2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
37 * Initialization flow and process
38 * -------------------------------
40 * This files contains the routines to search for PCI buses,
41 * enumerate the buses, and configure any attached devices.
43 * There are two entry points here:
45 * This sets up the pci_controller structs, and opens the
46 * FDs to the hypervisor. This is called from setup_arch() early
47 * in the boot process.
49 * This probes the PCI bus(es) for any attached hardware. It's
50 * called by subsys_initcall. All of the real work is done by the
51 * generic Linux PCI layer.
56 * This flag tells if the platform is TILEmpower that needs
57 * special configuration for the PLX switch chip.
59 int __write_once tile_plx_gen1;
61 static struct pci_controller controllers[TILE_NUM_PCIE];
62 static int num_controllers;
63 static int pci_scan_flags[TILE_NUM_PCIE];
65 static struct pci_ops tile_cfg_ops;
69 * We don't need to worry about the alignment of resources.
71 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
72 resource_size_t size, resource_size_t align)
76 EXPORT_SYMBOL(pcibios_align_resource);
79 * Open a FD to the hypervisor PCI device.
81 * controller_id is the controller number, config type is 0 or 1 for
82 * config0 or config1 operations.
84 static int __devinit tile_pcie_open(int controller_id, int config_type)
89 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
91 fd = hv_dev_open((HV_VirtAddr)filename, 0);
98 * Get the IRQ numbers from the HV and set up the handlers for them.
100 static int __devinit tile_init_irqs(int controller_id,
101 struct pci_controller *controller)
107 struct pcie_rc_config rc_config;
109 sprintf(filename, "pcie/%d/ctl", controller_id);
110 fd = hv_dev_open((HV_VirtAddr)filename, 0);
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
115 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
118 if (ret != sizeof(rc_config)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config), ret);
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller->irq_base = rc_config.intr;
126 for (x = 0; x < 4; x++)
127 tile_irq_activate(rc_config.intr + x,
130 if (rc_config.plx_gen1)
131 controller->plx_gen1 = 1;
137 * First initialization entry point, called from setup_arch().
139 * Find valid controllers and fill in pci_controller structs for each
142 * Returns the number of controllers discovered.
144 int __init tile_pci_init(void)
148 pr_info("PCI: Searching for controllers...\n");
150 /* Re-init number of PCIe controllers to support hot-plug feature. */
153 /* Do any configuration we need before using the PCIe */
155 for (i = 0; i < TILE_NUM_PCIE; i++) {
157 * To see whether we need a real config op based on
158 * the results of pcibios_init(), to support PCIe hot-plug.
160 if (pci_scan_flags[i] == 0) {
165 struct pci_controller *controller;
168 * Open the fd to the HV. If it fails then this
169 * device doesn't exist.
171 hv_cfg_fd0 = tile_pcie_open(i, 0);
174 hv_cfg_fd1 = tile_pcie_open(i, 1);
175 if (hv_cfg_fd1 < 0) {
176 pr_err("PCI: Couldn't open config fd to HV "
177 "for controller %d\n", i);
181 sprintf(name, "pcie/%d/mem", i);
182 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
184 pr_err("PCI: Could not open mem fd to HV!\n");
188 pr_info("PCI: Found PCI controller #%d\n", i);
190 controller = &controllers[i];
192 controller->index = i;
193 controller->hv_cfg_fd[0] = hv_cfg_fd0;
194 controller->hv_cfg_fd[1] = hv_cfg_fd1;
195 controller->hv_mem_fd = hv_mem_fd;
196 controller->first_busno = 0;
197 controller->last_busno = 0xff;
198 controller->ops = &tile_cfg_ops;
205 hv_dev_close(hv_cfg_fd0);
207 hv_dev_close(hv_cfg_fd1);
209 hv_dev_close(hv_mem_fd);
215 * Before using the PCIe, see if we need to do any platform-specific
216 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
218 for (i = 0; i < num_controllers; i++) {
219 struct pci_controller *controller = &controllers[i];
221 if (controller->plx_gen1)
225 return num_controllers;
229 * (pin - 1) converts from the PCI standard's [1:4] convention to
230 * a normal [0:3] range.
232 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
234 struct pci_controller *controller =
235 (struct pci_controller *)dev->sysdata;
236 return (pin - 1) + controller->irq_base;
240 static void __devinit fixup_read_and_payload_sizes(void)
242 struct pci_dev *dev = NULL;
243 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
244 int max_read_size = 0x2; /* Limit to 512 byte reads. */
247 /* Scan for the smallest maximum payload size. */
248 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
252 if (!pci_is_pcie(dev))
255 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &devcap);
256 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
257 if (max_payload < smallest_max_payload)
258 smallest_max_payload = max_payload;
261 /* Now, set the max_payload_size for all devices to that value. */
262 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
263 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL)
264 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
265 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
271 * Second PCI initialization entry point, called by subsys_initcall.
273 * The controllers have been set up by the time we get here, by a call to
276 int __init pcibios_init(void)
280 pr_info("PCI: Probing PCI hardware\n");
283 * Delay a bit in case devices aren't ready. Some devices are
284 * known to require at least 20ms here, but we use a more
285 * conservative value.
289 /* Scan all of the recorded PCI controllers. */
290 for (i = 0; i < TILE_NUM_PCIE; i++) {
292 * Do real pcibios init ops if the controller is initialized
293 * by tile_pci_init() successfully and not initialized by
294 * pcibios_init() yet to support PCIe hot-plug.
296 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
297 struct pci_controller *controller = &controllers[i];
299 LIST_HEAD(resources);
301 if (tile_init_irqs(i, controller)) {
302 pr_err("PCI: Could not initialize IRQs\n");
306 pr_info("PCI: initializing controller #%d\n", i);
309 * This comes from the generic Linux PCI driver.
311 * It reads the PCI tree for this bus into the Linux
314 * This is inlined in linux/pci.h and calls into
315 * pci_scan_bus_parented() in probe.c.
317 pci_add_resource(&resources, &ioport_resource);
318 pci_add_resource(&resources, &iomem_resource);
319 bus = pci_scan_root_bus(NULL, 0, controller->ops, controller, &resources);
320 controller->root_bus = bus;
321 controller->last_busno = bus->busn_res.end;
325 /* Do machine dependent PCI interrupt routing */
326 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
329 * This comes from the generic Linux PCI driver.
331 * It allocates all of the resources (I/O memory, etc)
332 * associated with the devices read in above.
334 pci_assign_unassigned_resources();
336 /* Configure the max_read_size and max_payload_size values. */
337 fixup_read_and_payload_sizes();
339 /* Record the I/O resources in the PCI controller structure. */
340 for (i = 0; i < TILE_NUM_PCIE; i++) {
342 * Do real pcibios init ops if the controller is initialized
343 * by tile_pci_init() successfully and not initialized by
344 * pcibios_init() yet to support PCIe hot-plug.
346 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
347 struct pci_bus *root_bus = controllers[i].root_bus;
348 struct pci_bus *next_bus;
351 list_for_each_entry(dev, &root_bus->devices, bus_list) {
353 * Find the PCI host controller, ie. the 1st
356 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
357 (PCI_SLOT(dev->devfn) == 0)) {
358 next_bus = dev->subordinate;
359 controllers[i].mem_resources[0] =
360 *next_bus->resource[0];
361 controllers[i].mem_resources[1] =
362 *next_bus->resource[1];
363 controllers[i].mem_resources[2] =
364 *next_bus->resource[2];
367 pci_scan_flags[i] = 1;
377 subsys_initcall(pcibios_init);
380 * No bus fixups needed.
382 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
384 /* Nothing needs to be done. */
387 void pcibios_set_master(struct pci_dev *dev)
389 /* No special bus mastering setup handling. */
393 * Enable memory and/or address decoding, as appropriate, for the
394 * device described by the 'dev' struct.
396 * This is called from the generic PCI layer, and can be called
397 * for bridges or endpoints.
399 int pcibios_enable_device(struct pci_dev *dev, int mask)
406 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
408 pci_read_config_word(dev, PCI_COMMAND, &cmd);
410 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
412 * For bridges, we enable both memory and I/O decoding
415 cmd |= PCI_COMMAND_IO;
416 cmd |= PCI_COMMAND_MEMORY;
419 * For endpoints, we enable memory and/or I/O decoding
420 * only if they have a memory resource of that type.
422 for (i = 0; i < 6; i++) {
423 r = &dev->resource[i];
424 if (r->flags & IORESOURCE_UNSET) {
425 pr_err("PCI: Device %s not available "
426 "because of resource collisions\n",
430 if (r->flags & IORESOURCE_IO)
431 cmd |= PCI_COMMAND_IO;
432 if (r->flags & IORESOURCE_MEM)
433 cmd |= PCI_COMMAND_MEMORY;
438 * We only write the command if it changed.
441 pci_write_config_word(dev, PCI_COMMAND, cmd);
445 /****************************************************************
447 * Tile PCI config space read/write routines
449 ****************************************************************/
452 * These are the normal read and write ops
453 * These are expanded with macros from pci_bus_read_config_byte() etc.
455 * devfn is the combined PCI slot & function.
457 * offset is in bytes, from the start of config space for the
458 * specified bus & slot.
461 static int __devinit tile_cfg_read(struct pci_bus *bus,
467 struct pci_controller *controller = bus->sysdata;
468 int busnum = bus->number & 0xff;
469 int slot = (devfn >> 3) & 0x1f;
470 int function = devfn & 0x7;
475 * There is no bridge between the Tile and bus 0, so we
476 * use config0 to talk to bus 0.
478 * If we're talking to a bus other than zero then we
479 * must have found a bridge.
483 * We fake an empty slot for (busnum == 0) && (slot > 0),
484 * since there is only one slot on bus 0.
493 addr = busnum << 20; /* Bus in 27:20 */
494 addr |= slot << 15; /* Slot (device) in 19:15 */
495 addr |= function << 12; /* Function is in 14:12 */
496 addr |= (offset & 0xFFF); /* byte address in 0:11 */
498 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
499 (HV_VirtAddr)(val), size, addr);
504 * See tile_cfg_read() for relevant comments.
505 * Note that "val" is the value to write, not a pointer to that value.
507 static int __devinit tile_cfg_write(struct pci_bus *bus,
513 struct pci_controller *controller = bus->sysdata;
514 int busnum = bus->number & 0xff;
515 int slot = (devfn >> 3) & 0x1f;
516 int function = devfn & 0x7;
519 HV_VirtAddr valp = (HV_VirtAddr)&val;
522 * For bus 0 slot 0 we use config 0 accesses.
526 * We fake an empty slot for (busnum == 0) && (slot > 0),
527 * since there is only one slot on bus 0.
534 addr = busnum << 20; /* Bus in 27:20 */
535 addr |= slot << 15; /* Slot (device) in 19:15 */
536 addr |= function << 12; /* Function is in 14:12 */
537 addr |= (offset & 0xFFF); /* byte address in 0:11 */
540 /* Point to the correct part of the 32-bit "val". */
544 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
549 static struct pci_ops tile_cfg_ops = {
550 .read = tile_cfg_read,
551 .write = tile_cfg_write,
556 * In the following, each PCI controller's mem_resources[1]
557 * represents its (non-prefetchable) PCI memory resource.
558 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
559 * prefetchable PCI memory resources, respectively.
560 * For more details, see pci_setup_bridge() in setup-bus.c.
561 * By comparing the target PCI memory address against the
562 * end address of controller 0, we can determine the controller
563 * that should accept the PCI memory access.
565 #define TILE_READ(size, type) \
566 type _tile_read##size(unsigned long addr) \
570 if (addr > controllers[0].mem_resources[1].end && \
571 addr > controllers[0].mem_resources[2].end) \
573 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
574 (HV_VirtAddr)(&val), sizeof(type), addr)) \
575 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
576 sizeof(type), addr); \
579 EXPORT_SYMBOL(_tile_read##size)
586 #define TILE_WRITE(size, type) \
587 void _tile_write##size(type val, unsigned long addr) \
590 if (addr > controllers[0].mem_resources[1].end && \
591 addr > controllers[0].mem_resources[2].end) \
593 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
594 (HV_VirtAddr)(&val), sizeof(type), addr)) \
595 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
596 sizeof(type), addr); \
598 EXPORT_SYMBOL(_tile_write##size)