mm: treewide: clarify pgtable_page_{ctor,dtor}() naming
[platform/kernel/linux-starfive.git] / arch / sparc / mm / srmmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59
60 extern struct resource sparc_iomap;
61
62 extern unsigned long last_valid_pfn;
63
64 static pgd_t *srmmu_swapper_pg_dir;
65
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END       }
77 #endif
78
79 int flush_page_for_dma_global = 1;
80
81 char *srmmu_name;
82
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89 static int is_hypersparc;
90
91 static int srmmu_cache_pagetables;
92
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112         pte_t pte;
113
114         pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115         set_pte((pte_t *)ctxp, pte);
116 }
117
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
122
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
127
128 static void msi_set_sync(void)
129 {
130         __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131                               "andn %%g3, %2, %%g3\n\t"
132                               "sta %%g3, [%0] %1\n\t" : :
133                               "r" (MSI_MBUS_ARBEN),
134                               "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139         unsigned long ptp;      /* Physical address, shifted right by 4 */
140         int i;
141
142         ptp = __nocache_pa(ptep) >> 4;
143         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146         }
147 }
148
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151         unsigned long ptp;      /* Physical address, shifted right by 4 */
152         int i;
153
154         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
155         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158         }
159 }
160
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164         void *pte;
165
166         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167         return (pte_t *) pte +
168             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178         int offset;
179         unsigned long addr;
180
181         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183                        size);
184                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185         }
186         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188                        size);
189                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190         }
191         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192
193         offset = bit_map_string_get(&srmmu_nocache_map,
194                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196         if (offset == -1) {
197                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198                        size, (int) srmmu_nocache_size,
199                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200                 return NULL;
201         }
202
203         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204         return (void *)addr;
205 }
206
207 void *srmmu_get_nocache(int size, int align)
208 {
209         void *tmp;
210
211         tmp = __srmmu_get_nocache(size, align);
212
213         if (tmp)
214                 memset(tmp, 0, size);
215
216         return tmp;
217 }
218
219 void srmmu_free_nocache(void *addr, int size)
220 {
221         unsigned long vaddr;
222         int offset;
223
224         vaddr = (unsigned long)addr;
225         if (vaddr < SRMMU_NOCACHE_VADDR) {
226                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228                 BUG();
229         }
230         if (vaddr + size > srmmu_nocache_end) {
231                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232                     vaddr, srmmu_nocache_end);
233                 BUG();
234         }
235         if (!is_power_of_2(size)) {
236                 printk("Size 0x%x is not a power of 2\n", size);
237                 BUG();
238         }
239         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240                 printk("Size 0x%x is too small\n", size);
241                 BUG();
242         }
243         if (vaddr & (size - 1)) {
244                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245                 BUG();
246         }
247
248         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250
251         bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255                                                  unsigned long end);
256
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260         unsigned long total = 0;
261         int i;
262
263         for (i = 0; sp_banks[i].num_bytes; i++)
264                 total += sp_banks[i].num_bytes;
265
266         return total;
267 }
268
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275         unsigned long sysmemavail = probe_memory() / 1024;
276         int srmmu_nocache_npages;
277
278         srmmu_nocache_npages =
279                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285
286         /* anything above 1280 blows up */
287         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289
290         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293
294 static void __init srmmu_nocache_init(void)
295 {
296         void *srmmu_nocache_bitmap;
297         unsigned int bitmap_bits;
298         pgd_t *pgd;
299         pmd_t *pmd;
300         pte_t *pte;
301         unsigned long paddr, vaddr;
302         unsigned long pteval;
303
304         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305
306         srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307                                             SRMMU_NOCACHE_ALIGN_MAX);
308         if (!srmmu_nocache_pool)
309                 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310                       __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
312
313         srmmu_nocache_bitmap =
314                 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315                                SMP_CACHE_BYTES);
316         if (!srmmu_nocache_bitmap)
317                 panic("%s: Failed to allocate %zu bytes\n", __func__,
318                       BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
320
321         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323         init_mm.pgd = srmmu_swapper_pg_dir;
324
325         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
326
327         paddr = __pa((unsigned long)srmmu_nocache_pool);
328         vaddr = SRMMU_NOCACHE_VADDR;
329
330         while (vaddr < srmmu_nocache_end) {
331                 pgd = pgd_offset_k(vaddr);
332                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
334
335                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
336
337                 if (srmmu_cache_pagetables)
338                         pteval |= SRMMU_CACHE;
339
340                 set_pte(__nocache_fix(pte), __pte(pteval));
341
342                 vaddr += PAGE_SIZE;
343                 paddr += PAGE_SIZE;
344         }
345
346         flush_cache_all();
347         flush_tlb_all();
348 }
349
350 pgd_t *get_pgd_fast(void)
351 {
352         pgd_t *pgd = NULL;
353
354         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355         if (pgd) {
356                 pgd_t *init = pgd_offset_k(0);
357                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
360         }
361
362         return pgd;
363 }
364
365 /*
366  * Hardware needs alignment to 256 only, but we align to whole page size
367  * to reduce fragmentation problems due to the buddy principle.
368  * XXX Provide actual fragmentation statistics in /proc.
369  *
370  * Alignments up to the page size are the same for physical and virtual
371  * addresses of the nocache area.
372  */
373 pgtable_t pte_alloc_one(struct mm_struct *mm)
374 {
375         unsigned long pte;
376         struct page *page;
377
378         if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379                 return NULL;
380         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381         if (!pgtable_pte_page_ctor(page)) {
382                 __free_page(page);
383                 return NULL;
384         }
385         return page;
386 }
387
388 void pte_free(struct mm_struct *mm, pgtable_t pte)
389 {
390         unsigned long p;
391
392         pgtable_pte_page_dtor(pte);
393         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
394         if (p == 0)
395                 BUG();
396         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
397
398         /* free non cached virtual address*/
399         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
400 }
401
402 /* context handling - a dynamically sized pool is used */
403 #define NO_CONTEXT      -1
404
405 struct ctx_list {
406         struct ctx_list *next;
407         struct ctx_list *prev;
408         unsigned int ctx_number;
409         struct mm_struct *ctx_mm;
410 };
411
412 static struct ctx_list *ctx_list_pool;
413 static struct ctx_list ctx_free;
414 static struct ctx_list ctx_used;
415
416 /* At boot time we determine the number of contexts */
417 static int num_contexts;
418
419 static inline void remove_from_ctx_list(struct ctx_list *entry)
420 {
421         entry->next->prev = entry->prev;
422         entry->prev->next = entry->next;
423 }
424
425 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
426 {
427         entry->next = head;
428         (entry->prev = head->prev)->next = entry;
429         head->prev = entry;
430 }
431 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
433
434
435 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
436 {
437         struct ctx_list *ctxp;
438
439         ctxp = ctx_free.next;
440         if (ctxp != &ctx_free) {
441                 remove_from_ctx_list(ctxp);
442                 add_to_used_ctxlist(ctxp);
443                 mm->context = ctxp->ctx_number;
444                 ctxp->ctx_mm = mm;
445                 return;
446         }
447         ctxp = ctx_used.next;
448         if (ctxp->ctx_mm == old_mm)
449                 ctxp = ctxp->next;
450         if (ctxp == &ctx_used)
451                 panic("out of mmu contexts");
452         flush_cache_mm(ctxp->ctx_mm);
453         flush_tlb_mm(ctxp->ctx_mm);
454         remove_from_ctx_list(ctxp);
455         add_to_used_ctxlist(ctxp);
456         ctxp->ctx_mm->context = NO_CONTEXT;
457         ctxp->ctx_mm = mm;
458         mm->context = ctxp->ctx_number;
459 }
460
461 static inline void free_context(int context)
462 {
463         struct ctx_list *ctx_old;
464
465         ctx_old = ctx_list_pool + context;
466         remove_from_ctx_list(ctx_old);
467         add_to_free_ctxlist(ctx_old);
468 }
469
470 static void __init sparc_context_init(int numctx)
471 {
472         int ctx;
473         unsigned long size;
474
475         size = numctx * sizeof(struct ctx_list);
476         ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
477         if (!ctx_list_pool)
478                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
479
480         for (ctx = 0; ctx < numctx; ctx++) {
481                 struct ctx_list *clist;
482
483                 clist = (ctx_list_pool + ctx);
484                 clist->ctx_number = ctx;
485                 clist->ctx_mm = NULL;
486         }
487         ctx_free.next = ctx_free.prev = &ctx_free;
488         ctx_used.next = ctx_used.prev = &ctx_used;
489         for (ctx = 0; ctx < numctx; ctx++)
490                 add_to_free_ctxlist(ctx_list_pool + ctx);
491 }
492
493 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494                struct task_struct *tsk)
495 {
496         unsigned long flags;
497
498         if (mm->context == NO_CONTEXT) {
499                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
500                 alloc_context(old_mm, mm);
501                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
502                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
503         }
504
505         if (sparc_cpu_model == sparc_leon)
506                 leon_switch_mm();
507
508         if (is_hypersparc)
509                 hyper_flush_whole_icache();
510
511         srmmu_set_context(mm->context);
512 }
513
514 /* Low level IO area allocation on the SRMMU. */
515 static inline void srmmu_mapioaddr(unsigned long physaddr,
516                                    unsigned long virt_addr, int bus_type)
517 {
518         pgd_t *pgdp;
519         pmd_t *pmdp;
520         pte_t *ptep;
521         unsigned long tmp;
522
523         physaddr &= PAGE_MASK;
524         pgdp = pgd_offset_k(virt_addr);
525         pmdp = pmd_offset(pgdp, virt_addr);
526         ptep = pte_offset_kernel(pmdp, virt_addr);
527         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
528
529         /* I need to test whether this is consistent over all
530          * sun4m's.  The bus_type represents the upper 4 bits of
531          * 36-bit physical address on the I/O space lines...
532          */
533         tmp |= (bus_type << 28);
534         tmp |= SRMMU_PRIV;
535         __flush_page_to_ram(virt_addr);
536         set_pte(ptep, __pte(tmp));
537 }
538
539 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
540                       unsigned long xva, unsigned int len)
541 {
542         while (len != 0) {
543                 len -= PAGE_SIZE;
544                 srmmu_mapioaddr(xpa, xva, bus);
545                 xva += PAGE_SIZE;
546                 xpa += PAGE_SIZE;
547         }
548         flush_tlb_all();
549 }
550
551 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
552 {
553         pgd_t *pgdp;
554         pmd_t *pmdp;
555         pte_t *ptep;
556
557         pgdp = pgd_offset_k(virt_addr);
558         pmdp = pmd_offset(pgdp, virt_addr);
559         ptep = pte_offset_kernel(pmdp, virt_addr);
560
561         /* No need to flush uncacheable page. */
562         __pte_clear(ptep);
563 }
564
565 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
566 {
567         while (len != 0) {
568                 len -= PAGE_SIZE;
569                 srmmu_unmapioaddr(virt_addr);
570                 virt_addr += PAGE_SIZE;
571         }
572         flush_tlb_all();
573 }
574
575 /* tsunami.S */
576 extern void tsunami_flush_cache_all(void);
577 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
578 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
579 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
580 extern void tsunami_flush_page_to_ram(unsigned long page);
581 extern void tsunami_flush_page_for_dma(unsigned long page);
582 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
583 extern void tsunami_flush_tlb_all(void);
584 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
585 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
586 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
587 extern void tsunami_setup_blockops(void);
588
589 /* swift.S */
590 extern void swift_flush_cache_all(void);
591 extern void swift_flush_cache_mm(struct mm_struct *mm);
592 extern void swift_flush_cache_range(struct vm_area_struct *vma,
593                                     unsigned long start, unsigned long end);
594 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595 extern void swift_flush_page_to_ram(unsigned long page);
596 extern void swift_flush_page_for_dma(unsigned long page);
597 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
598 extern void swift_flush_tlb_all(void);
599 extern void swift_flush_tlb_mm(struct mm_struct *mm);
600 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
601                                   unsigned long start, unsigned long end);
602 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
603
604 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
605 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606 {
607         int cctx, ctx1;
608
609         page &= PAGE_MASK;
610         if ((ctx1 = vma->vm_mm->context) != -1) {
611                 cctx = srmmu_get_context();
612 /* Is context # ever different from current context? P3 */
613                 if (cctx != ctx1) {
614                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
615                         srmmu_set_context(ctx1);
616                         swift_flush_page(page);
617                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
618                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
619                         srmmu_set_context(cctx);
620                 } else {
621                          /* Rm. prot. bits from virt. c. */
622                         /* swift_flush_cache_all(); */
623                         /* swift_flush_cache_page(vma, page); */
624                         swift_flush_page(page);
625
626                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
627                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
628                         /* same as above: srmmu_flush_tlb_page() */
629                 }
630         }
631 }
632 #endif
633
634 /*
635  * The following are all MBUS based SRMMU modules, and therefore could
636  * be found in a multiprocessor configuration.  On the whole, these
637  * chips seems to be much more touchy about DVMA and page tables
638  * with respect to cache coherency.
639  */
640
641 /* viking.S */
642 extern void viking_flush_cache_all(void);
643 extern void viking_flush_cache_mm(struct mm_struct *mm);
644 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
645                                      unsigned long end);
646 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
647 extern void viking_flush_page_to_ram(unsigned long page);
648 extern void viking_flush_page_for_dma(unsigned long page);
649 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
650 extern void viking_flush_page(unsigned long page);
651 extern void viking_mxcc_flush_page(unsigned long page);
652 extern void viking_flush_tlb_all(void);
653 extern void viking_flush_tlb_mm(struct mm_struct *mm);
654 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
655                                    unsigned long end);
656 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
657                                   unsigned long page);
658 extern void sun4dsmp_flush_tlb_all(void);
659 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
660 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
661                                    unsigned long end);
662 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
663                                   unsigned long page);
664
665 /* hypersparc.S */
666 extern void hypersparc_flush_cache_all(void);
667 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
668 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
669 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
670 extern void hypersparc_flush_page_to_ram(unsigned long page);
671 extern void hypersparc_flush_page_for_dma(unsigned long page);
672 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
673 extern void hypersparc_flush_tlb_all(void);
674 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
675 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
677 extern void hypersparc_setup_blockops(void);
678
679 /*
680  * NOTE: All of this startup code assumes the low 16mb (approx.) of
681  *       kernel mappings are done with one single contiguous chunk of
682  *       ram.  On small ram machines (classics mainly) we only get
683  *       around 8mb mapped for us.
684  */
685
686 static void __init early_pgtable_allocfail(char *type)
687 {
688         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
689         prom_halt();
690 }
691
692 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
693                                                         unsigned long end)
694 {
695         pgd_t *pgdp;
696         pmd_t *pmdp;
697         pte_t *ptep;
698
699         while (start < end) {
700                 pgdp = pgd_offset_k(start);
701                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
702                         pmdp = __srmmu_get_nocache(
703                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
704                         if (pmdp == NULL)
705                                 early_pgtable_allocfail("pmd");
706                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
707                         pgd_set(__nocache_fix(pgdp), pmdp);
708                 }
709                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
710                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
711                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
712                         if (ptep == NULL)
713                                 early_pgtable_allocfail("pte");
714                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
715                         pmd_set(__nocache_fix(pmdp), ptep);
716                 }
717                 if (start > (0xffffffffUL - PMD_SIZE))
718                         break;
719                 start = (start + PMD_SIZE) & PMD_MASK;
720         }
721 }
722
723 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
724                                                   unsigned long end)
725 {
726         pgd_t *pgdp;
727         pmd_t *pmdp;
728         pte_t *ptep;
729
730         while (start < end) {
731                 pgdp = pgd_offset_k(start);
732                 if (pgd_none(*pgdp)) {
733                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
734                         if (pmdp == NULL)
735                                 early_pgtable_allocfail("pmd");
736                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
737                         pgd_set(pgdp, pmdp);
738                 }
739                 pmdp = pmd_offset(pgdp, start);
740                 if (srmmu_pmd_none(*pmdp)) {
741                         ptep = __srmmu_get_nocache(PTE_SIZE,
742                                                              PTE_SIZE);
743                         if (ptep == NULL)
744                                 early_pgtable_allocfail("pte");
745                         memset(ptep, 0, PTE_SIZE);
746                         pmd_set(pmdp, ptep);
747                 }
748                 if (start > (0xffffffffUL - PMD_SIZE))
749                         break;
750                 start = (start + PMD_SIZE) & PMD_MASK;
751         }
752 }
753
754 /* These flush types are not available on all chips... */
755 static inline unsigned long srmmu_probe(unsigned long vaddr)
756 {
757         unsigned long retval;
758
759         if (sparc_cpu_model != sparc_leon) {
760
761                 vaddr &= PAGE_MASK;
762                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
763                                      "=r" (retval) :
764                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
765         } else {
766                 retval = leon_swprobe(vaddr, NULL);
767         }
768         return retval;
769 }
770
771 /*
772  * This is much cleaner than poking around physical address space
773  * looking at the prom's page table directly which is what most
774  * other OS's do.  Yuck... this is much better.
775  */
776 static void __init srmmu_inherit_prom_mappings(unsigned long start,
777                                                unsigned long end)
778 {
779         unsigned long probed;
780         unsigned long addr;
781         pgd_t *pgdp;
782         pmd_t *pmdp;
783         pte_t *ptep;
784         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
785
786         while (start <= end) {
787                 if (start == 0)
788                         break; /* probably wrap around */
789                 if (start == 0xfef00000)
790                         start = KADB_DEBUGGER_BEGVM;
791                 probed = srmmu_probe(start);
792                 if (!probed) {
793                         /* continue probing until we find an entry */
794                         start += PAGE_SIZE;
795                         continue;
796                 }
797
798                 /* A red snapper, see what it really is. */
799                 what = 0;
800                 addr = start - PAGE_SIZE;
801
802                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
803                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
804                                 what = 1;
805                 }
806
807                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
808                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
809                                 what = 2;
810                 }
811
812                 pgdp = pgd_offset_k(start);
813                 if (what == 2) {
814                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
815                         start += SRMMU_PGDIR_SIZE;
816                         continue;
817                 }
818                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
819                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820                                                    SRMMU_PMD_TABLE_SIZE);
821                         if (pmdp == NULL)
822                                 early_pgtable_allocfail("pmd");
823                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824                         pgd_set(__nocache_fix(pgdp), pmdp);
825                 }
826                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
827                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
828                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
829                         if (ptep == NULL)
830                                 early_pgtable_allocfail("pte");
831                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
832                         pmd_set(__nocache_fix(pmdp), ptep);
833                 }
834                 if (what == 1) {
835                         /* We bend the rule where all 16 PTPs in a pmd_t point
836                          * inside the same PTE page, and we leak a perfectly
837                          * good hardware PTE piece. Alternatives seem worse.
838                          */
839                         unsigned int x; /* Index of HW PMD in soft cluster */
840                         unsigned long *val;
841                         x = (start >> PMD_SHIFT) & 15;
842                         val = &pmdp->pmdv[x];
843                         *(unsigned long *)__nocache_fix(val) = probed;
844                         start += SRMMU_REAL_PMD_SIZE;
845                         continue;
846                 }
847                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
848                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
849                 start += PAGE_SIZE;
850         }
851 }
852
853 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
854
855 /* Create a third-level SRMMU 16MB page mapping. */
856 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
857 {
858         pgd_t *pgdp = pgd_offset_k(vaddr);
859         unsigned long big_pte;
860
861         big_pte = KERNEL_PTE(phys_base >> 4);
862         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
863 }
864
865 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
867 {
868         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
869         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
870         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
871         /* Map "low" memory only */
872         const unsigned long min_vaddr = PAGE_OFFSET;
873         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
874
875         if (vstart < min_vaddr || vstart >= max_vaddr)
876                 return vstart;
877
878         if (vend > max_vaddr || vend < min_vaddr)
879                 vend = max_vaddr;
880
881         while (vstart < vend) {
882                 do_large_mapping(vstart, pstart);
883                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
884         }
885         return vstart;
886 }
887
888 static void __init map_kernel(void)
889 {
890         int i;
891
892         if (phys_base > 0) {
893                 do_large_mapping(PAGE_OFFSET, phys_base);
894         }
895
896         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
897                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
898         }
899 }
900
901 void (*poke_srmmu)(void) = NULL;
902
903 void __init srmmu_paging_init(void)
904 {
905         int i;
906         phandle cpunode;
907         char node_str[128];
908         pgd_t *pgd;
909         pmd_t *pmd;
910         pte_t *pte;
911         unsigned long pages_avail;
912
913         init_mm.context = (unsigned long) NO_CONTEXT;
914         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
915
916         if (sparc_cpu_model == sun4d)
917                 num_contexts = 65536; /* We know it is Viking */
918         else {
919                 /* Find the number of contexts on the srmmu. */
920                 cpunode = prom_getchild(prom_root_node);
921                 num_contexts = 0;
922                 while (cpunode != 0) {
923                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
924                         if (!strcmp(node_str, "cpu")) {
925                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
926                                 break;
927                         }
928                         cpunode = prom_getsibling(cpunode);
929                 }
930         }
931
932         if (!num_contexts) {
933                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
934                 prom_halt();
935         }
936
937         pages_avail = 0;
938         last_valid_pfn = bootmem_init(&pages_avail);
939
940         srmmu_nocache_calcsize();
941         srmmu_nocache_init();
942         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
943         map_kernel();
944
945         /* ctx table has to be physically aligned to its size */
946         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
947         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
948
949         for (i = 0; i < num_contexts; i++)
950                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
951
952         flush_cache_all();
953         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
954 #ifdef CONFIG_SMP
955         /* Stop from hanging here... */
956         local_ops->tlb_all();
957 #else
958         flush_tlb_all();
959 #endif
960         poke_srmmu();
961
962         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
963         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
964
965         srmmu_allocate_ptable_skeleton(
966                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
967         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
968
969         pgd = pgd_offset_k(PKMAP_BASE);
970         pmd = pmd_offset(pgd, PKMAP_BASE);
971         pte = pte_offset_kernel(pmd, PKMAP_BASE);
972         pkmap_page_table = pte;
973
974         flush_cache_all();
975         flush_tlb_all();
976
977         sparc_context_init(num_contexts);
978
979         kmap_init();
980
981         {
982                 unsigned long zones_size[MAX_NR_ZONES];
983                 unsigned long zholes_size[MAX_NR_ZONES];
984                 unsigned long npages;
985                 int znum;
986
987                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
988                         zones_size[znum] = zholes_size[znum] = 0;
989
990                 npages = max_low_pfn - pfn_base;
991
992                 zones_size[ZONE_DMA] = npages;
993                 zholes_size[ZONE_DMA] = npages - pages_avail;
994
995                 npages = highend_pfn - max_low_pfn;
996                 zones_size[ZONE_HIGHMEM] = npages;
997                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
998
999                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000         }
1001 }
1002
1003 void mmu_info(struct seq_file *m)
1004 {
1005         seq_printf(m,
1006                    "MMU type\t: %s\n"
1007                    "contexts\t: %d\n"
1008                    "nocache total\t: %ld\n"
1009                    "nocache used\t: %d\n",
1010                    srmmu_name,
1011                    num_contexts,
1012                    srmmu_nocache_size,
1013                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014 }
1015
1016 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017 {
1018         mm->context = NO_CONTEXT;
1019         return 0;
1020 }
1021
1022 void destroy_context(struct mm_struct *mm)
1023 {
1024         unsigned long flags;
1025
1026         if (mm->context != NO_CONTEXT) {
1027                 flush_cache_mm(mm);
1028                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029                 flush_tlb_mm(mm);
1030                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031                 free_context(mm->context);
1032                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033                 mm->context = NO_CONTEXT;
1034         }
1035 }
1036
1037 /* Init various srmmu chip types. */
1038 static void __init srmmu_is_bad(void)
1039 {
1040         prom_printf("Could not determine SRMMU chip type.\n");
1041         prom_halt();
1042 }
1043
1044 static void __init init_vac_layout(void)
1045 {
1046         phandle nd;
1047         int cache_lines;
1048         char node_str[128];
1049 #ifdef CONFIG_SMP
1050         int cpu = 0;
1051         unsigned long max_size = 0;
1052         unsigned long min_line_size = 0x10000000;
1053 #endif
1054
1055         nd = prom_getchild(prom_root_node);
1056         while ((nd = prom_getsibling(nd)) != 0) {
1057                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058                 if (!strcmp(node_str, "cpu")) {
1059                         vac_line_size = prom_getint(nd, "cache-line-size");
1060                         if (vac_line_size == -1) {
1061                                 prom_printf("can't determine cache-line-size, halting.\n");
1062                                 prom_halt();
1063                         }
1064                         cache_lines = prom_getint(nd, "cache-nlines");
1065                         if (cache_lines == -1) {
1066                                 prom_printf("can't determine cache-nlines, halting.\n");
1067                                 prom_halt();
1068                         }
1069
1070                         vac_cache_size = cache_lines * vac_line_size;
1071 #ifdef CONFIG_SMP
1072                         if (vac_cache_size > max_size)
1073                                 max_size = vac_cache_size;
1074                         if (vac_line_size < min_line_size)
1075                                 min_line_size = vac_line_size;
1076                         //FIXME: cpus not contiguous!!
1077                         cpu++;
1078                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079                                 break;
1080 #else
1081                         break;
1082 #endif
1083                 }
1084         }
1085         if (nd == 0) {
1086                 prom_printf("No CPU nodes found, halting.\n");
1087                 prom_halt();
1088         }
1089 #ifdef CONFIG_SMP
1090         vac_cache_size = max_size;
1091         vac_line_size = min_line_size;
1092 #endif
1093         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094                (int)vac_cache_size, (int)vac_line_size);
1095 }
1096
1097 static void poke_hypersparc(void)
1098 {
1099         volatile unsigned long clear;
1100         unsigned long mreg = srmmu_get_mmureg();
1101
1102         hyper_flush_unconditional_combined();
1103
1104         mreg &= ~(HYPERSPARC_CWENABLE);
1105         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106         mreg |= (HYPERSPARC_CMODE);
1107
1108         srmmu_set_mmureg(mreg);
1109
1110 #if 0 /* XXX I think this is bad news... -DaveM */
1111         hyper_clear_all_tags();
1112 #endif
1113
1114         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115         hyper_flush_whole_icache();
1116         clear = srmmu_get_faddr();
1117         clear = srmmu_get_fstatus();
1118 }
1119
1120 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121         .cache_all      = hypersparc_flush_cache_all,
1122         .cache_mm       = hypersparc_flush_cache_mm,
1123         .cache_page     = hypersparc_flush_cache_page,
1124         .cache_range    = hypersparc_flush_cache_range,
1125         .tlb_all        = hypersparc_flush_tlb_all,
1126         .tlb_mm         = hypersparc_flush_tlb_mm,
1127         .tlb_page       = hypersparc_flush_tlb_page,
1128         .tlb_range      = hypersparc_flush_tlb_range,
1129         .page_to_ram    = hypersparc_flush_page_to_ram,
1130         .sig_insns      = hypersparc_flush_sig_insns,
1131         .page_for_dma   = hypersparc_flush_page_for_dma,
1132 };
1133
1134 static void __init init_hypersparc(void)
1135 {
1136         srmmu_name = "ROSS HyperSparc";
1137         srmmu_modtype = HyperSparc;
1138
1139         init_vac_layout();
1140
1141         is_hypersparc = 1;
1142         sparc32_cachetlb_ops = &hypersparc_ops;
1143
1144         poke_srmmu = poke_hypersparc;
1145
1146         hypersparc_setup_blockops();
1147 }
1148
1149 static void poke_swift(void)
1150 {
1151         unsigned long mreg;
1152
1153         /* Clear any crap from the cache or else... */
1154         swift_flush_cache_all();
1155
1156         /* Enable I & D caches */
1157         mreg = srmmu_get_mmureg();
1158         mreg |= (SWIFT_IE | SWIFT_DE);
1159         /*
1160          * The Swift branch folding logic is completely broken.  At
1161          * trap time, if things are just right, if can mistakenly
1162          * think that a trap is coming from kernel mode when in fact
1163          * it is coming from user mode (it mis-executes the branch in
1164          * the trap code).  So you see things like crashme completely
1165          * hosing your machine which is completely unacceptable.  Turn
1166          * this shit off... nice job Fujitsu.
1167          */
1168         mreg &= ~(SWIFT_BF);
1169         srmmu_set_mmureg(mreg);
1170 }
1171
1172 static const struct sparc32_cachetlb_ops swift_ops = {
1173         .cache_all      = swift_flush_cache_all,
1174         .cache_mm       = swift_flush_cache_mm,
1175         .cache_page     = swift_flush_cache_page,
1176         .cache_range    = swift_flush_cache_range,
1177         .tlb_all        = swift_flush_tlb_all,
1178         .tlb_mm         = swift_flush_tlb_mm,
1179         .tlb_page       = swift_flush_tlb_page,
1180         .tlb_range      = swift_flush_tlb_range,
1181         .page_to_ram    = swift_flush_page_to_ram,
1182         .sig_insns      = swift_flush_sig_insns,
1183         .page_for_dma   = swift_flush_page_for_dma,
1184 };
1185
1186 #define SWIFT_MASKID_ADDR  0x10003018
1187 static void __init init_swift(void)
1188 {
1189         unsigned long swift_rev;
1190
1191         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1192                              "srl %0, 0x18, %0\n\t" :
1193                              "=r" (swift_rev) :
1194                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195         srmmu_name = "Fujitsu Swift";
1196         switch (swift_rev) {
1197         case 0x11:
1198         case 0x20:
1199         case 0x23:
1200         case 0x30:
1201                 srmmu_modtype = Swift_lots_o_bugs;
1202                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203                 /*
1204                  * Gee george, I wonder why Sun is so hush hush about
1205                  * this hardware bug... really braindamage stuff going
1206                  * on here.  However I think we can find a way to avoid
1207                  * all of the workaround overhead under Linux.  Basically,
1208                  * any page fault can cause kernel pages to become user
1209                  * accessible (the mmu gets confused and clears some of
1210                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1211                  * horrible eh?  But wait, after extensive testing it appears
1212                  * that if you use pgd_t level large kernel pte's (like the
1213                  * 4MB pages on the Pentium) the bug does not get tripped
1214                  * at all.  This avoids almost all of the major overhead.
1215                  * Welcome to a world where your vendor tells you to,
1216                  * "apply this kernel patch" instead of "sorry for the
1217                  * broken hardware, send it back and we'll give you
1218                  * properly functioning parts"
1219                  */
1220                 break;
1221         case 0x25:
1222         case 0x31:
1223                 srmmu_modtype = Swift_bad_c;
1224                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225                 /*
1226                  * You see Sun allude to this hardware bug but never
1227                  * admit things directly, they'll say things like,
1228                  * "the Swift chip cache problems" or similar.
1229                  */
1230                 break;
1231         default:
1232                 srmmu_modtype = Swift_ok;
1233                 break;
1234         }
1235
1236         sparc32_cachetlb_ops = &swift_ops;
1237         flush_page_for_dma_global = 0;
1238
1239         /*
1240          * Are you now convinced that the Swift is one of the
1241          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1242          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1243          * you examined the microcode of the Swift you'd find
1244          * XXX's all over the place.
1245          */
1246         poke_srmmu = poke_swift;
1247 }
1248
1249 static void turbosparc_flush_cache_all(void)
1250 {
1251         flush_user_windows();
1252         turbosparc_idflash_clear();
1253 }
1254
1255 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256 {
1257         FLUSH_BEGIN(mm)
1258         flush_user_windows();
1259         turbosparc_idflash_clear();
1260         FLUSH_END
1261 }
1262
1263 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264 {
1265         FLUSH_BEGIN(vma->vm_mm)
1266         flush_user_windows();
1267         turbosparc_idflash_clear();
1268         FLUSH_END
1269 }
1270
1271 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272 {
1273         FLUSH_BEGIN(vma->vm_mm)
1274         flush_user_windows();
1275         if (vma->vm_flags & VM_EXEC)
1276                 turbosparc_flush_icache();
1277         turbosparc_flush_dcache();
1278         FLUSH_END
1279 }
1280
1281 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282 static void turbosparc_flush_page_to_ram(unsigned long page)
1283 {
1284 #ifdef TURBOSPARC_WRITEBACK
1285         volatile unsigned long clear;
1286
1287         if (srmmu_probe(page))
1288                 turbosparc_flush_page_cache(page);
1289         clear = srmmu_get_fstatus();
1290 #endif
1291 }
1292
1293 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294 {
1295 }
1296
1297 static void turbosparc_flush_page_for_dma(unsigned long page)
1298 {
1299         turbosparc_flush_dcache();
1300 }
1301
1302 static void turbosparc_flush_tlb_all(void)
1303 {
1304         srmmu_flush_whole_tlb();
1305 }
1306
1307 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308 {
1309         FLUSH_BEGIN(mm)
1310         srmmu_flush_whole_tlb();
1311         FLUSH_END
1312 }
1313
1314 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315 {
1316         FLUSH_BEGIN(vma->vm_mm)
1317         srmmu_flush_whole_tlb();
1318         FLUSH_END
1319 }
1320
1321 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322 {
1323         FLUSH_BEGIN(vma->vm_mm)
1324         srmmu_flush_whole_tlb();
1325         FLUSH_END
1326 }
1327
1328
1329 static void poke_turbosparc(void)
1330 {
1331         unsigned long mreg = srmmu_get_mmureg();
1332         unsigned long ccreg;
1333
1334         /* Clear any crap from the cache or else... */
1335         turbosparc_flush_cache_all();
1336         /* Temporarily disable I & D caches */
1337         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1339         srmmu_set_mmureg(mreg);
1340
1341         ccreg = turbosparc_get_ccreg();
1342
1343 #ifdef TURBOSPARC_WRITEBACK
1344         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1345         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346                         /* Write-back D-cache, emulate VLSI
1347                          * abortion number three, not number one */
1348 #else
1349         /* For now let's play safe, optimize later */
1350         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352         ccreg &= ~(TURBOSPARC_uS2);
1353                         /* Emulate VLSI abortion number three, not number one */
1354 #endif
1355
1356         switch (ccreg & 7) {
1357         case 0: /* No SE cache */
1358         case 7: /* Test mode */
1359                 break;
1360         default:
1361                 ccreg |= (TURBOSPARC_SCENABLE);
1362         }
1363         turbosparc_set_ccreg(ccreg);
1364
1365         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1367         srmmu_set_mmureg(mreg);
1368 }
1369
1370 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371         .cache_all      = turbosparc_flush_cache_all,
1372         .cache_mm       = turbosparc_flush_cache_mm,
1373         .cache_page     = turbosparc_flush_cache_page,
1374         .cache_range    = turbosparc_flush_cache_range,
1375         .tlb_all        = turbosparc_flush_tlb_all,
1376         .tlb_mm         = turbosparc_flush_tlb_mm,
1377         .tlb_page       = turbosparc_flush_tlb_page,
1378         .tlb_range      = turbosparc_flush_tlb_range,
1379         .page_to_ram    = turbosparc_flush_page_to_ram,
1380         .sig_insns      = turbosparc_flush_sig_insns,
1381         .page_for_dma   = turbosparc_flush_page_for_dma,
1382 };
1383
1384 static void __init init_turbosparc(void)
1385 {
1386         srmmu_name = "Fujitsu TurboSparc";
1387         srmmu_modtype = TurboSparc;
1388         sparc32_cachetlb_ops = &turbosparc_ops;
1389         poke_srmmu = poke_turbosparc;
1390 }
1391
1392 static void poke_tsunami(void)
1393 {
1394         unsigned long mreg = srmmu_get_mmureg();
1395
1396         tsunami_flush_icache();
1397         tsunami_flush_dcache();
1398         mreg &= ~TSUNAMI_ITD;
1399         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400         srmmu_set_mmureg(mreg);
1401 }
1402
1403 static const struct sparc32_cachetlb_ops tsunami_ops = {
1404         .cache_all      = tsunami_flush_cache_all,
1405         .cache_mm       = tsunami_flush_cache_mm,
1406         .cache_page     = tsunami_flush_cache_page,
1407         .cache_range    = tsunami_flush_cache_range,
1408         .tlb_all        = tsunami_flush_tlb_all,
1409         .tlb_mm         = tsunami_flush_tlb_mm,
1410         .tlb_page       = tsunami_flush_tlb_page,
1411         .tlb_range      = tsunami_flush_tlb_range,
1412         .page_to_ram    = tsunami_flush_page_to_ram,
1413         .sig_insns      = tsunami_flush_sig_insns,
1414         .page_for_dma   = tsunami_flush_page_for_dma,
1415 };
1416
1417 static void __init init_tsunami(void)
1418 {
1419         /*
1420          * Tsunami's pretty sane, Sun and TI actually got it
1421          * somewhat right this time.  Fujitsu should have
1422          * taken some lessons from them.
1423          */
1424
1425         srmmu_name = "TI Tsunami";
1426         srmmu_modtype = Tsunami;
1427         sparc32_cachetlb_ops = &tsunami_ops;
1428         poke_srmmu = poke_tsunami;
1429
1430         tsunami_setup_blockops();
1431 }
1432
1433 static void poke_viking(void)
1434 {
1435         unsigned long mreg = srmmu_get_mmureg();
1436         static int smp_catch;
1437
1438         if (viking_mxcc_present) {
1439                 unsigned long mxcc_control = mxcc_get_creg();
1440
1441                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442                 mxcc_control &= ~(MXCC_CTL_RRC);
1443                 mxcc_set_creg(mxcc_control);
1444
1445                 /*
1446                  * We don't need memory parity checks.
1447                  * XXX This is a mess, have to dig out later. ecd.
1448                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449                  */
1450
1451                 /* We do cache ptables on MXCC. */
1452                 mreg |= VIKING_TCENABLE;
1453         } else {
1454                 unsigned long bpreg;
1455
1456                 mreg &= ~(VIKING_TCENABLE);
1457                 if (smp_catch++) {
1458                         /* Must disable mixed-cmd mode here for other cpu's. */
1459                         bpreg = viking_get_bpreg();
1460                         bpreg &= ~(VIKING_ACTION_MIX);
1461                         viking_set_bpreg(bpreg);
1462
1463                         /* Just in case PROM does something funny. */
1464                         msi_set_sync();
1465                 }
1466         }
1467
1468         mreg |= VIKING_SPENABLE;
1469         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470         mreg |= VIKING_SBENABLE;
1471         mreg &= ~(VIKING_ACENABLE);
1472         srmmu_set_mmureg(mreg);
1473 }
1474
1475 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476         .cache_all      = viking_flush_cache_all,
1477         .cache_mm       = viking_flush_cache_mm,
1478         .cache_page     = viking_flush_cache_page,
1479         .cache_range    = viking_flush_cache_range,
1480         .tlb_all        = viking_flush_tlb_all,
1481         .tlb_mm         = viking_flush_tlb_mm,
1482         .tlb_page       = viking_flush_tlb_page,
1483         .tlb_range      = viking_flush_tlb_range,
1484         .page_to_ram    = viking_flush_page_to_ram,
1485         .sig_insns      = viking_flush_sig_insns,
1486         .page_for_dma   = viking_flush_page_for_dma,
1487 };
1488
1489 #ifdef CONFIG_SMP
1490 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491  * perform the local TLB flush and all the other cpus will see it.
1492  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493  * that requires that we add some synchronization to these flushes.
1494  *
1495  * The bug is that the fifo which keeps track of all the pending TLB
1496  * broadcasts in the system is an entry or two too small, so if we
1497  * have too many going at once we'll overflow that fifo and lose a TLB
1498  * flush resulting in corruption.
1499  *
1500  * Our workaround is to take a global spinlock around the TLB flushes,
1501  * which guarentees we won't ever have too many pending.  It's a big
1502  * hammer, but a semaphore like system to make sure we only have N TLB
1503  * flushes going at once will require SMP locking anyways so there's
1504  * no real value in trying any harder than this.
1505  */
1506 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507         .cache_all      = viking_flush_cache_all,
1508         .cache_mm       = viking_flush_cache_mm,
1509         .cache_page     = viking_flush_cache_page,
1510         .cache_range    = viking_flush_cache_range,
1511         .tlb_all        = sun4dsmp_flush_tlb_all,
1512         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1513         .tlb_page       = sun4dsmp_flush_tlb_page,
1514         .tlb_range      = sun4dsmp_flush_tlb_range,
1515         .page_to_ram    = viking_flush_page_to_ram,
1516         .sig_insns      = viking_flush_sig_insns,
1517         .page_for_dma   = viking_flush_page_for_dma,
1518 };
1519 #endif
1520
1521 static void __init init_viking(void)
1522 {
1523         unsigned long mreg = srmmu_get_mmureg();
1524
1525         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1526         if (mreg & VIKING_MMODE) {
1527                 srmmu_name = "TI Viking";
1528                 viking_mxcc_present = 0;
1529                 msi_set_sync();
1530
1531                 /*
1532                  * We need this to make sure old viking takes no hits
1533                  * on it's cache for dma snoops to workaround the
1534                  * "load from non-cacheable memory" interrupt bug.
1535                  * This is only necessary because of the new way in
1536                  * which we use the IOMMU.
1537                  */
1538                 viking_ops.page_for_dma = viking_flush_page;
1539 #ifdef CONFIG_SMP
1540                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541 #endif
1542                 flush_page_for_dma_global = 0;
1543         } else {
1544                 srmmu_name = "TI Viking/MXCC";
1545                 viking_mxcc_present = 1;
1546                 srmmu_cache_pagetables = 1;
1547         }
1548
1549         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550                 &viking_ops;
1551 #ifdef CONFIG_SMP
1552         if (sparc_cpu_model == sun4d)
1553                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554                         &viking_sun4d_smp_ops;
1555 #endif
1556
1557         poke_srmmu = poke_viking;
1558 }
1559
1560 /* Probe for the srmmu chip version. */
1561 static void __init get_srmmu_type(void)
1562 {
1563         unsigned long mreg, psr;
1564         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565
1566         srmmu_modtype = SRMMU_INVAL_MOD;
1567         hwbug_bitmask = 0;
1568
1569         mreg = srmmu_get_mmureg(); psr = get_psr();
1570         mod_typ = (mreg & 0xf0000000) >> 28;
1571         mod_rev = (mreg & 0x0f000000) >> 24;
1572         psr_typ = (psr >> 28) & 0xf;
1573         psr_vers = (psr >> 24) & 0xf;
1574
1575         /* First, check for sparc-leon. */
1576         if (sparc_cpu_model == sparc_leon) {
1577                 init_leon();
1578                 return;
1579         }
1580
1581         /* Second, check for HyperSparc or Cypress. */
1582         if (mod_typ == 1) {
1583                 switch (mod_rev) {
1584                 case 7:
1585                         /* UP or MP Hypersparc */
1586                         init_hypersparc();
1587                         break;
1588                 case 0:
1589                 case 2:
1590                 case 10:
1591                 case 11:
1592                 case 12:
1593                 case 13:
1594                 case 14:
1595                 case 15:
1596                 default:
1597                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598                         prom_halt();
1599                         break;
1600                 }
1601                 return;
1602         }
1603
1604         /* Now Fujitsu TurboSparc. It might happen that it is
1605          * in Swift emulation mode, so we will check later...
1606          */
1607         if (psr_typ == 0 && psr_vers == 5) {
1608                 init_turbosparc();
1609                 return;
1610         }
1611
1612         /* Next check for Fujitsu Swift. */
1613         if (psr_typ == 0 && psr_vers == 4) {
1614                 phandle cpunode;
1615                 char node_str[128];
1616
1617                 /* Look if it is not a TurboSparc emulating Swift... */
1618                 cpunode = prom_getchild(prom_root_node);
1619                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621                         if (!strcmp(node_str, "cpu")) {
1622                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624                                         init_turbosparc();
1625                                         return;
1626                                 }
1627                                 break;
1628                         }
1629                 }
1630
1631                 init_swift();
1632                 return;
1633         }
1634
1635         /* Now the Viking family of srmmu. */
1636         if (psr_typ == 4 &&
1637            ((psr_vers == 0) ||
1638             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639                 init_viking();
1640                 return;
1641         }
1642
1643         /* Finally the Tsunami. */
1644         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645                 init_tsunami();
1646                 return;
1647         }
1648
1649         /* Oh well */
1650         srmmu_is_bad();
1651 }
1652
1653 #ifdef CONFIG_SMP
1654 /* Local cross-calls. */
1655 static void smp_flush_page_for_dma(unsigned long page)
1656 {
1657         xc1((smpfunc_t) local_ops->page_for_dma, page);
1658         local_ops->page_for_dma(page);
1659 }
1660
1661 static void smp_flush_cache_all(void)
1662 {
1663         xc0((smpfunc_t) local_ops->cache_all);
1664         local_ops->cache_all();
1665 }
1666
1667 static void smp_flush_tlb_all(void)
1668 {
1669         xc0((smpfunc_t) local_ops->tlb_all);
1670         local_ops->tlb_all();
1671 }
1672
1673 static void smp_flush_cache_mm(struct mm_struct *mm)
1674 {
1675         if (mm->context != NO_CONTEXT) {
1676                 cpumask_t cpu_mask;
1677                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679                 if (!cpumask_empty(&cpu_mask))
1680                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681                 local_ops->cache_mm(mm);
1682         }
1683 }
1684
1685 static void smp_flush_tlb_mm(struct mm_struct *mm)
1686 {
1687         if (mm->context != NO_CONTEXT) {
1688                 cpumask_t cpu_mask;
1689                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691                 if (!cpumask_empty(&cpu_mask)) {
1692                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694                                 cpumask_copy(mm_cpumask(mm),
1695                                              cpumask_of(smp_processor_id()));
1696                 }
1697                 local_ops->tlb_mm(mm);
1698         }
1699 }
1700
1701 static void smp_flush_cache_range(struct vm_area_struct *vma,
1702                                   unsigned long start,
1703                                   unsigned long end)
1704 {
1705         struct mm_struct *mm = vma->vm_mm;
1706
1707         if (mm->context != NO_CONTEXT) {
1708                 cpumask_t cpu_mask;
1709                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711                 if (!cpumask_empty(&cpu_mask))
1712                         xc3((smpfunc_t) local_ops->cache_range,
1713                             (unsigned long) vma, start, end);
1714                 local_ops->cache_range(vma, start, end);
1715         }
1716 }
1717
1718 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719                                 unsigned long start,
1720                                 unsigned long end)
1721 {
1722         struct mm_struct *mm = vma->vm_mm;
1723
1724         if (mm->context != NO_CONTEXT) {
1725                 cpumask_t cpu_mask;
1726                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728                 if (!cpumask_empty(&cpu_mask))
1729                         xc3((smpfunc_t) local_ops->tlb_range,
1730                             (unsigned long) vma, start, end);
1731                 local_ops->tlb_range(vma, start, end);
1732         }
1733 }
1734
1735 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736 {
1737         struct mm_struct *mm = vma->vm_mm;
1738
1739         if (mm->context != NO_CONTEXT) {
1740                 cpumask_t cpu_mask;
1741                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743                 if (!cpumask_empty(&cpu_mask))
1744                         xc2((smpfunc_t) local_ops->cache_page,
1745                             (unsigned long) vma, page);
1746                 local_ops->cache_page(vma, page);
1747         }
1748 }
1749
1750 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751 {
1752         struct mm_struct *mm = vma->vm_mm;
1753
1754         if (mm->context != NO_CONTEXT) {
1755                 cpumask_t cpu_mask;
1756                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758                 if (!cpumask_empty(&cpu_mask))
1759                         xc2((smpfunc_t) local_ops->tlb_page,
1760                             (unsigned long) vma, page);
1761                 local_ops->tlb_page(vma, page);
1762         }
1763 }
1764
1765 static void smp_flush_page_to_ram(unsigned long page)
1766 {
1767         /* Current theory is that those who call this are the one's
1768          * who have just dirtied their cache with the pages contents
1769          * in kernel space, therefore we only run this on local cpu.
1770          *
1771          * XXX This experiment failed, research further... -DaveM
1772          */
1773 #if 1
1774         xc1((smpfunc_t) local_ops->page_to_ram, page);
1775 #endif
1776         local_ops->page_to_ram(page);
1777 }
1778
1779 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780 {
1781         cpumask_t cpu_mask;
1782         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784         if (!cpumask_empty(&cpu_mask))
1785                 xc2((smpfunc_t) local_ops->sig_insns,
1786                     (unsigned long) mm, insn_addr);
1787         local_ops->sig_insns(mm, insn_addr);
1788 }
1789
1790 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791         .cache_all      = smp_flush_cache_all,
1792         .cache_mm       = smp_flush_cache_mm,
1793         .cache_page     = smp_flush_cache_page,
1794         .cache_range    = smp_flush_cache_range,
1795         .tlb_all        = smp_flush_tlb_all,
1796         .tlb_mm         = smp_flush_tlb_mm,
1797         .tlb_page       = smp_flush_tlb_page,
1798         .tlb_range      = smp_flush_tlb_range,
1799         .page_to_ram    = smp_flush_page_to_ram,
1800         .sig_insns      = smp_flush_sig_insns,
1801         .page_for_dma   = smp_flush_page_for_dma,
1802 };
1803 #endif
1804
1805 /* Load up routines and constants for sun4m and sun4d mmu */
1806 void __init load_mmu(void)
1807 {
1808         /* Functions */
1809         get_srmmu_type();
1810
1811 #ifdef CONFIG_SMP
1812         /* El switcheroo... */
1813         local_ops = sparc32_cachetlb_ops;
1814
1815         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820         }
1821
1822         if (poke_srmmu == poke_viking) {
1823                 /* Avoid unnecessary cross calls. */
1824                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828
1829                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832         }
1833
1834         /* It really is const after this point. */
1835         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836                 &smp_cachetlb_ops;
1837 #endif
1838
1839         if (sparc_cpu_model == sun4d)
1840                 ld_mmu_iounit();
1841         else
1842                 ld_mmu_iommu();
1843 #ifdef CONFIG_SMP
1844         if (sparc_cpu_model == sun4d)
1845                 sun4d_init_smp();
1846         else if (sparc_cpu_model == sparc_leon)
1847                 leon_init_smp();
1848         else
1849                 sun4m_init_smp();
1850 #endif
1851 }