2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
12 #include <as-layout.h>
13 #include <kern_util.h>
15 #include <sysdep/mcontext.h>
18 void (*sig_info[NSIG])(int, siginfo_t *, struct uml_pt_regs *) = {
19 [SIGTRAP] = relay_signal,
20 [SIGFPE] = relay_signal,
21 [SIGILL] = relay_signal,
23 [SIGBUS] = bus_handler,
24 [SIGSEGV] = segv_handler,
25 [SIGIO] = sigio_handler,
26 [SIGVTALRM] = timer_handler };
28 static void sig_handler_common(int sig, siginfo_t *si, mcontext_t *mc)
31 int save_errno = errno;
35 /* For segfaults, we want the data from the sigcontext. */
36 get_regs_from_mc(&r, mc);
37 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
40 /* enable signals if sig isn't IRQ signal */
41 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
44 (*sig_info[sig])(sig, si, &r);
50 * These are the asynchronous signals. SIGPROF is excluded because we want to
51 * be able to profile all of UML, not just the non-critical sections. If
52 * profiling is not thread-safe, then that is not my problem. We can disable
53 * profiling when SMP is enabled in that case.
56 #define SIGIO_MASK (1 << SIGIO_BIT)
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
61 static int signals_enabled;
62 static unsigned int signals_pending;
64 void sig_handler(int sig, siginfo_t *si, mcontext_t *mc)
68 enabled = signals_enabled;
69 if (!enabled && (sig == SIGIO)) {
70 signals_pending |= SIGIO_MASK;
76 sig_handler_common(sig, si, mc);
81 static void real_alarm_handler(mcontext_t *mc)
83 struct uml_pt_regs regs;
86 get_regs_from_mc(®s, mc);
89 timer_handler(SIGVTALRM, NULL, ®s);
92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
96 enabled = signals_enabled;
97 if (!signals_enabled) {
98 signals_pending |= SIGVTALRM_MASK;
104 real_alarm_handler(mc);
105 set_signals(enabled);
108 void timer_init(void)
110 set_handler(SIGVTALRM);
113 void set_sigstack(void *sig_stack, int size)
115 stack_t stack = ((stack_t) { .ss_flags = 0,
116 .ss_sp = (__ptr_t) sig_stack,
117 .ss_size = size - sizeof(void *) });
119 if (sigaltstack(&stack, NULL) != 0)
120 panic("enabling signal stack failed, errno = %d\n", errno);
123 static void (*handlers[_NSIG])(int sig, siginfo_t *si, mcontext_t *mc) = {
124 [SIGSEGV] = sig_handler,
125 [SIGBUS] = sig_handler,
126 [SIGILL] = sig_handler,
127 [SIGFPE] = sig_handler,
128 [SIGTRAP] = sig_handler,
130 [SIGIO] = sig_handler,
131 [SIGWINCH] = sig_handler,
132 [SIGVTALRM] = alarm_handler
136 static void hard_handler(int sig, siginfo_t *si, void *p)
138 struct ucontext *uc = p;
139 mcontext_t *mc = &uc->uc_mcontext;
140 unsigned long pending = 1UL << sig;
146 * pending comes back with one bit set for each
147 * interrupt that arrived while setting up the stack,
148 * plus a bit for this interrupt, plus the zero bit is
149 * set if this is a nested interrupt.
150 * If bail is true, then we interrupted another
151 * handler setting up the stack. In this case, we
152 * have to return, and the upper handler will deal
153 * with this interrupt.
155 bail = to_irq_stack(&pending);
159 nested = pending & 1;
162 while ((sig = ffs(pending)) != 0){
164 pending &= ~(1 << sig);
165 (*handlers[sig])(sig, si, mc);
169 * Again, pending comes back with a mask of signals
170 * that arrived while tearing down the stack. If this
171 * is non-zero, we just go back, set up the stack
172 * again, and handle the new interrupts.
175 pending = from_irq_stack(nested);
179 void set_handler(int sig)
181 struct sigaction action;
182 int flags = SA_SIGINFO | SA_ONSTACK;
185 action.sa_sigaction = hard_handler;
188 sigemptyset(&action.sa_mask);
189 sigaddset(&action.sa_mask, SIGVTALRM);
190 sigaddset(&action.sa_mask, SIGIO);
191 sigaddset(&action.sa_mask, SIGWINCH);
196 if (sigismember(&action.sa_mask, sig))
197 flags |= SA_RESTART; /* if it's an irq signal */
199 action.sa_flags = flags;
200 action.sa_restorer = NULL;
201 if (sigaction(sig, &action, NULL) < 0)
202 panic("sigaction failed - errno = %d\n", errno);
204 sigemptyset(&sig_mask);
205 sigaddset(&sig_mask, sig);
206 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
207 panic("sigprocmask failed - errno = %d\n", errno);
210 int change_sig(int signal, int on)
214 sigemptyset(&sigset);
215 sigaddset(&sigset, signal);
216 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
222 void block_signals(void)
226 * This must return with signals disabled, so this barrier
227 * ensures that writes are flushed out before the return.
228 * This might matter if gcc figures out how to inline this and
229 * decides to shuffle this code into the caller.
234 void unblock_signals(void)
238 if (signals_enabled == 1)
242 * We loop because the IRQ handler returns with interrupts off. So,
243 * interrupts may have arrived and we need to re-enable them and
244 * recheck signals_pending.
248 * Save and reset save_pending after enabling signals. This
249 * way, signals_pending won't be changed while we're reading it.
254 * Setting signals_enabled and reading signals_pending must
255 * happen in this order.
259 save_pending = signals_pending;
260 if (save_pending == 0)
266 * We have pending interrupts, so disable signals, as the
267 * handlers expect them off when they are called. They will
268 * be enabled again above.
274 * Deal with SIGIO first because the alarm handler might
275 * schedule, leaving the pending SIGIO stranded until we come
278 * SIGIO's handler doesn't use siginfo or mcontext,
279 * so they can be NULL.
281 if (save_pending & SIGIO_MASK)
282 sig_handler_common(SIGIO, NULL, NULL);
284 if (save_pending & SIGVTALRM_MASK)
285 real_alarm_handler(NULL);
289 int get_signals(void)
291 return signals_enabled;
294 int set_signals(int enable)
297 if (signals_enabled == enable)
300 ret = signals_enabled;
303 else block_signals();