Merge tag 'timers-nohz-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / x86 / events / amd / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/export.h>
4 #include <linux/types.h>
5 #include <linux/init.h>
6 #include <linux/slab.h>
7 #include <linux/delay.h>
8 #include <linux/jiffies.h>
9 #include <asm/apicdef.h>
10 #include <asm/nmi.h>
11
12 #include "../perf_event.h"
13
14 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
15 static unsigned long perf_nmi_window;
16
17 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
18 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
19 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
20
21 static __initconst const u64 amd_hw_cache_event_ids
22                                 [PERF_COUNT_HW_CACHE_MAX]
23                                 [PERF_COUNT_HW_CACHE_OP_MAX]
24                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
25 {
26  [ C(L1D) ] = {
27         [ C(OP_READ) ] = {
28                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
29                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
30         },
31         [ C(OP_WRITE) ] = {
32                 [ C(RESULT_ACCESS) ] = 0,
33                 [ C(RESULT_MISS)   ] = 0,
34         },
35         [ C(OP_PREFETCH) ] = {
36                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
37                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
38         },
39  },
40  [ C(L1I ) ] = {
41         [ C(OP_READ) ] = {
42                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
43                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
44         },
45         [ C(OP_WRITE) ] = {
46                 [ C(RESULT_ACCESS) ] = -1,
47                 [ C(RESULT_MISS)   ] = -1,
48         },
49         [ C(OP_PREFETCH) ] = {
50                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
51                 [ C(RESULT_MISS)   ] = 0,
52         },
53  },
54  [ C(LL  ) ] = {
55         [ C(OP_READ) ] = {
56                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
57                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
58         },
59         [ C(OP_WRITE) ] = {
60                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
61                 [ C(RESULT_MISS)   ] = 0,
62         },
63         [ C(OP_PREFETCH) ] = {
64                 [ C(RESULT_ACCESS) ] = 0,
65                 [ C(RESULT_MISS)   ] = 0,
66         },
67  },
68  [ C(DTLB) ] = {
69         [ C(OP_READ) ] = {
70                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
71                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
72         },
73         [ C(OP_WRITE) ] = {
74                 [ C(RESULT_ACCESS) ] = 0,
75                 [ C(RESULT_MISS)   ] = 0,
76         },
77         [ C(OP_PREFETCH) ] = {
78                 [ C(RESULT_ACCESS) ] = 0,
79                 [ C(RESULT_MISS)   ] = 0,
80         },
81  },
82  [ C(ITLB) ] = {
83         [ C(OP_READ) ] = {
84                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
85                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
86         },
87         [ C(OP_WRITE) ] = {
88                 [ C(RESULT_ACCESS) ] = -1,
89                 [ C(RESULT_MISS)   ] = -1,
90         },
91         [ C(OP_PREFETCH) ] = {
92                 [ C(RESULT_ACCESS) ] = -1,
93                 [ C(RESULT_MISS)   ] = -1,
94         },
95  },
96  [ C(BPU ) ] = {
97         [ C(OP_READ) ] = {
98                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
99                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
100         },
101         [ C(OP_WRITE) ] = {
102                 [ C(RESULT_ACCESS) ] = -1,
103                 [ C(RESULT_MISS)   ] = -1,
104         },
105         [ C(OP_PREFETCH) ] = {
106                 [ C(RESULT_ACCESS) ] = -1,
107                 [ C(RESULT_MISS)   ] = -1,
108         },
109  },
110  [ C(NODE) ] = {
111         [ C(OP_READ) ] = {
112                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
113                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
114         },
115         [ C(OP_WRITE) ] = {
116                 [ C(RESULT_ACCESS) ] = -1,
117                 [ C(RESULT_MISS)   ] = -1,
118         },
119         [ C(OP_PREFETCH) ] = {
120                 [ C(RESULT_ACCESS) ] = -1,
121                 [ C(RESULT_MISS)   ] = -1,
122         },
123  },
124 };
125
126 static __initconst const u64 amd_hw_cache_event_ids_f17h
127                                 [PERF_COUNT_HW_CACHE_MAX]
128                                 [PERF_COUNT_HW_CACHE_OP_MAX]
129                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
130 [C(L1D)] = {
131         [C(OP_READ)] = {
132                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
133                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
134         },
135         [C(OP_WRITE)] = {
136                 [C(RESULT_ACCESS)] = 0,
137                 [C(RESULT_MISS)]   = 0,
138         },
139         [C(OP_PREFETCH)] = {
140                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
141                 [C(RESULT_MISS)]   = 0,
142         },
143 },
144 [C(L1I)] = {
145         [C(OP_READ)] = {
146                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
147                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
148         },
149         [C(OP_WRITE)] = {
150                 [C(RESULT_ACCESS)] = -1,
151                 [C(RESULT_MISS)]   = -1,
152         },
153         [C(OP_PREFETCH)] = {
154                 [C(RESULT_ACCESS)] = 0,
155                 [C(RESULT_MISS)]   = 0,
156         },
157 },
158 [C(LL)] = {
159         [C(OP_READ)] = {
160                 [C(RESULT_ACCESS)] = 0,
161                 [C(RESULT_MISS)]   = 0,
162         },
163         [C(OP_WRITE)] = {
164                 [C(RESULT_ACCESS)] = 0,
165                 [C(RESULT_MISS)]   = 0,
166         },
167         [C(OP_PREFETCH)] = {
168                 [C(RESULT_ACCESS)] = 0,
169                 [C(RESULT_MISS)]   = 0,
170         },
171 },
172 [C(DTLB)] = {
173         [C(OP_READ)] = {
174                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
175                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
176         },
177         [C(OP_WRITE)] = {
178                 [C(RESULT_ACCESS)] = 0,
179                 [C(RESULT_MISS)]   = 0,
180         },
181         [C(OP_PREFETCH)] = {
182                 [C(RESULT_ACCESS)] = 0,
183                 [C(RESULT_MISS)]   = 0,
184         },
185 },
186 [C(ITLB)] = {
187         [C(OP_READ)] = {
188                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
189                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
190         },
191         [C(OP_WRITE)] = {
192                 [C(RESULT_ACCESS)] = -1,
193                 [C(RESULT_MISS)]   = -1,
194         },
195         [C(OP_PREFETCH)] = {
196                 [C(RESULT_ACCESS)] = -1,
197                 [C(RESULT_MISS)]   = -1,
198         },
199 },
200 [C(BPU)] = {
201         [C(OP_READ)] = {
202                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
203                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
204         },
205         [C(OP_WRITE)] = {
206                 [C(RESULT_ACCESS)] = -1,
207                 [C(RESULT_MISS)]   = -1,
208         },
209         [C(OP_PREFETCH)] = {
210                 [C(RESULT_ACCESS)] = -1,
211                 [C(RESULT_MISS)]   = -1,
212         },
213 },
214 [C(NODE)] = {
215         [C(OP_READ)] = {
216                 [C(RESULT_ACCESS)] = 0,
217                 [C(RESULT_MISS)]   = 0,
218         },
219         [C(OP_WRITE)] = {
220                 [C(RESULT_ACCESS)] = -1,
221                 [C(RESULT_MISS)]   = -1,
222         },
223         [C(OP_PREFETCH)] = {
224                 [C(RESULT_ACCESS)] = -1,
225                 [C(RESULT_MISS)]   = -1,
226         },
227 },
228 };
229
230 /*
231  * AMD Performance Monitor K7 and later, up to and including Family 16h:
232  */
233 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
234 {
235         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
236         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
237         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
238         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
239         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
240         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
241         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
242         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
243 };
244
245 /*
246  * AMD Performance Monitor Family 17h and later:
247  */
248 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
249 {
250         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
251         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
252         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
253         [PERF_COUNT_HW_CACHE_MISSES]            = 0x0964,
254         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
255         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
256         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
257         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
258 };
259
260 static u64 amd_pmu_event_map(int hw_event)
261 {
262         if (boot_cpu_data.x86 >= 0x17)
263                 return amd_f17h_perfmon_event_map[hw_event];
264
265         return amd_perfmon_event_map[hw_event];
266 }
267
268 /*
269  * Previously calculated offsets
270  */
271 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
272 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
273
274 /*
275  * Legacy CPUs:
276  *   4 counters starting at 0xc0010000 each offset by 1
277  *
278  * CPUs with core performance counter extensions:
279  *   6 counters starting at 0xc0010200 each offset by 2
280  */
281 static inline int amd_pmu_addr_offset(int index, bool eventsel)
282 {
283         int offset;
284
285         if (!index)
286                 return index;
287
288         if (eventsel)
289                 offset = event_offsets[index];
290         else
291                 offset = count_offsets[index];
292
293         if (offset)
294                 return offset;
295
296         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
297                 offset = index;
298         else
299                 offset = index << 1;
300
301         if (eventsel)
302                 event_offsets[index] = offset;
303         else
304                 count_offsets[index] = offset;
305
306         return offset;
307 }
308
309 /*
310  * AMD64 events are detected based on their event codes.
311  */
312 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
313 {
314         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
315 }
316
317 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
318 {
319         if (!(x86_pmu.flags & PMU_FL_PAIR))
320                 return false;
321
322         switch (amd_get_event_code(hwc)) {
323         case 0x003:     return true;    /* Retired SSE/AVX FLOPs */
324         default:        return false;
325         }
326 }
327
328 static int amd_core_hw_config(struct perf_event *event)
329 {
330         if (event->attr.exclude_host && event->attr.exclude_guest)
331                 /*
332                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
333                  * and will count in both modes. We don't want to count in that
334                  * case so we emulate no-counting by setting US = OS = 0.
335                  */
336                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
337                                       ARCH_PERFMON_EVENTSEL_OS);
338         else if (event->attr.exclude_host)
339                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
340         else if (event->attr.exclude_guest)
341                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
342
343         if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
344                 event->hw.flags |= PERF_X86_EVENT_PAIR;
345
346         return 0;
347 }
348
349 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
350 {
351         return (hwc->config & 0xe0) == 0xe0;
352 }
353
354 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
355 {
356         struct amd_nb *nb = cpuc->amd_nb;
357
358         return nb && nb->nb_id != -1;
359 }
360
361 static int amd_pmu_hw_config(struct perf_event *event)
362 {
363         int ret;
364
365         /* pass precise event sampling to ibs: */
366         if (event->attr.precise_ip && get_ibs_caps())
367                 return -ENOENT;
368
369         if (has_branch_stack(event))
370                 return -EOPNOTSUPP;
371
372         ret = x86_pmu_hw_config(event);
373         if (ret)
374                 return ret;
375
376         if (event->attr.type == PERF_TYPE_RAW)
377                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
378
379         return amd_core_hw_config(event);
380 }
381
382 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
383                                            struct perf_event *event)
384 {
385         struct amd_nb *nb = cpuc->amd_nb;
386         int i;
387
388         /*
389          * need to scan whole list because event may not have
390          * been assigned during scheduling
391          *
392          * no race condition possible because event can only
393          * be removed on one CPU at a time AND PMU is disabled
394          * when we come here
395          */
396         for (i = 0; i < x86_pmu.num_counters; i++) {
397                 if (cmpxchg(nb->owners + i, event, NULL) == event)
398                         break;
399         }
400 }
401
402  /*
403   * AMD64 NorthBridge events need special treatment because
404   * counter access needs to be synchronized across all cores
405   * of a package. Refer to BKDG section 3.12
406   *
407   * NB events are events measuring L3 cache, Hypertransport
408   * traffic. They are identified by an event code >= 0xe00.
409   * They measure events on the NorthBride which is shared
410   * by all cores on a package. NB events are counted on a
411   * shared set of counters. When a NB event is programmed
412   * in a counter, the data actually comes from a shared
413   * counter. Thus, access to those counters needs to be
414   * synchronized.
415   *
416   * We implement the synchronization such that no two cores
417   * can be measuring NB events using the same counters. Thus,
418   * we maintain a per-NB allocation table. The available slot
419   * is propagated using the event_constraint structure.
420   *
421   * We provide only one choice for each NB event based on
422   * the fact that only NB events have restrictions. Consequently,
423   * if a counter is available, there is a guarantee the NB event
424   * will be assigned to it. If no slot is available, an empty
425   * constraint is returned and scheduling will eventually fail
426   * for this event.
427   *
428   * Note that all cores attached the same NB compete for the same
429   * counters to host NB events, this is why we use atomic ops. Some
430   * multi-chip CPUs may have more than one NB.
431   *
432   * Given that resources are allocated (cmpxchg), they must be
433   * eventually freed for others to use. This is accomplished by
434   * calling __amd_put_nb_event_constraints()
435   *
436   * Non NB events are not impacted by this restriction.
437   */
438 static struct event_constraint *
439 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
440                                struct event_constraint *c)
441 {
442         struct hw_perf_event *hwc = &event->hw;
443         struct amd_nb *nb = cpuc->amd_nb;
444         struct perf_event *old;
445         int idx, new = -1;
446
447         if (!c)
448                 c = &unconstrained;
449
450         if (cpuc->is_fake)
451                 return c;
452
453         /*
454          * detect if already present, if so reuse
455          *
456          * cannot merge with actual allocation
457          * because of possible holes
458          *
459          * event can already be present yet not assigned (in hwc->idx)
460          * because of successive calls to x86_schedule_events() from
461          * hw_perf_group_sched_in() without hw_perf_enable()
462          */
463         for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
464                 if (new == -1 || hwc->idx == idx)
465                         /* assign free slot, prefer hwc->idx */
466                         old = cmpxchg(nb->owners + idx, NULL, event);
467                 else if (nb->owners[idx] == event)
468                         /* event already present */
469                         old = event;
470                 else
471                         continue;
472
473                 if (old && old != event)
474                         continue;
475
476                 /* reassign to this slot */
477                 if (new != -1)
478                         cmpxchg(nb->owners + new, event, NULL);
479                 new = idx;
480
481                 /* already present, reuse */
482                 if (old == event)
483                         break;
484         }
485
486         if (new == -1)
487                 return &emptyconstraint;
488
489         return &nb->event_constraints[new];
490 }
491
492 static struct amd_nb *amd_alloc_nb(int cpu)
493 {
494         struct amd_nb *nb;
495         int i;
496
497         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
498         if (!nb)
499                 return NULL;
500
501         nb->nb_id = -1;
502
503         /*
504          * initialize all possible NB constraints
505          */
506         for (i = 0; i < x86_pmu.num_counters; i++) {
507                 __set_bit(i, nb->event_constraints[i].idxmsk);
508                 nb->event_constraints[i].weight = 1;
509         }
510         return nb;
511 }
512
513 static int amd_pmu_cpu_prepare(int cpu)
514 {
515         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
516
517         WARN_ON_ONCE(cpuc->amd_nb);
518
519         if (!x86_pmu.amd_nb_constraints)
520                 return 0;
521
522         cpuc->amd_nb = amd_alloc_nb(cpu);
523         if (!cpuc->amd_nb)
524                 return -ENOMEM;
525
526         return 0;
527 }
528
529 static void amd_pmu_cpu_starting(int cpu)
530 {
531         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
532         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
533         struct amd_nb *nb;
534         int i, nb_id;
535
536         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
537
538         if (!x86_pmu.amd_nb_constraints)
539                 return;
540
541         nb_id = amd_get_nb_id(cpu);
542         WARN_ON_ONCE(nb_id == BAD_APICID);
543
544         for_each_online_cpu(i) {
545                 nb = per_cpu(cpu_hw_events, i).amd_nb;
546                 if (WARN_ON_ONCE(!nb))
547                         continue;
548
549                 if (nb->nb_id == nb_id) {
550                         *onln = cpuc->amd_nb;
551                         cpuc->amd_nb = nb;
552                         break;
553                 }
554         }
555
556         cpuc->amd_nb->nb_id = nb_id;
557         cpuc->amd_nb->refcnt++;
558 }
559
560 static void amd_pmu_cpu_dead(int cpu)
561 {
562         struct cpu_hw_events *cpuhw;
563
564         if (!x86_pmu.amd_nb_constraints)
565                 return;
566
567         cpuhw = &per_cpu(cpu_hw_events, cpu);
568
569         if (cpuhw->amd_nb) {
570                 struct amd_nb *nb = cpuhw->amd_nb;
571
572                 if (nb->nb_id == -1 || --nb->refcnt == 0)
573                         kfree(nb);
574
575                 cpuhw->amd_nb = NULL;
576         }
577 }
578
579 /*
580  * When a PMC counter overflows, an NMI is used to process the event and
581  * reset the counter. NMI latency can result in the counter being updated
582  * before the NMI can run, which can result in what appear to be spurious
583  * NMIs. This function is intended to wait for the NMI to run and reset
584  * the counter to avoid possible unhandled NMI messages.
585  */
586 #define OVERFLOW_WAIT_COUNT     50
587
588 static void amd_pmu_wait_on_overflow(int idx)
589 {
590         unsigned int i;
591         u64 counter;
592
593         /*
594          * Wait for the counter to be reset if it has overflowed. This loop
595          * should exit very, very quickly, but just in case, don't wait
596          * forever...
597          */
598         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
599                 rdmsrl(x86_pmu_event_addr(idx), counter);
600                 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
601                         break;
602
603                 /* Might be in IRQ context, so can't sleep */
604                 udelay(1);
605         }
606 }
607
608 static void amd_pmu_disable_all(void)
609 {
610         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
611         int idx;
612
613         x86_pmu_disable_all();
614
615         /*
616          * This shouldn't be called from NMI context, but add a safeguard here
617          * to return, since if we're in NMI context we can't wait for an NMI
618          * to reset an overflowed counter value.
619          */
620         if (in_nmi())
621                 return;
622
623         /*
624          * Check each counter for overflow and wait for it to be reset by the
625          * NMI if it has overflowed. This relies on the fact that all active
626          * counters are always enabled when this function is caled and
627          * ARCH_PERFMON_EVENTSEL_INT is always set.
628          */
629         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
630                 if (!test_bit(idx, cpuc->active_mask))
631                         continue;
632
633                 amd_pmu_wait_on_overflow(idx);
634         }
635 }
636
637 static void amd_pmu_disable_event(struct perf_event *event)
638 {
639         x86_pmu_disable_event(event);
640
641         /*
642          * This can be called from NMI context (via x86_pmu_stop). The counter
643          * may have overflowed, but either way, we'll never see it get reset
644          * by the NMI if we're already in the NMI. And the NMI latency support
645          * below will take care of any pending NMI that might have been
646          * generated by the overflow.
647          */
648         if (in_nmi())
649                 return;
650
651         amd_pmu_wait_on_overflow(event->hw.idx);
652 }
653
654 /*
655  * Because of NMI latency, if multiple PMC counters are active or other sources
656  * of NMIs are received, the perf NMI handler can handle one or more overflowed
657  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
658  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
659  * back-to-back NMI support won't be active. This PMC handler needs to take into
660  * account that this can occur, otherwise this could result in unknown NMI
661  * messages being issued. Examples of this is PMC overflow while in the NMI
662  * handler when multiple PMCs are active or PMC overflow while handling some
663  * other source of an NMI.
664  *
665  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
666  * received during this window will be claimed. This prevents extending the
667  * window past when it is possible that latent NMIs should be received. The
668  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
669  * handled a counter. When an un-handled NMI is received, it will be claimed
670  * only if arriving within that window.
671  */
672 static int amd_pmu_handle_irq(struct pt_regs *regs)
673 {
674         int handled;
675
676         /* Process any counter overflows */
677         handled = x86_pmu_handle_irq(regs);
678
679         /*
680          * If a counter was handled, record a timestamp such that un-handled
681          * NMIs will be claimed if arriving within that window.
682          */
683         if (handled) {
684                 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
685
686                 return handled;
687         }
688
689         if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
690                 return NMI_DONE;
691
692         return NMI_HANDLED;
693 }
694
695 static struct event_constraint *
696 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
697                           struct perf_event *event)
698 {
699         /*
700          * if not NB event or no NB, then no constraints
701          */
702         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
703                 return &unconstrained;
704
705         return __amd_get_nb_event_constraints(cpuc, event, NULL);
706 }
707
708 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
709                                       struct perf_event *event)
710 {
711         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
712                 __amd_put_nb_event_constraints(cpuc, event);
713 }
714
715 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
716 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
717 PMU_FORMAT_ATTR(edge,   "config:18"     );
718 PMU_FORMAT_ATTR(inv,    "config:23"     );
719 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
720
721 static struct attribute *amd_format_attr[] = {
722         &format_attr_event.attr,
723         &format_attr_umask.attr,
724         &format_attr_edge.attr,
725         &format_attr_inv.attr,
726         &format_attr_cmask.attr,
727         NULL,
728 };
729
730 /* AMD Family 15h */
731
732 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
733
734 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
735 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
736 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
737 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
738 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
739 #define AMD_EVENT_EX_LS         0x000000C0ULL
740 #define AMD_EVENT_DE            0x000000D0ULL
741 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
742
743 /*
744  * AMD family 15h event code/PMC mappings:
745  *
746  * type = event_code & 0x0F0:
747  *
748  * 0x000        FP      PERF_CTL[5:3]
749  * 0x010        FP      PERF_CTL[5:3]
750  * 0x020        LS      PERF_CTL[5:0]
751  * 0x030        LS      PERF_CTL[5:0]
752  * 0x040        DC      PERF_CTL[5:0]
753  * 0x050        DC      PERF_CTL[5:0]
754  * 0x060        CU      PERF_CTL[2:0]
755  * 0x070        CU      PERF_CTL[2:0]
756  * 0x080        IC/DE   PERF_CTL[2:0]
757  * 0x090        IC/DE   PERF_CTL[2:0]
758  * 0x0A0        ---
759  * 0x0B0        ---
760  * 0x0C0        EX/LS   PERF_CTL[5:0]
761  * 0x0D0        DE      PERF_CTL[2:0]
762  * 0x0E0        NB      NB_PERF_CTL[3:0]
763  * 0x0F0        NB      NB_PERF_CTL[3:0]
764  *
765  * Exceptions:
766  *
767  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
768  * 0x003        FP      PERF_CTL[3]
769  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
770  * 0x00B        FP      PERF_CTL[3]
771  * 0x00D        FP      PERF_CTL[3]
772  * 0x023        DE      PERF_CTL[2:0]
773  * 0x02D        LS      PERF_CTL[3]
774  * 0x02E        LS      PERF_CTL[3,0]
775  * 0x031        LS      PERF_CTL[2:0] (**)
776  * 0x043        CU      PERF_CTL[2:0]
777  * 0x045        CU      PERF_CTL[2:0]
778  * 0x046        CU      PERF_CTL[2:0]
779  * 0x054        CU      PERF_CTL[2:0]
780  * 0x055        CU      PERF_CTL[2:0]
781  * 0x08F        IC      PERF_CTL[0]
782  * 0x187        DE      PERF_CTL[0]
783  * 0x188        DE      PERF_CTL[0]
784  * 0x0DB        EX      PERF_CTL[5:0]
785  * 0x0DC        LS      PERF_CTL[5:0]
786  * 0x0DD        LS      PERF_CTL[5:0]
787  * 0x0DE        LS      PERF_CTL[5:0]
788  * 0x0DF        LS      PERF_CTL[5:0]
789  * 0x1C0        EX      PERF_CTL[5:3]
790  * 0x1D6        EX      PERF_CTL[5:0]
791  * 0x1D8        EX      PERF_CTL[5:0]
792  *
793  * (*)  depending on the umask all FPU counters may be used
794  * (**) only one unitmask enabled at a time
795  */
796
797 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
798 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
799 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
800 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
801 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
802 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
803
804 static struct event_constraint *
805 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
806                                struct perf_event *event)
807 {
808         struct hw_perf_event *hwc = &event->hw;
809         unsigned int event_code = amd_get_event_code(hwc);
810
811         switch (event_code & AMD_EVENT_TYPE_MASK) {
812         case AMD_EVENT_FP:
813                 switch (event_code) {
814                 case 0x000:
815                         if (!(hwc->config & 0x0000F000ULL))
816                                 break;
817                         if (!(hwc->config & 0x00000F00ULL))
818                                 break;
819                         return &amd_f15_PMC3;
820                 case 0x004:
821                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
822                                 break;
823                         return &amd_f15_PMC3;
824                 case 0x003:
825                 case 0x00B:
826                 case 0x00D:
827                         return &amd_f15_PMC3;
828                 }
829                 return &amd_f15_PMC53;
830         case AMD_EVENT_LS:
831         case AMD_EVENT_DC:
832         case AMD_EVENT_EX_LS:
833                 switch (event_code) {
834                 case 0x023:
835                 case 0x043:
836                 case 0x045:
837                 case 0x046:
838                 case 0x054:
839                 case 0x055:
840                         return &amd_f15_PMC20;
841                 case 0x02D:
842                         return &amd_f15_PMC3;
843                 case 0x02E:
844                         return &amd_f15_PMC30;
845                 case 0x031:
846                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
847                                 return &amd_f15_PMC20;
848                         return &emptyconstraint;
849                 case 0x1C0:
850                         return &amd_f15_PMC53;
851                 default:
852                         return &amd_f15_PMC50;
853                 }
854         case AMD_EVENT_CU:
855         case AMD_EVENT_IC_DE:
856         case AMD_EVENT_DE:
857                 switch (event_code) {
858                 case 0x08F:
859                 case 0x187:
860                 case 0x188:
861                         return &amd_f15_PMC0;
862                 case 0x0DB ... 0x0DF:
863                 case 0x1D6:
864                 case 0x1D8:
865                         return &amd_f15_PMC50;
866                 default:
867                         return &amd_f15_PMC20;
868                 }
869         case AMD_EVENT_NB:
870                 /* moved to uncore.c */
871                 return &emptyconstraint;
872         default:
873                 return &emptyconstraint;
874         }
875 }
876
877 static struct event_constraint pair_constraint;
878
879 static struct event_constraint *
880 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
881                                struct perf_event *event)
882 {
883         struct hw_perf_event *hwc = &event->hw;
884
885         if (amd_is_pair_event_code(hwc))
886                 return &pair_constraint;
887
888         return &unconstrained;
889 }
890
891 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
892                                            struct perf_event *event)
893 {
894         struct hw_perf_event *hwc = &event->hw;
895
896         if (is_counter_pair(hwc))
897                 --cpuc->n_pair;
898 }
899
900 static ssize_t amd_event_sysfs_show(char *page, u64 config)
901 {
902         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
903                     (config & AMD64_EVENTSEL_EVENT) >> 24;
904
905         return x86_event_sysfs_show(page, config, event);
906 }
907
908 static __initconst const struct x86_pmu amd_pmu = {
909         .name                   = "AMD",
910         .handle_irq             = amd_pmu_handle_irq,
911         .disable_all            = amd_pmu_disable_all,
912         .enable_all             = x86_pmu_enable_all,
913         .enable                 = x86_pmu_enable_event,
914         .disable                = amd_pmu_disable_event,
915         .hw_config              = amd_pmu_hw_config,
916         .schedule_events        = x86_schedule_events,
917         .eventsel               = MSR_K7_EVNTSEL0,
918         .perfctr                = MSR_K7_PERFCTR0,
919         .addr_offset            = amd_pmu_addr_offset,
920         .event_map              = amd_pmu_event_map,
921         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
922         .num_counters           = AMD64_NUM_COUNTERS,
923         .cntval_bits            = 48,
924         .cntval_mask            = (1ULL << 48) - 1,
925         .apic                   = 1,
926         /* use highest bit to detect overflow */
927         .max_period             = (1ULL << 47) - 1,
928         .get_event_constraints  = amd_get_event_constraints,
929         .put_event_constraints  = amd_put_event_constraints,
930
931         .format_attrs           = amd_format_attr,
932         .events_sysfs_show      = amd_event_sysfs_show,
933
934         .cpu_prepare            = amd_pmu_cpu_prepare,
935         .cpu_starting           = amd_pmu_cpu_starting,
936         .cpu_dead               = amd_pmu_cpu_dead,
937
938         .amd_nb_constraints     = 1,
939 };
940
941 static int __init amd_core_pmu_init(void)
942 {
943         u64 even_ctr_mask = 0ULL;
944         int i;
945
946         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
947                 return 0;
948
949         /* Avoid calculating the value each time in the NMI handler */
950         perf_nmi_window = msecs_to_jiffies(100);
951
952         /*
953          * If core performance counter extensions exists, we must use
954          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
955          * amd_pmu_addr_offset().
956          */
957         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
958         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
959         x86_pmu.num_counters    = AMD64_NUM_COUNTERS_CORE;
960         /*
961          * AMD Core perfctr has separate MSRs for the NB events, see
962          * the amd/uncore.c driver.
963          */
964         x86_pmu.amd_nb_constraints = 0;
965
966         if (boot_cpu_data.x86 == 0x15) {
967                 pr_cont("Fam15h ");
968                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
969         }
970         if (boot_cpu_data.x86 >= 0x17) {
971                 pr_cont("Fam17h+ ");
972                 /*
973                  * Family 17h and compatibles have constraints for Large
974                  * Increment per Cycle events: they may only be assigned an
975                  * even numbered counter that has a consecutive adjacent odd
976                  * numbered counter following it.
977                  */
978                 for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
979                         even_ctr_mask |= 1 << i;
980
981                 pair_constraint = (struct event_constraint)
982                                     __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
983                                     x86_pmu.num_counters / 2, 0,
984                                     PERF_X86_EVENT_PAIR);
985
986                 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
987                 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
988                 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
989                 x86_pmu.flags |= PMU_FL_PAIR;
990         }
991
992         pr_cont("core perfctr, ");
993         return 0;
994 }
995
996 __init int amd_pmu_init(void)
997 {
998         int ret;
999
1000         /* Performance-monitoring supported from K7 and later: */
1001         if (boot_cpu_data.x86 < 6)
1002                 return -ENODEV;
1003
1004         x86_pmu = amd_pmu;
1005
1006         ret = amd_core_pmu_init();
1007         if (ret)
1008                 return ret;
1009
1010         if (num_possible_cpus() == 1) {
1011                 /*
1012                  * No point in allocating data structures to serialize
1013                  * against other CPUs, when there is only the one CPU.
1014                  */
1015                 x86_pmu.amd_nb_constraints = 0;
1016         }
1017
1018         if (boot_cpu_data.x86 >= 0x17)
1019                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1020         else
1021                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1022
1023         return 0;
1024 }
1025
1026 void amd_pmu_enable_virt(void)
1027 {
1028         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1029
1030         cpuc->perf_ctr_virt_mask = 0;
1031
1032         /* Reload all events */
1033         amd_pmu_disable_all();
1034         x86_pmu_enable_all(0);
1035 }
1036 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1037
1038 void amd_pmu_disable_virt(void)
1039 {
1040         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1041
1042         /*
1043          * We only mask out the Host-only bit so that host-only counting works
1044          * when SVM is disabled. If someone sets up a guest-only counter when
1045          * SVM is disabled the Guest-only bits still gets set and the counter
1046          * will not count anything.
1047          */
1048         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1049
1050         /* Reload all events */
1051         amd_pmu_disable_all();
1052         x86_pmu_enable_all(0);
1053 }
1054 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);