2 * (C) Copyright 2008-2011
3 * Graeme Russ, <graeme.russ@gmail.com>
6 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10 * Marius Groeger <mgroeger@sysgo.de>
13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14 * Alex Zuepke <azu@sysgo.de>
16 * Part of this file is adapted from coreboot
17 * src/arch/x86/lib/cpu.c
19 * SPDX-License-Identifier: GPL-2.0+
27 #include <asm/control_regs.h>
28 #include <asm/coreboot_tables.h>
30 #include <asm/lapic.h>
31 #include <asm/microcode.h>
33 #include <asm/mrccache.h>
37 #include <asm/processor.h>
38 #include <asm/processor-flags.h>
39 #include <asm/interrupt.h>
40 #include <asm/tables.h>
41 #include <linux/compiler.h>
43 DECLARE_GLOBAL_DATA_PTR;
46 * Constructor for a conventional segment GDT (or LDT) entry
47 * This is a macro so it can be used in initialisers
49 #define GDT_ENTRY(flags, base, limit) \
50 ((((base) & 0xff000000ULL) << (56-24)) | \
51 (((flags) & 0x0000f0ffULL) << 40) | \
52 (((limit) & 0x000f0000ULL) << (48-16)) | \
53 (((base) & 0x00ffffffULL) << 16) | \
54 (((limit) & 0x0000ffffULL)))
61 struct cpu_device_id {
67 uint8_t x86; /* CPU family */
68 uint8_t x86_vendor; /* CPU vendor */
74 * List of cpu vendor strings along with their normalized
81 { X86_VENDOR_INTEL, "GenuineIntel", },
82 { X86_VENDOR_CYRIX, "CyrixInstead", },
83 { X86_VENDOR_AMD, "AuthenticAMD", },
84 { X86_VENDOR_UMC, "UMC UMC UMC ", },
85 { X86_VENDOR_NEXGEN, "NexGenDriven", },
86 { X86_VENDOR_CENTAUR, "CentaurHauls", },
87 { X86_VENDOR_RISE, "RiseRiseRise", },
88 { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
89 { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
90 { X86_VENDOR_NSC, "Geode by NSC", },
91 { X86_VENDOR_SIS, "SiS SiS SiS ", },
94 static const char *const x86_vendor_name[] = {
95 [X86_VENDOR_INTEL] = "Intel",
96 [X86_VENDOR_CYRIX] = "Cyrix",
97 [X86_VENDOR_AMD] = "AMD",
98 [X86_VENDOR_UMC] = "UMC",
99 [X86_VENDOR_NEXGEN] = "NexGen",
100 [X86_VENDOR_CENTAUR] = "Centaur",
101 [X86_VENDOR_RISE] = "Rise",
102 [X86_VENDOR_TRANSMETA] = "Transmeta",
103 [X86_VENDOR_NSC] = "NSC",
104 [X86_VENDOR_SIS] = "SiS",
107 static void load_ds(u32 segment)
109 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 static void load_es(u32 segment)
114 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 static void load_fs(u32 segment)
119 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 static void load_gs(u32 segment)
124 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 static void load_ss(u32 segment)
129 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
132 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
136 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
137 gdt.ptr = (u32)boot_gdt;
139 asm volatile("lgdtl %0\n" : : "m" (gdt));
142 void arch_setup_gd(gd_t *new_gd)
146 gdt_addr = new_gd->arch.gdt;
149 * CS: code, read/execute, 4 GB, base 0
151 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
153 gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
154 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
156 /* DS: data, read/write, 4 GB, base 0 */
157 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
159 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
160 new_gd->arch.gd_addr = new_gd;
161 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
162 (ulong)&new_gd->arch.gd_addr, 0xfffff);
164 /* 16-bit CS: code, read/execute, 64 kB, base 0 */
165 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
167 /* 16-bit DS: data, read/write, 64 kB, base 0 */
168 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
170 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
171 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
173 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
174 load_ds(X86_GDT_ENTRY_32BIT_DS);
175 load_es(X86_GDT_ENTRY_32BIT_DS);
176 load_gs(X86_GDT_ENTRY_32BIT_DS);
177 load_ss(X86_GDT_ENTRY_32BIT_DS);
178 load_fs(X86_GDT_ENTRY_32BIT_FS);
181 #ifdef CONFIG_HAVE_FSP
183 * Setup FSP execution environment GDT
185 * Per Intel FSP external architecture specification, before calling any FSP
186 * APIs, we need make sure the system is in flat 32-bit mode and both the code
187 * and data selectors should have full 4GB access range. Here we reuse the one
188 * we used in arch/x86/cpu/start16.S, and reload the segement registers.
190 void setup_fsp_gdt(void)
192 load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
193 load_ds(X86_GDT_ENTRY_32BIT_DS);
194 load_ss(X86_GDT_ENTRY_32BIT_DS);
195 load_es(X86_GDT_ENTRY_32BIT_DS);
196 load_fs(X86_GDT_ENTRY_32BIT_DS);
197 load_gs(X86_GDT_ENTRY_32BIT_DS);
201 int __weak x86_cleanup_before_linux(void)
203 #ifdef CONFIG_BOOTSTAGE_STASH
204 bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
205 CONFIG_BOOTSTAGE_STASH_SIZE);
212 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
213 * by the fact that they preserve the flags across the division of 5/2.
214 * PII and PPro exhibit this behavior too, but they have cpuid available.
218 * Perform the Cyrix 5/2 test. A Cyrix won't change
219 * the flags, while other 486 chips will.
221 static inline int test_cyrix_52div(void)
225 __asm__ __volatile__(
226 "sahf\n\t" /* clear flags (%eax = 0x0005) */
227 "div %b2\n\t" /* divide 5 by 2 */
228 "lahf" /* store flags into %ah */
233 /* AH is 0x02 on Cyrix after the divide.. */
234 return (unsigned char) (test >> 8) == 0x02;
238 * Detect a NexGen CPU running without BIOS hypercode new enough
239 * to have CPUID. (Thanks to Herbert Oppmann)
242 static int deep_magic_nexgen_probe(void)
246 __asm__ __volatile__ (
247 " movw $0x5555, %%ax\n"
255 : "=a" (ret) : : "cx", "dx");
259 static bool has_cpuid(void)
261 return flag_is_changeable_p(X86_EFLAGS_ID);
264 static bool has_mtrr(void)
266 return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
269 static int build_vendor_name(char *vendor_name)
271 struct cpuid_result result;
272 result = cpuid(0x00000000);
273 unsigned int *name_as_ints = (unsigned int *)vendor_name;
275 name_as_ints[0] = result.ebx;
276 name_as_ints[1] = result.edx;
277 name_as_ints[2] = result.ecx;
282 static void identify_cpu(struct cpu_device_id *cpu)
284 char vendor_name[16];
287 vendor_name[0] = '\0'; /* Unset */
288 cpu->device = 0; /* fix gcc 4.4.4 warning */
290 /* Find the id and vendor_name */
292 /* Its a 486 if we can modify the AC flag */
293 if (flag_is_changeable_p(X86_EFLAGS_AC))
294 cpu->device = 0x00000400; /* 486 */
296 cpu->device = 0x00000300; /* 386 */
297 if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
298 memcpy(vendor_name, "CyrixInstead", 13);
299 /* If we ever care we can enable cpuid here */
301 /* Detect NexGen with old hypercode */
302 else if (deep_magic_nexgen_probe())
303 memcpy(vendor_name, "NexGenDriven", 13);
308 cpuid_level = build_vendor_name(vendor_name);
309 vendor_name[12] = '\0';
311 /* Intel-defined flags: level 0x00000001 */
312 if (cpuid_level >= 0x00000001) {
313 cpu->device = cpuid_eax(0x00000001);
315 /* Have CPUID level 0 only unheard of */
316 cpu->device = 0x00000400;
319 cpu->vendor = X86_VENDOR_UNKNOWN;
320 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
321 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
322 cpu->vendor = x86_vendors[i].vendor;
328 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
330 c->x86 = (tfms >> 8) & 0xf;
331 c->x86_model = (tfms >> 4) & 0xf;
332 c->x86_mask = tfms & 0xf;
334 c->x86 += (tfms >> 20) & 0xff;
336 c->x86_model += ((tfms >> 16) & 0xF) << 4;
339 u32 cpu_get_family_model(void)
341 return gd->arch.x86_device & 0x0fff0ff0;
344 u32 cpu_get_stepping(void)
346 return gd->arch.x86_mask;
349 int x86_cpu_init_f(void)
351 const u32 em_rst = ~X86_CR0_EM;
352 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
354 if (ll_boot_init()) {
355 /* initialize FPU, reset EM, set MP and NE */
357 "movl %%cr0, %%eax\n" \
360 "movl %%eax, %%cr0\n" \
361 : : "i" (em_rst), "i" (mp_ne_set) : "eax");
364 /* identify CPU via cpuid and store the decoded info into gd->arch */
366 struct cpu_device_id cpu;
367 struct cpuinfo_x86 c;
370 get_fms(&c, cpu.device);
371 gd->arch.x86 = c.x86;
372 gd->arch.x86_vendor = cpu.vendor;
373 gd->arch.x86_model = c.x86_model;
374 gd->arch.x86_mask = c.x86_mask;
375 gd->arch.x86_device = cpu.device;
377 gd->arch.has_mtrr = has_mtrr();
379 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
380 gd->pci_ram_top = 0x80000000U;
382 /* Configure fixed range MTRRs for some legacy regions */
383 if (gd->arch.has_mtrr) {
386 mtrr_cap = native_read_msr(MTRR_CAP_MSR);
387 if (mtrr_cap & MTRR_CAP_FIX) {
388 /* Mark the VGA RAM area as uncacheable */
389 native_write_msr(MTRR_FIX_16K_A0000_MSR,
390 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
391 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
394 * Mark the PCI ROM area as cacheable to improve ROM
395 * execution performance.
397 native_write_msr(MTRR_FIX_4K_C0000_MSR,
398 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
399 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
400 native_write_msr(MTRR_FIX_4K_C8000_MSR,
401 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
402 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
403 native_write_msr(MTRR_FIX_4K_D0000_MSR,
404 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
405 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
406 native_write_msr(MTRR_FIX_4K_D8000_MSR,
407 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
408 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
410 /* Enable the fixed range MTRRs */
411 msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
415 #ifdef CONFIG_I8254_TIMER
416 /* Set up the i8254 timer if required */
423 void x86_enable_caches(void)
428 cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
432 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
434 void x86_disable_caches(void)
439 cr0 |= X86_CR0_NW | X86_CR0_CD;
444 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
446 int x86_init_cache(void)
452 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
454 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
456 printf("resetting ...\n");
460 disable_interrupts();
467 void flush_cache(unsigned long dummy1, unsigned long dummy2)
472 __weak void reset_cpu(ulong addr)
474 /* Do a hard reset through the chipset's reset control register */
475 outb(SYS_RST | RST_CPU, IO_PORT_RESET);
480 void x86_full_reset(void)
482 outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
485 int dcache_status(void)
487 return !(read_cr0() & X86_CR0_CD);
490 /* Define these functions to allow ehch-hcd to function */
491 void flush_dcache_range(unsigned long start, unsigned long stop)
495 void invalidate_dcache_range(unsigned long start, unsigned long stop)
499 void dcache_enable(void)
504 void dcache_disable(void)
509 void icache_enable(void)
513 void icache_disable(void)
517 int icache_status(void)
522 void cpu_enable_paging_pae(ulong cr3)
524 __asm__ __volatile__(
525 /* Load the page table address */
528 "movl %%cr4, %%eax\n"
529 "orl $0x00000020, %%eax\n"
530 "movl %%eax, %%cr4\n"
532 "movl %%cr0, %%eax\n"
533 "orl $0x80000000, %%eax\n"
534 "movl %%eax, %%cr0\n"
540 void cpu_disable_paging_pae(void)
542 /* Turn off paging */
543 __asm__ __volatile__ (
545 "movl %%cr0, %%eax\n"
546 "andl $0x7fffffff, %%eax\n"
547 "movl %%eax, %%cr0\n"
549 "movl %%cr4, %%eax\n"
550 "andl $0xffffffdf, %%eax\n"
551 "movl %%eax, %%cr4\n"
557 static bool can_detect_long_mode(void)
559 return cpuid_eax(0x80000000) > 0x80000000UL;
562 static bool has_long_mode(void)
564 return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
567 int cpu_has_64bit(void)
569 return has_cpuid() && can_detect_long_mode() &&
573 const char *cpu_vendor_name(int vendor)
576 name = "<invalid cpu vendor>";
577 if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
578 (x86_vendor_name[vendor] != 0))
579 name = x86_vendor_name[vendor];
584 char *cpu_get_name(char *name)
586 unsigned int *name_as_ints = (unsigned int *)name;
587 struct cpuid_result regs;
591 /* This bit adds up to 48 bytes */
592 for (i = 0; i < 3; i++) {
593 regs = cpuid(0x80000002 + i);
594 name_as_ints[i * 4 + 0] = regs.eax;
595 name_as_ints[i * 4 + 1] = regs.ebx;
596 name_as_ints[i * 4 + 2] = regs.ecx;
597 name_as_ints[i * 4 + 3] = regs.edx;
599 name[CPU_MAX_NAME_LEN - 1] = '\0';
601 /* Skip leading spaces. */
609 int default_print_cpuinfo(void)
611 printf("CPU: %s, vendor %s, device %xh\n",
612 cpu_has_64bit() ? "x86_64" : "x86",
613 cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
618 #define PAGETABLE_SIZE (6 * 4096)
621 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
623 * @pgtable: Pointer to a 24iKB block of memory
625 static void build_pagetable(uint32_t *pgtable)
629 memset(pgtable, '\0', PAGETABLE_SIZE);
631 /* Level 4 needs a single entry */
632 pgtable[0] = (uint32_t)&pgtable[1024] + 7;
634 /* Level 3 has one 64-bit entry for each GiB of memory */
635 for (i = 0; i < 4; i++) {
636 pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
640 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
641 for (i = 0; i < 2048; i++)
642 pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
645 int cpu_jump_to_64bit(ulong setup_base, ulong target)
649 pgtable = memalign(4096, PAGETABLE_SIZE);
653 build_pagetable(pgtable);
654 cpu_call64((ulong)pgtable, setup_base, target);
660 void show_boot_progress(int val)
662 outb(val, POST_PORT);
665 #ifndef CONFIG_SYS_COREBOOT
667 * Implement a weak default function for boards that optionally
668 * need to clean up the system before jumping to the kernel.
670 __weak void board_final_cleanup(void)
674 int last_stage_init(void)
678 board_final_cleanup();
685 static int enable_smis(struct udevice *cpu, void *unused)
690 static struct mp_flight_record mp_steps[] = {
691 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
692 /* Wait for APs to finish initialization before proceeding */
693 MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
696 static int x86_mp_init(void)
698 struct mp_params mp_params;
700 mp_params.parallel_microcode_load = 0,
701 mp_params.flight_plan = &mp_steps[0];
702 mp_params.num_records = ARRAY_SIZE(mp_steps);
703 mp_params.microcode_pointer = 0;
705 if (mp_init(&mp_params)) {
706 printf("Warning: MP init failure\n");
714 static int x86_init_cpus(void)
717 debug("Init additional CPUs\n");
723 * This causes the cpu-x86 driver to be probed.
724 * We don't check return value here as we want to allow boards
725 * which have not been converted to use cpu uclass driver to boot.
727 uclass_first_device(UCLASS_CPU, &dev);
741 ret = x86_init_cpus();
746 * Set up the northbridge, PCH and LPC if available. Note that these
747 * may have had some limited pre-relocation init if they were probed
748 * before relocation, but this is post relocation.
750 uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
751 uclass_first_device(UCLASS_PCH, &dev);
752 uclass_first_device(UCLASS_LPC, &dev);
757 #ifndef CONFIG_EFI_STUB
758 int reserve_arch(void)
760 #ifdef CONFIG_ENABLE_MRC_CACHE
764 #ifdef CONFIG_SEABIOS
765 high_table_reserve();