675 }
1676
1677 int x86_pmu_handle_irq(struct pt_regs *regs)
1678 {
1679         struct perf_sample_data data;
1680         struct cpu_hw_events *cpuc;
1681         struct perf_event *event;
1682         int idx, handled = 0;
1683         u64 val;
1684
1685         cpuc = this_cpu_ptr(&cpu_hw_events);
1686
1687         /*
1688          * Some chipsets need to unmask the LVTPC in a particular spot
1689          * inside the nmi handler.  As a result, the unmasking was pushed
1690          * into all the nmi handlers.
1691          *
1692          * This generic handler doesn't seem to have any issues where the
1693          * unmasking occurs so it was left at the top.
1694          */
1695         apic_write(APIC_LVTPC, APIC_DM_NMI);
1696
1697         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1698                 if (!test_bit(idx, cpuc->active_mask))
1699                         continue;
1700
1701                 event = cpuc->events[idx];
1702
1703                 val = x86_perf_event_update(event);
1704                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1705                         continue;
1706
1707                 /*
1708                  * event overflow
1709                  */
1710                 handled++;
1711
1712                 if (!x86_perf_event_set_period(event))
1713                         continue;
1714
1715                 perf_sample_data_init(&data, 0, event->hw.last_period);
1716
1717                 if (has_branch_stack(event)) {
1718                         data.br_stack = &cpuc->lbr_stack;
1719                         data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1720                 }
1721
1722                 if (perf_event_overflow(event, &data, regs))
1723                         x86_pmu_stop(event, 0);
1724         }
1725
1726         if (handled)
1727                 inc_irq_stat(apic_perf_irqs);
1728
1729         return handled;
1730 }
1731
1732 void perf_events_lapic_init(void)
1733 {
1734         if (!x86_pmu.apic || !x86_pmu_initialized())
1735                 return;
1736
1737         /*
1738          * Always use NMI for PMU
1739          */
1740         apic_write(APIC_LVTPC, APIC_DM_NMI);
1741 }
1742
1743 static int
1744 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1745 {
1746         u64 start_clock;
1747         u64 finish_clock;
1748         int ret;
1749
1750         /*
1751          * All PMUs/events that share this PMI handler should make sure to
1752          * increment active_events for their events.
1753          */
1754         if (!atomic_read(&active_events))
1755                 return NMI_DONE;
1756
1757         start_clock = sched_clock();
1758         ret = static_call(x86_pmu_handle_irq)(regs);
1759         finish_clock = sched_clock();
1760
1761         perf_sample_event_took(finish_clock - start_clock);
1762
1763         return ret;
1764 }
1765 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1766
1767 struct event_constraint emptyconstraint;
1768 struct event_constraint unconstrained;
1769
1770 static int x86_pmu_prepare_cpu(unsigned int cpu)
1771 {
1772         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1773         int i;
1774
1775         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1776                 cpuc->kfree_on_online[i] = NULL;
1777         if (x86_pmu.cpu_prepare)
1778                 return x86_pmu.cpu_prepare(cpu);
1779         return 0;
1780 }
1781
1782 static int x86_pmu_dead_cpu(unsigned int cpu)
1783 {
1784         if (x86_pmu.cpu_dead)
1785                 x86_pmu.cpu_dead(cpu);
1786         return 0;
1787 }
1788
1789 static int x86_pmu_online_cpu(unsigned int cpu)
1790 {
1791         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1792         int i;
1793
1794         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1795                 kfree(cpuc->kfree_on_online[i]);
1796                 cpuc->kfree_on_online[i] = NULL;
1797         }
1798         return 0;
1799 }
1800
1801 static int x86_pmu_starting_cpu(unsigned int cpu)
1802 {
1803         if (x86_pmu.cpu_starting)
1804                 x86_pmu.cpu_starting(cpu);
1805         return 0;
1806 }
1807
1808 static int x86_pmu_dying_cpu(unsigned int cpu)
1809 {
1810         if (x86_pmu.cpu_dying)
1811                 x86_pmu.cpu_dying(cpu);
1812         return 0;
1813 }
1814
1815 static void __init pmu_check_apic(void)
1816 {
1817         if (boot_cpu_has(X86_FEATURE_APIC))
1818                 return;
1819
1820         x86_pmu.apic = 0;
1821         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1822         pr_info("no hardware sampling interrupt available.\n");
1823
1824         /*
1825          * If we have a PMU initialized but no APIC
1826          * interrupts, we cannot sample hardware
1827          * events (user-space has to fall back and
1828          * sample via a hrtimer based software event):
1829          */
1830         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1831
1832 }
1833
1834 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1835         .name = "format",
1836         .attrs = NULL,
1837 };
1838
1839 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1840 {
1841         struct perf_pmu_events_attr *pmu_attr =
1842                 container_of(attr, struct perf_pmu_events_attr, attr);
1843         u64 config = 0;
1844
1845         if (pmu_attr->id < x86_pmu.max_events)
1846                 config = x86_pmu.event_map(pmu_attr->id);
1847
1848         /* string trumps id */
1849         if (pmu_attr->event_str)
1850                 return sprintf(page, "%s\n", pmu_attr->event_str);
1851
1852         return x86_pmu.events_sysfs_show(page, config);
1853 }
1854 EXPORT_SYMBOL_GPL(events_sysfs_show);
1855
1856 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1857                           char *page)
1858 {
1859         struct perf_pmu_events_ht_attr *pmu_attr =
1860                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1861
1862         /*
1863          * Report conditional events depending on Hyper-Threading.
1864          *
1865          * This is overly conservative as usually the HT special
1866          * handling is not needed if the other CPU thread is idle.
1867          *
1868          * Note this does not (and cannot) handle the case when thread
1869          * siblings are invisible, for example with virtualization
1870          * if they are owned by some other guest.  The user tool
1871          * has to re-read when a thread sibling gets onlined later.
1872          */
1873         return sprintf(page, "%s",
1874                         topology_max_smt_threads() > 1 ?
1875                         pmu_attr->event_str_ht :
1876                         pmu_attr->event_str_noht);
1877 }
1878
1879 ssize_t events_hybrid_sysfs_show(struct device *dev,
1880                                  struct device_attribute *attr,
1881                                  char *page)
1882 {
1883         struct perf_pmu_events_hybrid_attr *pmu_attr =
1884                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1885         struct x86_hybrid_pmu *pmu;
1886         const char *str, *next_str;
1887         int i;
1888
1889         if (hweight64(pmu_attr->pmu_type) == 1)
1890                 return sprintf(page, "%s", pmu_attr->event_str);
1891
1892         /*
1893          * Hybrid PMUs may support the same event name, but with different
1894          * event encoding, e.g., the mem-loads event on an Atom PMU has
1895          * different event encoding from a Core PMU.
1896          *
1897          * The event_str includes all event encodings. Each event encoding
1898          * is divided by ";". The order of the event encodings must follow
1899          * the order of the hybrid PMU index.
1900          */
1901         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1902
1903         str = pmu_attr->event_str;
1904         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1905                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1906                         continue;
1907                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1908                         next_str = strchr(str, ';');
1909                         if (next_str)
1910                                 return snprintf(page, next_str - str + 1, "%s", str);
1911                         else
1912                                 return sprintf(page, "%s", str);
1913                 }
1914                 str = strchr(str, ';');
1915                 str++;
1916         }
1917
1918         return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1921
1922 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1923 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1924 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1925 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1926 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1927 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1928 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1929 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1930 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1931 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1932
1933 static struct attribute *empty_attrs;
1934
1935 static struct attribute *events_attr[] = {
1936         EVENT_PTR(CPU_CYCLES),
1937         EVENT_PTR(INSTRUCTIONS),
1938         EVENT_PTR(CACHE_REFERENCES),
1939         EVENT_PTR(CACHE_MISSES),
1940         EVENT_PTR(BRANCH_INSTRUCTIONS),
1941         EVENT_PTR(BRANCH_MISSES),
1942         EVENT_PTR(BUS_CYCLES),
1943         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1944         EVENT_PTR(STALLED_CYCLES_BACKEND),
1945         EVENT_PTR(REF_CPU_CYCLES),
1946         NULL,
1947 };
1948
1949 /*
1950  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1951  * out of events_attr attributes.
1952  */
1953 static umode_t
1954 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1955 {
1956         struct perf_pmu_events_attr *pmu_attr;
1957
1958         if (idx >= x86_pmu.max_events)
1959                 return 0;
1960
1961         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1962         /* str trumps id */
1963         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1964 }
1965
1966 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1967         .name = "events",
1968         .attrs = events_attr,
1969         .is_visible = is_visible,
1970 };
1971
1972 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1973 {
1974         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1975         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1976         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1977         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1978         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1979         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1980         ssize_t ret;
1981
1982         /*
1983         * We have whole page size to spend and just little data
1984         * to write, so we can safely use sprintf.
1985         */
1986         ret = sprintf(page, "event=0x%02llx", event);
1987
1988         if (umask)
1989                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1990
1991         if (edge)
1992                 ret += sprintf(page + ret, ",edge");
1993
1994         if (pc)
1995                 ret += sprintf(page + ret, ",pc");
1996
1997         if (any)
1998                 ret += sprintf(page + ret, ",any");
1999
2000         if (inv)
2001                 ret += sprintf(page + ret, ",inv");
2002
2003         if (cmask)
2004                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2005
2006         ret += sprintf(page + ret, "\n");
2007
2008         return ret;
2009 }
2010
2011 static struct attribute_group x86_pmu_attr_group;
2012 static struct attribute_group x86_pmu_caps_group;
2013
2014 static void x86_pmu_static_call_update(void)
2015 {
2016         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2017         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2018         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2019         static_call_update(x86_pmu_enable, x86_pmu.enable);
2020         static_call_update(x86_pmu_disable, x86_pmu.disable);
2021
2022         static_call_update(x86_pmu_assign, x86_pmu.assign);
2023
2024         static_call_update(x86_pmu_add, x86_pmu.add);
2025         static_call_update(x86_pmu_del, x86_pmu.del);
2026         static_call_update(x86_pmu_read, x86_pmu.read);
2027
2028         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2029         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2030         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2031
2032         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2033         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2034         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2035
2036         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2037         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2038
2039         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2040         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2041
2042         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2043 }
2044
2045 static void _x86_pmu_read(struct perf_event *event)
2046 {
2047         x86_perf_event_update(event);
2048 }
2049
2050 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2051                           u64 intel_ctrl)
2052 {
2053         pr_info("... version:                %d\n",     x86_pmu.version);
2054         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2055         pr_info("... generic registers:      %d\n",     num_counters);
2056         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2057         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2058         pr_info("... fixed-purpose events:   %lu\n",
2059                         hweight64((((1ULL << num_counters_fixed) - 1)
2060                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2061         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2062 }
2063
2064 /*
2065  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2066  * of the first registered PMU is unconditionally assigned to
2067  * each possible cpuctx->ctx.pmu.
2068  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2069  */
2070 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2071 {
2072         struct perf_cpu_context *cpuctx;
2073
2074         if (!pmu->pmu_cpu_context)
2075                 return;
2076
2077         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2078         cpuctx->ctx.pmu = pmu;
2079 }
2080
2081 static int __init init_hw_perf_events(void)
2082 {
2083         struct x86_pmu_quirk *quirk;
2084         int err;
2085
2086         pr_info("Performance Events: ");
2087
2088         switch (boot_cpu_data.x86_vendor) {
2089         case X86_VENDOR_INTEL:
2090                 err = intel_pmu_init();
2091                 break;
2092         case X86_VENDOR_AMD:
2093                 err = amd_pmu_init();
2094                 break;
2095         case X86_VENDOR_HYGON:
2096                 err = amd_pmu_init();
2097                 x86_pmu.name = "HYGON";
2098                 break;
2099         case X86_VENDOR_ZHAOXIN:
2100         case X86_VENDOR_CENTAUR:
2101                 err = zhaoxin_pmu_init();
2102                 break;
2103         default:
2104                 err = -ENOTSUPP;
2105         }
2106         if (err != 0) {
2107                 pr_cont("no PMU driver, software events only.\n");
2108                 err = 0;
2109                 goto out_bad_pmu;
2110         }
2111
2112         pmu_check_apic();
2113
2114         /* sanity check that the hardware exists or is emulated */
2115         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2116                 goto out_bad_pmu;
2117
2118         pr_cont("%s PMU driver.\n", x86_pmu.name);
2119
2120         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2121
2122         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2123                 quirk->func();
2124
2125         if (!x86_pmu.intel_ctrl)
2126                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2127
2128         perf_events_lapic_init();
2129         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2130
2131         unconstrained = (struct event_constraint)
2132                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2133                                    0, x86_pmu.num_counters, 0, 0);
2134
2135         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2136
2137         if (!x86_pmu.events_sysfs_show)
2138                 x86_pmu_events_group.attrs = &empty_attrs;
2139
2140         pmu.attr_update = x86_pmu.attr_update;
2141
2142         if (!is_hybrid()) {
2143                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2144                                      x86_pmu.num_counters_fixed,
2145                                      x86_pmu.intel_ctrl);
2146         }
2147
2148         if (!x86_pmu.read)
2149                 x86_pmu.read = _x86_pmu_read;
2150
2151         if (!x86_pmu.guest_get_msrs)
2152                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2153
2154         x86_pmu_static_call_update();
2155
2156         /*
2157          * Install callbacks. Core will call them for each online
2158          * cpu.
2159          */
2160         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2161                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2162         if (err)
2163                 return err;
2164
2165         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2166                                 "perf/x86:starting", x86_pmu_starting_cpu,
2167                                 x86_pmu_dying_cpu);
2168         if (err)
2169                 goto out;
2170
2171         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2172                                 x86_pmu_online_cpu, NULL);
2173         if (err)
2174                 goto out1;
2175
2176         if (!is_hybrid()) {
2177                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2178                 if (err)
2179                         goto out2;
2180         } else {
2181                 u8 cpu_type = get_this_hybrid_cpu_type();
2182                 struct x86_hybrid_pmu *hybrid_pmu;
2183                 int i, j;
2184
2185                 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2186                         cpu_type = x86_pmu.get_hybrid_cpu_type();
2187
2188                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2189                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2190
2191                         hybrid_pmu->pmu = pmu;
2192                         hybrid_pmu->pmu.type = -1;
2193                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2194                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2195                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2196
2197                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2198                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2199                         if (err)
2200                                 break;
2201
2202                         if (cpu_type == hybrid_pmu->cpu_type)
2203                                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2204                 }
2205
2206                 if (i < x86_pmu.num_hybrid_pmus) {
2207                         for (j = 0; j < i; j++)
2208                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2209                         pr_warn("Failed to register hybrid PMUs\n");
2210                         kfree(x86_pmu.hybrid_pmu);
2211                         x86_pmu.hybrid_pmu = NULL;
2212                         x86_pmu.num_hybrid_pmus = 0;
2213                         goto out2;
2214                 }
2215         }
2216
2217         return 0;
2218
2219 out2:
2220         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2221 out1:
2222         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2223 out:
2224         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2225 out_bad_pmu:
2226         memset(&x86_pmu, 0, sizeof(x86_pmu));
2227         return err;
2228 }
2229 early_initcall(init_hw_perf_events);
2230
2231 static void x86_pmu_read(struct perf_event *event)
2232 {
2233         static_call(x86_pmu_read)(event);
2234 }
2235
2236 /*
2237  * Start group events scheduling transaction
2238  * Set the flag to make pmu::enable() not perform the
2239  * schedulability test, it will be performed at commit time
2240  *
2241  * We only support PERF_PMU_TXN_ADD transactions. Save the
2242  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2243  * transactions.
2244  */
2245 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2246 {
2247         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2248
2249         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2250
2251         cpuc->txn_flags = txn_flags;
2252         if (txn_flags & ~PERF_PMU_TXN_ADD)
2253                 return;
2254
2255         perf_pmu_disable(pmu);
2256         __this_cpu_write(cpu_hw_events.n_txn, 0);
2257         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2258         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2259 }
2260
2261 /*
2262  * Stop group events scheduling transaction
2263  * Clear the flag and pmu::enable() will perform the
2264  * schedulability test.
2265  */
2266 static void x86_pmu_cancel_txn(struct pmu *pmu)
2267 {
2268         unsigned int txn_flags;
2269         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270
2271         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2272
2273         txn_flags = cpuc->txn_flags;
2274         cpuc->txn_flags = 0;
2275         if (txn_flags & ~PERF_PMU_TXN_ADD)
2276                 return;
2277
2278         /*
2279          * Truncate collected array by the number of events added in this
2280          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2281          */
2282         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2283         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2284         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2285         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2286         perf_pmu_enable(pmu);
2287 }
2288
2289 /*
2290  * Commit group events scheduling transaction
2291  * Perform the group schedulability test as a whole
2292  * Return 0 if success
2293  *
2294  * Does not cancel the transaction on failure; expects the caller to do this.
2295  */
2296 static int x86_pmu_commit_txn(struct pmu *pmu)
2297 {
2298         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2299         int assign[X86_PMC_IDX_MAX];
2300         int n, ret;
2301
2302         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2303
2304         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2305                 cpuc->txn_flags = 0;
2306                 return 0;
2307         }
2308
2309         n = cpuc->n_events;
2310
2311         if (!x86_pmu_initialized())
2312                 return -EAGAIN;
2313
2314         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2315         if (ret)
2316                 return ret;
2317
2318         /*
2319          * copy new assignment, now we know it is possible
2320          * will be used by hw_perf_enable()
2321          */
2322         memcpy(cpuc->assign, assign, n*sizeof(int));
2323
2324         cpuc->txn_flags = 0;
2325         perf_pmu_enable(pmu);
2326         return 0;
2327 }
2328 /*
2329  * a fake_cpuc is used to validate event groups. Due to
2330  * the extra reg logic, we need to also allocate a fake
2331  * per_core and per_cpu structure. Otherwise, group events
2332  * using extra reg may conflict without the kernel being
2333  * able to catch this when the last event gets added to
2334  * the group.
2335  */
2336 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2337 {
2338         intel_cpuc_finish(cpuc);
2339         kfree(cpuc);
2340 }
2341
2342 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2343 {
2344         struct cpu_hw_events *cpuc;
2345         int cpu;
2346
2347         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2348         if (!cpuc)
2349                 return ERR_PTR(-ENOMEM);
2350         cpuc->is_fake = 1;
2351
2352         if (is_hybrid()) {
2353                 struct x86_hybrid_pmu *h_pmu;
2354
2355                 h_pmu = hybrid_pmu(event_pmu);
2356                 if (cpumask_empty(&h_pmu->supported_cpus))
2357                         goto error;
2358                 cpu = cpumask_first(&h_pmu->supported_cpus);
2359         } else
2360                 cpu = raw_smp_processor_id();
2361         cpuc->pmu = event_pmu;
2362
2363         if (intel_cpuc_prepare(cpuc, cpu))
2364                 goto error;
2365
2366         return cpuc;
2367 error:
2368         free_fake_cpuc(cpuc);
2369         return ERR_PTR(-ENOMEM);
2370 }
2371
2372 /*
2373  * validate that we can schedule this event
2374  */
2375 static int validate_event(struct perf_event *event)
2376 {
2377         struct cpu_hw_events *fake_cpuc;
2378         struct event_constraint *c;
2379         int ret = 0;
2380
2381         fake_cpuc = allocate_fake_cpuc(event->pmu);
2382         if (IS_ERR(fake_cpuc))
2383                 return PTR_ERR(fake_cpuc);
2384
2385         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2386
2387         if (!c || !c->weight)
2388                 ret = -EINVAL;
2389
2390         if (x86_pmu.put_event_constraints)
2391                 x86_pmu.put_event_constraints(fake_cpuc, event);
2392
2393         free_fake_cpuc(fake_cpuc);
2394
2395         return ret;
2396 }
2397
2398 /*
2399  * validate a single event group
2400  *
2401  * validation include:
2402  *      - check events are compatible which each other
2403  *      - events do not compete for the same counter
2404  *      - number of events <= number of counters
2405  *
2406  * validation ensures the group can be loaded onto the
2407  * PMU if it was the only group available.
2408  */
2409 static int validate_group(struct perf_event *event)
2410 {
2411         struct perf_event *leader = event->group_leader;
2412         struct cpu_hw_events *fake_cpuc;
2413         int ret = -EINVAL, n;
2414
2415         /*
2416          * Reject events from different hybrid PMUs.
2417          */
2418         if (is_hybrid()) {
2419                 struct perf_event *sibling;
2420                 struct pmu *pmu = NULL;
2421
2422                 if (is_x86_event(leader))
2423                         pmu = leader->pmu;
2424
2425                 for_each_sibling_event(sibling, leader) {
2426                         if (!is_x86_event(sibling))
2427                                 continue;
2428                         if (!pmu)
2429                                 pmu = sibling->pmu;
2430                         else if (pmu != sibling->pmu)
2431                                 return ret;
2432                 }
2433         }
2434
2435         fake_cpuc = allocate_fake_cpuc(event->pmu);
2436         if (IS_ERR(fake_cpuc))
2437                 return PTR_ERR(fake_cpuc);
2438         /*
2439          * the event is not yet connected with its
2440          * siblings therefore we must first collect
2441          * existing siblings, then add the new event
2442          * before we can simulate the scheduling
2443          */
2444         n = collect_events(fake_cpuc, leader, true);
2445         if (n < 0)
2446                 goto out;
2447
2448         fake_cpuc->n_events = n;
2449         n = collect_events(fake_cpuc, event, false);
2450         if (n < 0)
2451                 goto out;
2452
2453         fake_cpuc->n_events = 0;
2454         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2455
2456 out:
2457         free_fake_cpuc(fake_cpuc);
2458         return ret;
2459 }
2460
2461 static int x86_pmu_event_init(struct perf_event *event)
2462 {
2463         struct x86_hybrid_pmu *pmu = NULL;
2464         int err;
2465
2466         if ((event->attr.type != event->pmu->type) &&
2467             (event->attr.type != PERF_TYPE_HARDWARE) &&
2468             (event->attr.type != PERF_TYPE_HW_CACHE))
2469                 return -ENOENT;
2470
2471         if (is_hybrid() && (event->cpu != -1)) {
2472                 pmu = hybrid_pmu(event->pmu);
2473                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2474                         return -ENOENT;
2475         }
2476
2477         err = __x86_pmu_event_init(event);
2478         if (!err) {
2479                 if (event->group_leader != event)
2480                         err = validate_group(event);
2481                 else
2482                         err = validate_event(event);
2483         }
2484         if (err) {
2485                 if (event->destroy)
2486                         event->destroy(event);
2487                 event->destroy = NULL;
2488         }
2489
2490         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2491             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2492                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2493
2494         return err;
2495 }
2496
2497 void perf_clear_dirty_counters(void)
2498 {
2499         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2500         int i;
2501
2502          /* Don't need to clear the assigned counter. */
2503         for (i = 0; i < cpuc->n_events; i++)
2504                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2505
2506         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2507                 return;
2508
2509         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2510                 if (i >= INTEL_PMC_IDX_FIXED) {
2511                         /* Metrics and fake events don't have corresponding HW counters. */
2512                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2513                                 continue;
2514
2515                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2516                 } else {
2517                         wrmsrl(x86_pmu_event_addr(i), 0);
2518                 }
2519         }
2520
2521         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2522 }
2523
2524 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2525 {
2526         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2527                 return;
2528
2529         /*
2530          * This function relies on not being called concurrently in two
2531          * tasks in the same mm.  Otherwise one task could observe
2532          * perf_rdpmc_allowed > 1 and return all the way back to
2533          * userspace with CR4.PCE clear while another task is still
2534          * doing on_each_cpu_mask() to propagate CR4.PCE.
2535          *
2536          * For now, this can't happen because all callers hold mmap_lock
2537          * for write.  If this changes, we'll need a different solution.
2538          */
2539         mmap_assert_write_locked(mm);
2540
2541         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2542                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2543 }
2544
2545 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2546 {
2547         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2548                 return;
2549
2550         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2551                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2552 }
2553
2554 static int x86_pmu_event_idx(struct perf_event *event)
2555 {
2556         struct hw_perf_event *hwc = &event->hw;
2557
2558         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2559                 return 0;
2560
2561         if (is_metric_idx(hwc->idx))
2562                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2563         else
2564                 return hwc->event_base_rdpmc + 1;
2565 }
2566
2567 static ssize_t get_attr_rdpmc(struct device *cdev,
2568                               struct device_attribute *attr,
2569                               char *buf)
2570 {
2571         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2572 }
2573
2574 static ssize_t set_attr_rdpmc(struct device *cdev,
2575                               struct device_attribute *attr,
2576                               const char *buf, size_t count)
2577 {
2578         unsigned long val;
2579         ssize_t ret;
2580
2581         ret = kstrtoul(buf, 0, &val);
2582         if (ret)
2583                 return ret;
2584
2585         if (val > 2)
2586                 return -EINVAL;
2587
2588         if (x86_pmu.attr_rdpmc_broken)
2589                 return -ENOTSUPP;
2590
2591         if (val != x86_pmu.attr_rdpmc) {
2592                 /*
2593                  * Changing into or out of never available or always available,
2594                  * aka perf-event-bypassing mode. This path is extremely slow,
2595                  * but only root can trigger it, so it's okay.
2596                  */
2597                 if (val == 0)
2598                         static_branch_inc(&rdpmc_never_available_key);
2599                 else if (x86_pmu.attr_rdpmc == 0)
2600                         static_branch_dec(&rdpmc_never_available_key);
2601
2602                 if (val == 2)
2603                         static_branch_inc(&rdpmc_always_available_key);
2604                 else if (x86_pmu.attr_rdpmc == 2)
2605                         static_branch_dec(&rdpmc_always_available_key);
2606
2607                 on_each_cpu(cr4_update_pce, NULL, 1);
2608                 x86_pmu.attr_rdpmc = val;
2609         }
2610
2611         return count;
2612 }
2613
2614 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2615
2616 static struct attribute *x86_pmu_attrs[] = {
2617         &dev_attr_rdpmc.attr,
2618         NULL,
2619 };
2620
2621 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2622         .attrs = x86_pmu_attrs,
2623 };
2624
2625 static ssize_t max_precise_show(struct device *cdev,
2626                                   struct device_attribute *attr,
2627                                   char *buf)
2628 {
2629         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2630 }
2631
2632 static DEVICE_ATTR_RO(max_precise);
2633
2634 static struct attribute *x86_pmu_caps_attrs[] = {
2635         &dev_attr_max_precise.attr,
2636         NULL
2637 };
2638
2639 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2640         .name = "caps",
2641         .attrs = x86_pmu_caps_attrs,
2642 };
2643
2644 static const struct attribute_group *x86_pmu_attr_groups[] = {
2645         &x86_pmu_attr_group,
2646         &x86_pmu_format_group,
2647         &x86_pmu_events_group,
2648         &x86_pmu_caps_group,
2649         NULL,
2650 };
2651
2652 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2653 {
2654         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2655 }
2656
2657 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2658                                   struct perf_event_context *next)
2659 {
2660         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2661 }
2662
2663 void perf_check_microcode(void)
2664 {
2665         if (x86_pmu.check_microcode)
2666                 x86_pmu.check_microcode();
2667 }
2668
2669 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2670 {
2671         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2672                 return -EINVAL;
2673
2674         if (value && x86_pmu.limit_period) {
2675                 if (x86_pmu.limit_period(event, value) > value)
2676                         return -EINVAL;
2677         }
2678
2679         return 0;
2680 }
2681
2682 static int x86_pmu_aux_output_match(struct perf_event *event)
2683 {
2684         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2685                 return 0;
2686
2687         if (x86_pmu.aux_output_match)
2688                 return x86_pmu.aux_output_match(event);
2689
2690         return 0;
2691 }
2692
2693 static int x86_pmu_filter_match(struct perf_event *event)
2694 {
2695         if (x86_pmu.filter_match)
2696                 return x86_pmu.filter_match(event);
2697
2698         return 1;
2699 }
2700
2701 static struct pmu pmu = {
2702         .pmu_enable             = x86_pmu_enable,
2703         .pmu_disable            = x86_pmu_disable,
2704
2705         .attr_groups            = x86_pmu_attr_groups,
2706
2707         .event_init             = x86_pmu_event_init,
2708
2709         .event_mapped           = x86_pmu_event_mapped,
2710         .event_unmapped         = x86_pmu_event_unmapped,
2711
2712         .add                    = x86_pmu_add,
2713         .del                    = x86_pmu_del,
2714         .start                  = x86_pmu_start,
2715         .stop                   = x86_pmu_stop,
2716         .read                   = x86_pmu_read,
2717
2718         .start_txn              = x86_pmu_start_txn,
2719         .cancel_txn             = x86_pmu_cancel_txn,
2720         .commit_txn             = x86_pmu_commit_txn,
2721
2722         .event_idx              = x86_pmu_event_idx,
2723         .sched_task             = x86_pmu_sched_task,
2724         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2725         .check_period           = x86_pmu_check_period,
2726
2727         .aux_output_match       = x86_pmu_aux_output_match,
2728
2729         .filter_match           = x86_pmu_filter_match,
2730 };
2731
2732 void arch_perf_update_userpage(struct perf_event *event,
2733                                struct perf_event_mmap_page *userpg, u64 now)
2734 {
2735         struct cyc2ns_data data;
2736         u64 offset;
2737
2738         userpg->cap_user_time = 0;
2739         userpg->cap_user_time_zero = 0;
2740         userpg->cap_user_rdpmc =
2741                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2742         userpg->pmc_width = x86_pmu.cntval_bits;
2743
2744         if (!using_native_sched_clock() || !sched_clock_stable())
2745                 return;
2746
2747         cyc2ns_read_begin(&data);
2748
2749         offset = data.cyc2ns_offset + __sched_clock_offset;
2750
2751         /*
2752          * Internal timekeeping for enabled/running/stopped times
2753          * is always in the local_clock domain.
2754          */
2755         userpg->cap_user_time = 1;
2756         userpg->time_mult = data.cyc2ns_mul;
2757         userpg->time_shift = data.cyc2ns_shift;
2758         userpg->time_offset = offset - now;
2759
2760         /*
2761          * cap_user_time_zero doesn't make sense when we're using a different
2762          * time base for the records.
2763          */
2764         if (!event->attr.use_clockid) {
2765                 userpg->cap_user_time_zero = 1;
2766                 userpg->time_zero = offset;
2767         }
2768
2769         cyc2ns_read_end();
2770 }
2771
2772 /*
2773  * Determine whether the regs were taken from an irq/exception handler rather
2774  * than from perf_arch_fetch_caller_regs().
2775  */
2776 static bool perf_hw_regs(struct pt_regs *regs)
2777 {
2778         return regs->flags & X86_EFLAGS_FIXED;
2779 }
2780
2781 void
2782 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2783 {
2784         struct unwind_state state;
2785         unsigned long addr;
2786
2787         if (perf_guest_state()) {
2788                 /* TODO: We don't support guest os callchain now */
2789                 return;
2790         }
2791
2792         if (perf_callchain_store(entry, regs->ip))
2793                 return;
2794
2795         if (perf_hw_regs(regs))
2796                 unwind_start(&state, current, regs, NULL);
2797         else
2798                 unwind_start(&state, current, NULL, (void *)regs->sp);
2799
2800         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2801                 addr = unwind_get_return_address(&state);
2802                 if (!addr || perf_callchain_store(entry, addr))
2803                         return;
2804         }
2805 }
2806
2807 static inline int
2808 valid_user_frame(const void __user *fp, unsigned long size)
2809 {
2810         return __access_ok(fp, size);
2811 }
2812
2813 static unsigned long get_segment_base(unsigned int segment)
2814 {
2815         struct desc_struct *desc;
2816         unsigned int idx = segment >> 3;
2817
2818         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2819 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2820                 struct ldt_struct *ldt;
2821
2822                 /* IRQs are off, so this synchronizes with smp_store_release */
2823                 ldt = READ_ONCE(current->active_mm->context.ldt);
2824                 if (!ldt || idx >= ldt->nr_entries)
2825                         return 0;
2826
2827                 desc = &ldt->entries[idx];
2828 #else
2829                 return 0;
2830 #endif
2831         } else {
2832                 if (idx >= GDT_ENTRIES)
2833                         return 0;
2834
2835                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2836         }
2837
2838         return get_desc_base(desc);
2839 }
2840
2841 #ifdef CONFIG_IA32_EMULATION
2842
2843 #include <linux/compat.h>
2844
2845 static inline int
2846 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2847 {
2848         /* 32-bit process in 64-bit kernel. */
2849         unsigned long ss_base, cs_base;
2850         struct stack_frame_ia32 frame;
2851         const struct stack_frame_ia32 __user *fp;
2852
2853         if (user_64bit_mode(regs))
2854                 return 0;
2855
2856         cs_base = get_segment_base(regs->cs);
2857         ss_base = get_segment_base(regs->ss);
2858
2859         fp = compat_ptr(ss_base + regs->bp);
2860         pagefault_disable();
2861         while (entry->nr < entry->max_stack) {
2862                 if (!valid_user_frame(fp, sizeof(frame)))
2863                         break;
2864
2865                 if (__get_user(frame.next_frame, &fp->next_frame))
2866                         break;
2867                 if (__get_user(frame.return_address, &fp->return_address))
2868                         break;
2869
2870                 perf_callchain_store(entry, cs_base + frame.return_address);
2871                 fp = compat_ptr(ss_base + frame.next_frame);
2872         }
2873         pagefault_enable();
2874         return 1;
2875 }
2876 #else
2877 static inline int
2878 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2879 {
2880     return 0;
2881 }
2882 #endif
2883
2884 void
2885 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2886 {
2887         struct stack_frame frame;
2888         const struct stack_frame __user *fp;
2889
2890         if (perf_guest_state()) {
2891                 /* TODO: We don't support guest os callchain now */
2892                 return;
2893         }
2894
2895         /*
2896          * We don't know what to do with VM86 stacks.. ignore them for now.
2897          */
2898         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2899                 return;
2900
2901         fp = (void __user *)regs->bp;
2902
2903         perf_callchain_store(entry, regs->ip);
2904
2905         if (!nmi_uaccess_okay())
2906                 return;
2907
2908         if (perf_callchain_user32(regs, entry))
2909                 return;
2910
2911         pagefault_disable();
2912         while (entry->nr < entry->max_stack) {
2913                 if (!valid_user_frame(fp, sizeof(frame)))
2914                         break;
2915
2916                 if (__get_user(frame.next_frame, &fp->next_frame))
2917                         break;
2918                 if (__get_user(frame.return_address, &fp->return_address))
2919                         break;
2920
2921                 perf_callchain_store(entry, frame.return_address);
2922                 fp = (void __user *)frame.next_frame;
2923         }
2924         pagefault_enable();
2925 }
2926
2927 /*
2928  * Deal with code segment offsets for the various execution modes:
2929  *
2930  *   VM86 - the good olde 16 bit days, where the linear address is
2931  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2932  *
2933  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2934  *          to figure out what the 32bit base address is.
2935  *
2936  *    X32 - has TIF_X32 set, but is running in x86_64
2937  *
2938  * X86_64 - CS,DS,SS,ES are all zero based.
2939  */
2940 static unsigned long code_segment_base(struct pt_regs *regs)
2941 {
2942         /*
2943          * For IA32 we look at the GDT/LDT segment base to convert the
2944          * effective IP to a linear address.
2945          */
2946
2947 #ifdef CONFIG_X86_32
2948         /*
2949          * If we are in VM86 mode, add the segment offset to convert to a
2950          * linear address.
2951          */
2952         if (regs->flags & X86_VM_MASK)
2953                 return 0x10 * regs->cs;
2954
2955         if (user_mode(regs) && regs->cs != __USER_CS)
2956                 return get_segment_base(regs->cs);
2957 #else
2958         if (user_mode(regs) && !user_64bit_mode(regs) &&
2959             regs->cs != __USER32_CS)
2960                 return get_segment_base(regs->cs);
2961 #endif
2962         return 0;
2963 }
2964
2965 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2966 {
2967         if (perf_guest_state())
2968                 return perf_guest_get_ip();
2969
2970         return regs->ip + code_segment_base(regs);
2971 }
2972
2973 unsigned long perf_misc_flags(struct pt_regs *regs)
2974 {
2975         unsigned int guest_state = perf_guest_state();
2976         int misc = 0;
2977
2978         if (guest_state) {
2979                 if (guest_state & PERF_GUEST_USER)
2980                         misc |= PERF_RECORD_MISC_GUEST_USER;
2981                 else
2982                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2983         } else {
2984                 if (user_mode(regs))
2985                         misc |= PERF_RECORD_MISC_USER;
2986                 else
2987                         misc |= PERF_RECORD_MISC_KERNEL;
2988         }
2989
2990         if (regs->flags & PERF_EFLAGS_EXACT)
2991                 misc |= PERF_RECORD_MISC_EXACT_IP;
2992
2993         return misc;
2994 }
2995
2996 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2997 {
2998         if (!x86_pmu_initialized()) {
2999                 memset(cap, 0, sizeof(*cap));
3000                 return;
3001         }
3002
3003         cap->version            = x86_pmu.version;
3004         /*
3005          * KVM doesn't support the hybrid PMU yet.
3006          * Return the common value in global x86_pmu,
3007          * which available for all cores.
3008          */
3009         cap->num_counters_gp    = x86_pmu.num_counters;
3010         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3011         cap->bit_width_gp       = x86_pmu.cntval_bits;
3012         cap->bit_width_fixed    = x86_pmu.cntval_bits;
3013         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
3014         cap->events_mask_len    = x86_pmu.events_mask_len;
3015         cap->pebs_ept           = x86_pmu.pebs_ept;
3016 }
3017 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3018
3019 u64 perf_get_hw_event_config(int hw_event)
3020 {
3021         int max = x86_pmu.max_events;
3022
3023         if (hw_event < max)
3024                 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3025
3026         return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);