Merge branch 'bcmring/cleanup' into bcmring/removal
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / tile / kernel / pci-dma.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/swiotlb.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <asm/tlbflush.h>
21 #include <asm/homecache.h>
22
23 /* Generic DMA mapping functions: */
24
25 /*
26  * Allocate what Linux calls "coherent" memory.  On TILEPro this is
27  * uncached memory; on TILE-Gx it is hash-for-home memory.
28  */
29 #ifdef __tilepro__
30 #define PAGE_HOME_DMA PAGE_HOME_UNCACHED
31 #else
32 #define PAGE_HOME_DMA PAGE_HOME_HASH
33 #endif
34
35 static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
36                                      dma_addr_t *dma_handle, gfp_t gfp,
37                                      struct dma_attrs *attrs)
38 {
39         u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
40         int node = dev_to_node(dev);
41         int order = get_order(size);
42         struct page *pg;
43         dma_addr_t addr;
44
45         gfp |= __GFP_ZERO;
46
47         /*
48          * If the mask specifies that the memory be in the first 4 GB, then
49          * we force the allocation to come from the DMA zone.  We also
50          * force the node to 0 since that's the only node where the DMA
51          * zone isn't empty.  If the mask size is smaller than 32 bits, we
52          * may still not be able to guarantee a suitable memory address, in
53          * which case we will return NULL.  But such devices are uncommon.
54          */
55         if (dma_mask <= DMA_BIT_MASK(32)) {
56                 gfp |= GFP_DMA;
57                 node = 0;
58         }
59
60         pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
61         if (pg == NULL)
62                 return NULL;
63
64         addr = page_to_phys(pg);
65         if (addr + size > dma_mask) {
66                 __homecache_free_pages(pg, order);
67                 return NULL;
68         }
69
70         *dma_handle = addr;
71
72         return page_address(pg);
73 }
74
75 /*
76  * Free memory that was allocated with tile_dma_alloc_coherent.
77  */
78 static void tile_dma_free_coherent(struct device *dev, size_t size,
79                                    void *vaddr, dma_addr_t dma_handle,
80                                    struct dma_attrs *attrs)
81 {
82         homecache_free_pages((unsigned long)vaddr, get_order(size));
83 }
84
85 /*
86  * The map routines "map" the specified address range for DMA
87  * accesses.  The memory belongs to the device after this call is
88  * issued, until it is unmapped with dma_unmap_single.
89  *
90  * We don't need to do any mapping, we just flush the address range
91  * out of the cache and return a DMA address.
92  *
93  * The unmap routines do whatever is necessary before the processor
94  * accesses the memory again, and must be called before the driver
95  * touches the memory.  We can get away with a cache invalidate if we
96  * can count on nothing having been touched.
97  */
98
99 /* Set up a single page for DMA access. */
100 static void __dma_prep_page(struct page *page, unsigned long offset,
101                             size_t size, enum dma_data_direction direction)
102 {
103         /*
104          * Flush the page from cache if necessary.
105          * On tilegx, data is delivered to hash-for-home L3; on tilepro,
106          * data is delivered direct to memory.
107          *
108          * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
109          * this to be a "flush" not a "finv" and keep some of the
110          * state in cache across the DMA operation, but it doesn't seem
111          * worth creating the necessary flush_buffer_xxx() infrastructure.
112          */
113         int home = page_home(page);
114         switch (home) {
115         case PAGE_HOME_HASH:
116 #ifdef __tilegx__
117                 return;
118 #endif
119                 break;
120         case PAGE_HOME_UNCACHED:
121 #ifdef __tilepro__
122                 return;
123 #endif
124                 break;
125         case PAGE_HOME_IMMUTABLE:
126                 /* Should be going to the device only. */
127                 BUG_ON(direction == DMA_FROM_DEVICE ||
128                        direction == DMA_BIDIRECTIONAL);
129                 return;
130         case PAGE_HOME_INCOHERENT:
131                 /* Incoherent anyway, so no need to work hard here. */
132                 return;
133         default:
134                 BUG_ON(home < 0 || home >= NR_CPUS);
135                 break;
136         }
137         homecache_finv_page(page);
138
139 #ifdef DEBUG_ALIGNMENT
140         /* Warn if the region isn't cacheline aligned. */
141         if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
142                 pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
143                         PFN_PHYS(page_to_pfn(page)) + offset, size);
144 #endif
145 }
146
147 /* Make the page ready to be read by the core. */
148 static void __dma_complete_page(struct page *page, unsigned long offset,
149                                 size_t size, enum dma_data_direction direction)
150 {
151 #ifdef __tilegx__
152         switch (page_home(page)) {
153         case PAGE_HOME_HASH:
154                 /* I/O device delivered data the way the cpu wanted it. */
155                 break;
156         case PAGE_HOME_INCOHERENT:
157                 /* Incoherent anyway, so no need to work hard here. */
158                 break;
159         case PAGE_HOME_IMMUTABLE:
160                 /* Extra read-only copies are not a problem. */
161                 break;
162         default:
163                 /* Flush the bogus hash-for-home I/O entries to memory. */
164                 homecache_finv_map_page(page, PAGE_HOME_HASH);
165                 break;
166         }
167 #endif
168 }
169
170 static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
171                                 enum dma_data_direction direction)
172 {
173         struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
174         unsigned long offset = dma_addr & (PAGE_SIZE - 1);
175         size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
176
177         while (size != 0) {
178                 __dma_prep_page(page, offset, bytes, direction);
179                 size -= bytes;
180                 ++page;
181                 offset = 0;
182                 bytes = min((size_t)PAGE_SIZE, size);
183         }
184 }
185
186 static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
187                                     enum dma_data_direction direction)
188 {
189         struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
190         unsigned long offset = dma_addr & (PAGE_SIZE - 1);
191         size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
192
193         while (size != 0) {
194                 __dma_complete_page(page, offset, bytes, direction);
195                 size -= bytes;
196                 ++page;
197                 offset = 0;
198                 bytes = min((size_t)PAGE_SIZE, size);
199         }
200 }
201
202 static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
203                            int nents, enum dma_data_direction direction,
204                            struct dma_attrs *attrs)
205 {
206         struct scatterlist *sg;
207         int i;
208
209         BUG_ON(!valid_dma_direction(direction));
210
211         WARN_ON(nents == 0 || sglist->length == 0);
212
213         for_each_sg(sglist, sg, nents, i) {
214                 sg->dma_address = sg_phys(sg);
215                 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
216 #ifdef CONFIG_NEED_SG_DMA_LENGTH
217                 sg->dma_length = sg->length;
218 #endif
219         }
220
221         return nents;
222 }
223
224 static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
225                               int nents, enum dma_data_direction direction,
226                               struct dma_attrs *attrs)
227 {
228         struct scatterlist *sg;
229         int i;
230
231         BUG_ON(!valid_dma_direction(direction));
232         for_each_sg(sglist, sg, nents, i) {
233                 sg->dma_address = sg_phys(sg);
234                 __dma_complete_pa_range(sg->dma_address, sg->length,
235                                         direction);
236         }
237 }
238
239 static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
240                                     unsigned long offset, size_t size,
241                                     enum dma_data_direction direction,
242                                     struct dma_attrs *attrs)
243 {
244         BUG_ON(!valid_dma_direction(direction));
245
246         BUG_ON(offset + size > PAGE_SIZE);
247         __dma_prep_page(page, offset, size, direction);
248
249         return page_to_pa(page) + offset;
250 }
251
252 static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
253                                 size_t size, enum dma_data_direction direction,
254                                 struct dma_attrs *attrs)
255 {
256         BUG_ON(!valid_dma_direction(direction));
257
258         __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
259                             dma_address & PAGE_OFFSET, size, direction);
260 }
261
262 static void tile_dma_sync_single_for_cpu(struct device *dev,
263                                          dma_addr_t dma_handle,
264                                          size_t size,
265                                          enum dma_data_direction direction)
266 {
267         BUG_ON(!valid_dma_direction(direction));
268
269         __dma_complete_pa_range(dma_handle, size, direction);
270 }
271
272 static void tile_dma_sync_single_for_device(struct device *dev,
273                                             dma_addr_t dma_handle, size_t size,
274                                             enum dma_data_direction direction)
275 {
276         __dma_prep_pa_range(dma_handle, size, direction);
277 }
278
279 static void tile_dma_sync_sg_for_cpu(struct device *dev,
280                                      struct scatterlist *sglist, int nelems,
281                                      enum dma_data_direction direction)
282 {
283         struct scatterlist *sg;
284         int i;
285
286         BUG_ON(!valid_dma_direction(direction));
287         WARN_ON(nelems == 0 || sglist->length == 0);
288
289         for_each_sg(sglist, sg, nelems, i) {
290                 dma_sync_single_for_cpu(dev, sg->dma_address,
291                                         sg_dma_len(sg), direction);
292         }
293 }
294
295 static void tile_dma_sync_sg_for_device(struct device *dev,
296                                         struct scatterlist *sglist, int nelems,
297                                         enum dma_data_direction direction)
298 {
299         struct scatterlist *sg;
300         int i;
301
302         BUG_ON(!valid_dma_direction(direction));
303         WARN_ON(nelems == 0 || sglist->length == 0);
304
305         for_each_sg(sglist, sg, nelems, i) {
306                 dma_sync_single_for_device(dev, sg->dma_address,
307                                            sg_dma_len(sg), direction);
308         }
309 }
310
311 static inline int
312 tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
313 {
314         return 0;
315 }
316
317 static inline int
318 tile_dma_supported(struct device *dev, u64 mask)
319 {
320         return 1;
321 }
322
323 static struct dma_map_ops tile_default_dma_map_ops = {
324         .alloc = tile_dma_alloc_coherent,
325         .free = tile_dma_free_coherent,
326         .map_page = tile_dma_map_page,
327         .unmap_page = tile_dma_unmap_page,
328         .map_sg = tile_dma_map_sg,
329         .unmap_sg = tile_dma_unmap_sg,
330         .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
331         .sync_single_for_device = tile_dma_sync_single_for_device,
332         .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
333         .sync_sg_for_device = tile_dma_sync_sg_for_device,
334         .mapping_error = tile_dma_mapping_error,
335         .dma_supported = tile_dma_supported
336 };
337
338 struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
339 EXPORT_SYMBOL(tile_dma_map_ops);
340
341 /* Generic PCI DMA mapping functions */
342
343 static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
344                                          dma_addr_t *dma_handle, gfp_t gfp,
345                                          struct dma_attrs *attrs)
346 {
347         int node = dev_to_node(dev);
348         int order = get_order(size);
349         struct page *pg;
350         dma_addr_t addr;
351
352         gfp |= __GFP_ZERO;
353
354         pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
355         if (pg == NULL)
356                 return NULL;
357
358         addr = page_to_phys(pg);
359
360         *dma_handle = phys_to_dma(dev, addr);
361
362         return page_address(pg);
363 }
364
365 /*
366  * Free memory that was allocated with tile_pci_dma_alloc_coherent.
367  */
368 static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
369                                        void *vaddr, dma_addr_t dma_handle,
370                                        struct dma_attrs *attrs)
371 {
372         homecache_free_pages((unsigned long)vaddr, get_order(size));
373 }
374
375 static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
376                                int nents, enum dma_data_direction direction,
377                                struct dma_attrs *attrs)
378 {
379         struct scatterlist *sg;
380         int i;
381
382         BUG_ON(!valid_dma_direction(direction));
383
384         WARN_ON(nents == 0 || sglist->length == 0);
385
386         for_each_sg(sglist, sg, nents, i) {
387                 sg->dma_address = sg_phys(sg);
388                 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
389
390                 sg->dma_address = phys_to_dma(dev, sg->dma_address);
391 #ifdef CONFIG_NEED_SG_DMA_LENGTH
392                 sg->dma_length = sg->length;
393 #endif
394         }
395
396         return nents;
397 }
398
399 static void tile_pci_dma_unmap_sg(struct device *dev,
400                                   struct scatterlist *sglist, int nents,
401                                   enum dma_data_direction direction,
402                                   struct dma_attrs *attrs)
403 {
404         struct scatterlist *sg;
405         int i;
406
407         BUG_ON(!valid_dma_direction(direction));
408         for_each_sg(sglist, sg, nents, i) {
409                 sg->dma_address = sg_phys(sg);
410                 __dma_complete_pa_range(sg->dma_address, sg->length,
411                                         direction);
412         }
413 }
414
415 static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
416                                         unsigned long offset, size_t size,
417                                         enum dma_data_direction direction,
418                                         struct dma_attrs *attrs)
419 {
420         BUG_ON(!valid_dma_direction(direction));
421
422         BUG_ON(offset + size > PAGE_SIZE);
423         __dma_prep_page(page, offset, size, direction);
424
425         return phys_to_dma(dev, page_to_pa(page) + offset);
426 }
427
428 static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
429                                     size_t size,
430                                     enum dma_data_direction direction,
431                                     struct dma_attrs *attrs)
432 {
433         BUG_ON(!valid_dma_direction(direction));
434
435         dma_address = dma_to_phys(dev, dma_address);
436
437         __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
438                             dma_address & PAGE_OFFSET, size, direction);
439 }
440
441 static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
442                                              dma_addr_t dma_handle,
443                                              size_t size,
444                                              enum dma_data_direction direction)
445 {
446         BUG_ON(!valid_dma_direction(direction));
447
448         dma_handle = dma_to_phys(dev, dma_handle);
449
450         __dma_complete_pa_range(dma_handle, size, direction);
451 }
452
453 static void tile_pci_dma_sync_single_for_device(struct device *dev,
454                                                 dma_addr_t dma_handle,
455                                                 size_t size,
456                                                 enum dma_data_direction
457                                                 direction)
458 {
459         dma_handle = dma_to_phys(dev, dma_handle);
460
461         __dma_prep_pa_range(dma_handle, size, direction);
462 }
463
464 static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
465                                          struct scatterlist *sglist,
466                                          int nelems,
467                                          enum dma_data_direction direction)
468 {
469         struct scatterlist *sg;
470         int i;
471
472         BUG_ON(!valid_dma_direction(direction));
473         WARN_ON(nelems == 0 || sglist->length == 0);
474
475         for_each_sg(sglist, sg, nelems, i) {
476                 dma_sync_single_for_cpu(dev, sg->dma_address,
477                                         sg_dma_len(sg), direction);
478         }
479 }
480
481 static void tile_pci_dma_sync_sg_for_device(struct device *dev,
482                                             struct scatterlist *sglist,
483                                             int nelems,
484                                             enum dma_data_direction direction)
485 {
486         struct scatterlist *sg;
487         int i;
488
489         BUG_ON(!valid_dma_direction(direction));
490         WARN_ON(nelems == 0 || sglist->length == 0);
491
492         for_each_sg(sglist, sg, nelems, i) {
493                 dma_sync_single_for_device(dev, sg->dma_address,
494                                            sg_dma_len(sg), direction);
495         }
496 }
497
498 static inline int
499 tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
500 {
501         return 0;
502 }
503
504 static inline int
505 tile_pci_dma_supported(struct device *dev, u64 mask)
506 {
507         return 1;
508 }
509
510 static struct dma_map_ops tile_pci_default_dma_map_ops = {
511         .alloc = tile_pci_dma_alloc_coherent,
512         .free = tile_pci_dma_free_coherent,
513         .map_page = tile_pci_dma_map_page,
514         .unmap_page = tile_pci_dma_unmap_page,
515         .map_sg = tile_pci_dma_map_sg,
516         .unmap_sg = tile_pci_dma_unmap_sg,
517         .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
518         .sync_single_for_device = tile_pci_dma_sync_single_for_device,
519         .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
520         .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
521         .mapping_error = tile_pci_dma_mapping_error,
522         .dma_supported = tile_pci_dma_supported
523 };
524
525 struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
526 EXPORT_SYMBOL(gx_pci_dma_map_ops);
527
528 /* PCI DMA mapping functions for legacy PCI devices */
529
530 #ifdef CONFIG_SWIOTLB
531 static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
532                                          dma_addr_t *dma_handle, gfp_t gfp,
533                                          struct dma_attrs *attrs)
534 {
535         gfp |= GFP_DMA;
536         return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
537 }
538
539 static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
540                                        void *vaddr, dma_addr_t dma_addr,
541                                        struct dma_attrs *attrs)
542 {
543         swiotlb_free_coherent(dev, size, vaddr, dma_addr);
544 }
545
546 static struct dma_map_ops pci_swiotlb_dma_ops = {
547         .alloc = tile_swiotlb_alloc_coherent,
548         .free = tile_swiotlb_free_coherent,
549         .map_page = swiotlb_map_page,
550         .unmap_page = swiotlb_unmap_page,
551         .map_sg = swiotlb_map_sg_attrs,
552         .unmap_sg = swiotlb_unmap_sg_attrs,
553         .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
554         .sync_single_for_device = swiotlb_sync_single_for_device,
555         .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
556         .sync_sg_for_device = swiotlb_sync_sg_for_device,
557         .dma_supported = swiotlb_dma_supported,
558         .mapping_error = swiotlb_dma_mapping_error,
559 };
560
561 struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
562 #else
563 struct dma_map_ops *gx_legacy_pci_dma_map_ops;
564 #endif
565 EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
566
567 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
568 int dma_set_coherent_mask(struct device *dev, u64 mask)
569 {
570         struct dma_map_ops *dma_ops = get_dma_ops(dev);
571
572         /* Handle legacy PCI devices with limited memory addressability. */
573         if (((dma_ops == gx_pci_dma_map_ops) ||
574             (dma_ops == gx_legacy_pci_dma_map_ops)) &&
575             (mask <= DMA_BIT_MASK(32))) {
576                 if (mask > dev->archdata.max_direct_dma_addr)
577                         mask = dev->archdata.max_direct_dma_addr;
578         }
579
580         if (!dma_supported(dev, mask))
581                 return -EIO;
582         dev->coherent_dma_mask = mask;
583         return 0;
584 }
585 EXPORT_SYMBOL(dma_set_coherent_mask);
586 #endif