tizen 2.3.1 release
[kernel/linux-3.0.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
10 #include <asm/page.h>
11 #include <asm/pgtable.h>
12 #include <asm/mmu_context.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21         vaddr >>= hash_shift;
22         return vaddr & (nentries - 1);
23 }
24
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27         return (tag == (vaddr >> 22));
28 }
29
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37         unsigned long v;
38
39         for (v = start; v < end; v += PAGE_SIZE) {
40                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41                                               KERNEL_TSB_NENTRIES);
42                 struct tsb *ent = &swapper_tsb[hash];
43
44                 if (tag_compare(ent->tag, v))
45                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46         }
47 }
48
49 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
50                                   unsigned long hash_shift,
51                                   unsigned long nentries)
52 {
53         unsigned long tag, ent, hash;
54
55         v &= ~0x1UL;
56         hash = tsb_hash(v, hash_shift, nentries);
57         ent = tsb + (hash * sizeof(struct tsb));
58         tag = (v >> 22UL);
59
60         tsb_flush(ent, tag);
61 }
62
63 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
64                             unsigned long tsb, unsigned long nentries)
65 {
66         unsigned long i;
67
68         for (i = 0; i < tb->tlb_nr; i++)
69                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
70 }
71
72 void flush_tsb_user(struct tlb_batch *tb)
73 {
74         struct mm_struct *mm = tb->mm;
75         unsigned long nentries, base, flags;
76
77         spin_lock_irqsave(&mm->context.lock, flags);
78
79         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
80         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
81         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
82                 base = __pa(base);
83         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
84
85 #ifdef CONFIG_HUGETLB_PAGE
86         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
87                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
88                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
89                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
90                         base = __pa(base);
91                 __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
92         }
93 #endif
94         spin_unlock_irqrestore(&mm->context.lock, flags);
95 }
96
97 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
98 {
99         unsigned long nentries, base, flags;
100
101         spin_lock_irqsave(&mm->context.lock, flags);
102
103         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
104         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
105         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
106                 base = __pa(base);
107         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108
109 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
111                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
112                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
113                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
114                         base = __pa(base);
115                 __flush_tsb_one_entry(base, vaddr, HPAGE_SHIFT, nentries);
116         }
117 #endif
118         spin_unlock_irqrestore(&mm->context.lock, flags);
119 }
120
121 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
122 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
123 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
124 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
125 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_64K
126 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_64K
127 #else
128 #error Broken base page size setting...
129 #endif
130
131 #ifdef CONFIG_HUGETLB_PAGE
132 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
133 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_64K
134 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_64K
135 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
136 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_512K
137 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_512K
138 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
139 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
140 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
141 #else
142 #error Broken huge page size setting...
143 #endif
144 #endif
145
146 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
147 {
148         unsigned long tsb_reg, base, tsb_paddr;
149         unsigned long page_sz, tte;
150
151         mm->context.tsb_block[tsb_idx].tsb_nentries =
152                 tsb_bytes / sizeof(struct tsb);
153
154         base = TSBMAP_BASE;
155         tte = pgprot_val(PAGE_KERNEL_LOCKED);
156         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
157         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
158
159         /* Use the smallest page size that can map the whole TSB
160          * in one TLB entry.
161          */
162         switch (tsb_bytes) {
163         case 8192 << 0:
164                 tsb_reg = 0x0UL;
165 #ifdef DCACHE_ALIASING_POSSIBLE
166                 base += (tsb_paddr & 8192);
167 #endif
168                 page_sz = 8192;
169                 break;
170
171         case 8192 << 1:
172                 tsb_reg = 0x1UL;
173                 page_sz = 64 * 1024;
174                 break;
175
176         case 8192 << 2:
177                 tsb_reg = 0x2UL;
178                 page_sz = 64 * 1024;
179                 break;
180
181         case 8192 << 3:
182                 tsb_reg = 0x3UL;
183                 page_sz = 64 * 1024;
184                 break;
185
186         case 8192 << 4:
187                 tsb_reg = 0x4UL;
188                 page_sz = 512 * 1024;
189                 break;
190
191         case 8192 << 5:
192                 tsb_reg = 0x5UL;
193                 page_sz = 512 * 1024;
194                 break;
195
196         case 8192 << 6:
197                 tsb_reg = 0x6UL;
198                 page_sz = 512 * 1024;
199                 break;
200
201         case 8192 << 7:
202                 tsb_reg = 0x7UL;
203                 page_sz = 4 * 1024 * 1024;
204                 break;
205
206         default:
207                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
208                        current->comm, current->pid, tsb_bytes);
209                 do_exit(SIGSEGV);
210         }
211         tte |= pte_sz_bits(page_sz);
212
213         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
214                 /* Physical mapping, no locked TLB entry for TSB.  */
215                 tsb_reg |= tsb_paddr;
216
217                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
218                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
219                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
220         } else {
221                 tsb_reg |= base;
222                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
223                 tte |= (tsb_paddr & ~(page_sz - 1UL));
224
225                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
226                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
227                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
228         }
229
230         /* Setup the Hypervisor TSB descriptor.  */
231         if (tlb_type == hypervisor) {
232                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
233
234                 switch (tsb_idx) {
235                 case MM_TSB_BASE:
236                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
237                         break;
238 #ifdef CONFIG_HUGETLB_PAGE
239                 case MM_TSB_HUGE:
240                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
241                         break;
242 #endif
243                 default:
244                         BUG();
245                 }
246                 hp->assoc = 1;
247                 hp->num_ttes = tsb_bytes / 16;
248                 hp->ctx_idx = 0;
249                 switch (tsb_idx) {
250                 case MM_TSB_BASE:
251                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
252                         break;
253 #ifdef CONFIG_HUGETLB_PAGE
254                 case MM_TSB_HUGE:
255                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
256                         break;
257 #endif
258                 default:
259                         BUG();
260                 }
261                 hp->tsb_base = tsb_paddr;
262                 hp->resv = 0;
263         }
264 }
265
266 static struct kmem_cache *tsb_caches[8] __read_mostly;
267
268 static const char *tsb_cache_names[8] = {
269         "tsb_8KB",
270         "tsb_16KB",
271         "tsb_32KB",
272         "tsb_64KB",
273         "tsb_128KB",
274         "tsb_256KB",
275         "tsb_512KB",
276         "tsb_1MB",
277 };
278
279 void __init pgtable_cache_init(void)
280 {
281         unsigned long i;
282
283         for (i = 0; i < 8; i++) {
284                 unsigned long size = 8192 << i;
285                 const char *name = tsb_cache_names[i];
286
287                 tsb_caches[i] = kmem_cache_create(name,
288                                                   size, size,
289                                                   0, NULL);
290                 if (!tsb_caches[i]) {
291                         prom_printf("Could not create %s cache\n", name);
292                         prom_halt();
293                 }
294         }
295 }
296
297 int sysctl_tsb_ratio = -2;
298
299 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
300 {
301         unsigned long num_ents = (new_size / sizeof(struct tsb));
302
303         if (sysctl_tsb_ratio < 0)
304                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
305         else
306                 return num_ents + (num_ents >> sysctl_tsb_ratio);
307 }
308
309 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
310  * do_sparc64_fault() invokes this routine to try and grow it.
311  *
312  * When we reach the maximum TSB size supported, we stick ~0UL into
313  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
314  * will not trigger any longer.
315  *
316  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
317  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
318  * must be 512K aligned.  It also must be physically contiguous, so we
319  * cannot use vmalloc().
320  *
321  * The idea here is to grow the TSB when the RSS of the process approaches
322  * the number of entries that the current TSB can hold at once.  Currently,
323  * we trigger when the RSS hits 3/4 of the TSB capacity.
324  */
325 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
326 {
327         unsigned long max_tsb_size = 1 * 1024 * 1024;
328         unsigned long new_size, old_size, flags;
329         struct tsb *old_tsb, *new_tsb;
330         unsigned long new_cache_index, old_cache_index;
331         unsigned long new_rss_limit;
332         gfp_t gfp_flags;
333
334         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
335                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
336
337         new_cache_index = 0;
338         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
339                 new_rss_limit = tsb_size_to_rss_limit(new_size);
340                 if (new_rss_limit > rss)
341                         break;
342                 new_cache_index++;
343         }
344
345         if (new_size == max_tsb_size)
346                 new_rss_limit = ~0UL;
347
348 retry_tsb_alloc:
349         gfp_flags = GFP_KERNEL;
350         if (new_size > (PAGE_SIZE * 2))
351                 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
352
353         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
354                                         gfp_flags, numa_node_id());
355         if (unlikely(!new_tsb)) {
356                 /* Not being able to fork due to a high-order TSB
357                  * allocation failure is very bad behavior.  Just back
358                  * down to a 0-order allocation and force no TSB
359                  * growing for this address space.
360                  */
361                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
362                     new_cache_index > 0) {
363                         new_cache_index = 0;
364                         new_size = 8192;
365                         new_rss_limit = ~0UL;
366                         goto retry_tsb_alloc;
367                 }
368
369                 /* If we failed on a TSB grow, we are under serious
370                  * memory pressure so don't try to grow any more.
371                  */
372                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
373                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
374                 return;
375         }
376
377         /* Mark all tags as invalid.  */
378         tsb_init(new_tsb, new_size);
379
380         /* Ok, we are about to commit the changes.  If we are
381          * growing an existing TSB the locking is very tricky,
382          * so WATCH OUT!
383          *
384          * We have to hold mm->context.lock while committing to the
385          * new TSB, this synchronizes us with processors in
386          * flush_tsb_user() and switch_mm() for this address space.
387          *
388          * But even with that lock held, processors run asynchronously
389          * accessing the old TSB via TLB miss handling.  This is OK
390          * because those actions are just propagating state from the
391          * Linux page tables into the TSB, page table mappings are not
392          * being changed.  If a real fault occurs, the processor will
393          * synchronize with us when it hits flush_tsb_user(), this is
394          * also true for the case where vmscan is modifying the page
395          * tables.  The only thing we need to be careful with is to
396          * skip any locked TSB entries during copy_tsb().
397          *
398          * When we finish committing to the new TSB, we have to drop
399          * the lock and ask all other cpus running this address space
400          * to run tsb_context_switch() to see the new TSB table.
401          */
402         spin_lock_irqsave(&mm->context.lock, flags);
403
404         old_tsb = mm->context.tsb_block[tsb_index].tsb;
405         old_cache_index =
406                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
407         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
408                     sizeof(struct tsb));
409
410
411         /* Handle multiple threads trying to grow the TSB at the same time.
412          * One will get in here first, and bump the size and the RSS limit.
413          * The others will get in here next and hit this check.
414          */
415         if (unlikely(old_tsb &&
416                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
417                 spin_unlock_irqrestore(&mm->context.lock, flags);
418
419                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
420                 return;
421         }
422
423         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
424
425         if (old_tsb) {
426                 extern void copy_tsb(unsigned long old_tsb_base,
427                                      unsigned long old_tsb_size,
428                                      unsigned long new_tsb_base,
429                                      unsigned long new_tsb_size);
430                 unsigned long old_tsb_base = (unsigned long) old_tsb;
431                 unsigned long new_tsb_base = (unsigned long) new_tsb;
432
433                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
434                         old_tsb_base = __pa(old_tsb_base);
435                         new_tsb_base = __pa(new_tsb_base);
436                 }
437                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
438         }
439
440         mm->context.tsb_block[tsb_index].tsb = new_tsb;
441         setup_tsb_params(mm, tsb_index, new_size);
442
443         spin_unlock_irqrestore(&mm->context.lock, flags);
444
445         /* If old_tsb is NULL, we're being invoked for the first time
446          * from init_new_context().
447          */
448         if (old_tsb) {
449                 /* Reload it on the local cpu.  */
450                 tsb_context_switch(mm);
451
452                 /* Now force other processors to do the same.  */
453                 preempt_disable();
454                 smp_tsb_sync(mm);
455                 preempt_enable();
456
457                 /* Now it is safe to free the old tsb.  */
458                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
459         }
460 }
461
462 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
463 {
464 #ifdef CONFIG_HUGETLB_PAGE
465         unsigned long huge_pte_count;
466 #endif
467         unsigned int i;
468
469         spin_lock_init(&mm->context.lock);
470
471         mm->context.sparc64_ctx_val = 0UL;
472
473 #ifdef CONFIG_HUGETLB_PAGE
474         /* We reset it to zero because the fork() page copying
475          * will re-increment the counters as the parent PTEs are
476          * copied into the child address space.
477          */
478         huge_pte_count = mm->context.huge_pte_count;
479         mm->context.huge_pte_count = 0;
480 #endif
481
482         /* copy_mm() copies over the parent's mm_struct before calling
483          * us, so we need to zero out the TSB pointer or else tsb_grow()
484          * will be confused and think there is an older TSB to free up.
485          */
486         for (i = 0; i < MM_NUM_TSBS; i++)
487                 mm->context.tsb_block[i].tsb = NULL;
488
489         /* If this is fork, inherit the parent's TSB size.  We would
490          * grow it to that size on the first page fault anyways.
491          */
492         tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
493
494 #ifdef CONFIG_HUGETLB_PAGE
495         if (unlikely(huge_pte_count))
496                 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
497 #endif
498
499         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
500                 return -ENOMEM;
501
502         return 0;
503 }
504
505 static void tsb_destroy_one(struct tsb_config *tp)
506 {
507         unsigned long cache_index;
508
509         if (!tp->tsb)
510                 return;
511         cache_index = tp->tsb_reg_val & 0x7UL;
512         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
513         tp->tsb = NULL;
514         tp->tsb_reg_val = 0UL;
515 }
516
517 void destroy_context(struct mm_struct *mm)
518 {
519         unsigned long flags, i;
520
521         for (i = 0; i < MM_NUM_TSBS; i++)
522                 tsb_destroy_one(&mm->context.tsb_block[i]);
523
524         spin_lock_irqsave(&ctx_alloc_lock, flags);
525
526         if (CTX_VALID(mm->context)) {
527                 unsigned long nr = CTX_NRBITS(mm->context);
528                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
529         }
530
531         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
532 }