sparc32: fix coding-style in srmmu.c
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50
51 #include "srmmu.h"
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
61
62 extern struct resource sparc_iomap;
63
64 extern unsigned long last_valid_pfn;
65
66 static pgd_t *srmmu_swapper_pg_dir;
67
68 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
72
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END       }
78 #endif
79
80 int flush_page_for_dma_global = 1;
81
82 char *srmmu_name;
83
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90 static int is_hypersparc;
91
92 static int srmmu_cache_pagetables;
93
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
97
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104 void *srmmu_nocache_pool;
105 void *srmmu_nocache_bitmap;
106 static struct bit_map srmmu_nocache_map;
107
108 static inline int srmmu_pmd_none(pmd_t pmd)
109 { return !(pmd_val(pmd) & 0xFFFFFFF); }
110
111 /* XXX should we hyper_flush_whole_icache here - Anton */
112 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
114
115 void pmd_set(pmd_t *pmdp, pte_t *ptep)
116 {
117         unsigned long ptp;      /* Physical address, shifted right by 4 */
118         int i;
119
120         ptp = __nocache_pa((unsigned long) ptep) >> 4;
121         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124         }
125 }
126
127 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
128 {
129         unsigned long ptp;      /* Physical address, shifted right by 4 */
130         int i;
131
132         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
133         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136         }
137 }
138
139 /* Find an entry in the third-level page table.. */
140 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
141 {
142         void *pte;
143
144         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145         return (pte_t *) pte +
146             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147 }
148
149 /*
150  * size: bytes to allocate in the nocache area.
151  * align: bytes, number to align at.
152  * Returns the virtual address of the allocated area.
153  */
154 static unsigned long __srmmu_get_nocache(int size, int align)
155 {
156         int offset;
157
158         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159                 printk("Size 0x%x too small for nocache request\n", size);
160                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161         }
162         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163                 printk("Size 0x%x unaligned int nocache request\n", size);
164                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
165         }
166         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168         offset = bit_map_string_get(&srmmu_nocache_map,
169                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171         if (offset == -1) {
172                 printk("srmmu: out of nocache %d: %d/%d\n",
173                     size, (int) srmmu_nocache_size,
174                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175                 return 0;
176         }
177
178         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
179 }
180
181 unsigned long srmmu_get_nocache(int size, int align)
182 {
183         unsigned long tmp;
184
185         tmp = __srmmu_get_nocache(size, align);
186
187         if (tmp)
188                 memset((void *)tmp, 0, size);
189
190         return tmp;
191 }
192
193 void srmmu_free_nocache(unsigned long vaddr, int size)
194 {
195         int offset;
196
197         if (vaddr < SRMMU_NOCACHE_VADDR) {
198                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200                 BUG();
201         }
202         if (vaddr + size > srmmu_nocache_end) {
203                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204                     vaddr, srmmu_nocache_end);
205                 BUG();
206         }
207         if (!is_power_of_2(size)) {
208                 printk("Size 0x%x is not a power of 2\n", size);
209                 BUG();
210         }
211         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212                 printk("Size 0x%x is too small\n", size);
213                 BUG();
214         }
215         if (vaddr & (size - 1)) {
216                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217                 BUG();
218         }
219
220         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223         bit_map_clear(&srmmu_nocache_map, offset, size);
224 }
225
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227                                                  unsigned long end);
228
229 extern unsigned long probe_memory(void);        /* in fault.c */
230
231 /*
232  * Reserve nocache dynamically proportionally to the amount of
233  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
234  */
235 static void __init srmmu_nocache_calcsize(void)
236 {
237         unsigned long sysmemavail = probe_memory() / 1024;
238         int srmmu_nocache_npages;
239
240         srmmu_nocache_npages =
241                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
242
243  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
247
248         /* anything above 1280 blows up */
249         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
251
252         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
254 }
255
256 static void __init srmmu_nocache_init(void)
257 {
258         unsigned int bitmap_bits;
259         pgd_t *pgd;
260         pmd_t *pmd;
261         pte_t *pte;
262         unsigned long paddr, vaddr;
263         unsigned long pteval;
264
265         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
266
267         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
270
271         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
273
274         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276         init_mm.pgd = srmmu_swapper_pg_dir;
277
278         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
279
280         paddr = __pa((unsigned long)srmmu_nocache_pool);
281         vaddr = SRMMU_NOCACHE_VADDR;
282
283         while (vaddr < srmmu_nocache_end) {
284                 pgd = pgd_offset_k(vaddr);
285                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
287
288                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
289
290                 if (srmmu_cache_pagetables)
291                         pteval |= SRMMU_CACHE;
292
293                 set_pte(__nocache_fix(pte), __pte(pteval));
294
295                 vaddr += PAGE_SIZE;
296                 paddr += PAGE_SIZE;
297         }
298
299         flush_cache_all();
300         flush_tlb_all();
301 }
302
303 pgd_t *get_pgd_fast(void)
304 {
305         pgd_t *pgd = NULL;
306
307         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308         if (pgd) {
309                 pgd_t *init = pgd_offset_k(0);
310                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
313         }
314
315         return pgd;
316 }
317
318 /*
319  * Hardware needs alignment to 256 only, but we align to whole page size
320  * to reduce fragmentation problems due to the buddy principle.
321  * XXX Provide actual fragmentation statistics in /proc.
322  *
323  * Alignments up to the page size are the same for physical and virtual
324  * addresses of the nocache area.
325  */
326 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
327 {
328         unsigned long pte;
329         struct page *page;
330
331         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332                 return NULL;
333         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
334         pgtable_page_ctor(page);
335         return page;
336 }
337
338 void pte_free(struct mm_struct *mm, pgtable_t pte)
339 {
340         unsigned long p;
341
342         pgtable_page_dtor(pte);
343         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
344         if (p == 0)
345                 BUG();
346         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
347         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
348         srmmu_free_nocache(p, PTE_SIZE);
349 }
350
351 /*
352  */
353 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
354 {
355         struct ctx_list *ctxp;
356
357         ctxp = ctx_free.next;
358         if (ctxp != &ctx_free) {
359                 remove_from_ctx_list(ctxp);
360                 add_to_used_ctxlist(ctxp);
361                 mm->context = ctxp->ctx_number;
362                 ctxp->ctx_mm = mm;
363                 return;
364         }
365         ctxp = ctx_used.next;
366         if (ctxp->ctx_mm == old_mm)
367                 ctxp = ctxp->next;
368         if (ctxp == &ctx_used)
369                 panic("out of mmu contexts");
370         flush_cache_mm(ctxp->ctx_mm);
371         flush_tlb_mm(ctxp->ctx_mm);
372         remove_from_ctx_list(ctxp);
373         add_to_used_ctxlist(ctxp);
374         ctxp->ctx_mm->context = NO_CONTEXT;
375         ctxp->ctx_mm = mm;
376         mm->context = ctxp->ctx_number;
377 }
378
379 static inline void free_context(int context)
380 {
381         struct ctx_list *ctx_old;
382
383         ctx_old = ctx_list_pool + context;
384         remove_from_ctx_list(ctx_old);
385         add_to_free_ctxlist(ctx_old);
386 }
387
388
389 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390                struct task_struct *tsk)
391 {
392         if (mm->context == NO_CONTEXT) {
393                 spin_lock(&srmmu_context_spinlock);
394                 alloc_context(old_mm, mm);
395                 spin_unlock(&srmmu_context_spinlock);
396                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
397         }
398
399         if (sparc_cpu_model == sparc_leon)
400                 leon_switch_mm();
401
402         if (is_hypersparc)
403                 hyper_flush_whole_icache();
404
405         srmmu_set_context(mm->context);
406 }
407
408 /* Low level IO area allocation on the SRMMU. */
409 static inline void srmmu_mapioaddr(unsigned long physaddr,
410                                    unsigned long virt_addr, int bus_type)
411 {
412         pgd_t *pgdp;
413         pmd_t *pmdp;
414         pte_t *ptep;
415         unsigned long tmp;
416
417         physaddr &= PAGE_MASK;
418         pgdp = pgd_offset_k(virt_addr);
419         pmdp = pmd_offset(pgdp, virt_addr);
420         ptep = pte_offset_kernel(pmdp, virt_addr);
421         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
422
423         /* I need to test whether this is consistent over all
424          * sun4m's.  The bus_type represents the upper 4 bits of
425          * 36-bit physical address on the I/O space lines...
426          */
427         tmp |= (bus_type << 28);
428         tmp |= SRMMU_PRIV;
429         __flush_page_to_ram(virt_addr);
430         set_pte(ptep, __pte(tmp));
431 }
432
433 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
434                       unsigned long xva, unsigned int len)
435 {
436         while (len != 0) {
437                 len -= PAGE_SIZE;
438                 srmmu_mapioaddr(xpa, xva, bus);
439                 xva += PAGE_SIZE;
440                 xpa += PAGE_SIZE;
441         }
442         flush_tlb_all();
443 }
444
445 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
446 {
447         pgd_t *pgdp;
448         pmd_t *pmdp;
449         pte_t *ptep;
450
451         pgdp = pgd_offset_k(virt_addr);
452         pmdp = pmd_offset(pgdp, virt_addr);
453         ptep = pte_offset_kernel(pmdp, virt_addr);
454
455         /* No need to flush uncacheable page. */
456         __pte_clear(ptep);
457 }
458
459 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
460 {
461         while (len != 0) {
462                 len -= PAGE_SIZE;
463                 srmmu_unmapioaddr(virt_addr);
464                 virt_addr += PAGE_SIZE;
465         }
466         flush_tlb_all();
467 }
468
469 /* tsunami.S */
470 extern void tsunami_flush_cache_all(void);
471 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
472 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
473 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
474 extern void tsunami_flush_page_to_ram(unsigned long page);
475 extern void tsunami_flush_page_for_dma(unsigned long page);
476 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
477 extern void tsunami_flush_tlb_all(void);
478 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
479 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
480 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
481 extern void tsunami_setup_blockops(void);
482
483 /* swift.S */
484 extern void swift_flush_cache_all(void);
485 extern void swift_flush_cache_mm(struct mm_struct *mm);
486 extern void swift_flush_cache_range(struct vm_area_struct *vma,
487                                     unsigned long start, unsigned long end);
488 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
489 extern void swift_flush_page_to_ram(unsigned long page);
490 extern void swift_flush_page_for_dma(unsigned long page);
491 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
492 extern void swift_flush_tlb_all(void);
493 extern void swift_flush_tlb_mm(struct mm_struct *mm);
494 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
495                                   unsigned long start, unsigned long end);
496 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
497
498 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
499 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
500 {
501         int cctx, ctx1;
502
503         page &= PAGE_MASK;
504         if ((ctx1 = vma->vm_mm->context) != -1) {
505                 cctx = srmmu_get_context();
506 /* Is context # ever different from current context? P3 */
507                 if (cctx != ctx1) {
508                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
509                         srmmu_set_context(ctx1);
510                         swift_flush_page(page);
511                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
512                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
513                         srmmu_set_context(cctx);
514                 } else {
515                          /* Rm. prot. bits from virt. c. */
516                         /* swift_flush_cache_all(); */
517                         /* swift_flush_cache_page(vma, page); */
518                         swift_flush_page(page);
519
520                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
521                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
522                         /* same as above: srmmu_flush_tlb_page() */
523                 }
524         }
525 }
526 #endif
527
528 /*
529  * The following are all MBUS based SRMMU modules, and therefore could
530  * be found in a multiprocessor configuration.  On the whole, these
531  * chips seems to be much more touchy about DVMA and page tables
532  * with respect to cache coherency.
533  */
534
535 /* viking.S */
536 extern void viking_flush_cache_all(void);
537 extern void viking_flush_cache_mm(struct mm_struct *mm);
538 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
539                                      unsigned long end);
540 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
541 extern void viking_flush_page_to_ram(unsigned long page);
542 extern void viking_flush_page_for_dma(unsigned long page);
543 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
544 extern void viking_flush_page(unsigned long page);
545 extern void viking_mxcc_flush_page(unsigned long page);
546 extern void viking_flush_tlb_all(void);
547 extern void viking_flush_tlb_mm(struct mm_struct *mm);
548 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
549                                    unsigned long end);
550 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
551                                   unsigned long page);
552 extern void sun4dsmp_flush_tlb_all(void);
553 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
554 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
555                                    unsigned long end);
556 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
557                                   unsigned long page);
558
559 /* hypersparc.S */
560 extern void hypersparc_flush_cache_all(void);
561 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
562 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
563 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
564 extern void hypersparc_flush_page_to_ram(unsigned long page);
565 extern void hypersparc_flush_page_for_dma(unsigned long page);
566 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
567 extern void hypersparc_flush_tlb_all(void);
568 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
569 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
570 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
571 extern void hypersparc_setup_blockops(void);
572
573 /*
574  * NOTE: All of this startup code assumes the low 16mb (approx.) of
575  *       kernel mappings are done with one single contiguous chunk of
576  *       ram.  On small ram machines (classics mainly) we only get
577  *       around 8mb mapped for us.
578  */
579
580 static void __init early_pgtable_allocfail(char *type)
581 {
582         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
583         prom_halt();
584 }
585
586 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
587                                                         unsigned long end)
588 {
589         pgd_t *pgdp;
590         pmd_t *pmdp;
591         pte_t *ptep;
592
593         while (start < end) {
594                 pgdp = pgd_offset_k(start);
595                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
596                         pmdp = (pmd_t *) __srmmu_get_nocache(
597                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
598                         if (pmdp == NULL)
599                                 early_pgtable_allocfail("pmd");
600                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
601                         pgd_set(__nocache_fix(pgdp), pmdp);
602                 }
603                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
604                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
605                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
606                         if (ptep == NULL)
607                                 early_pgtable_allocfail("pte");
608                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
609                         pmd_set(__nocache_fix(pmdp), ptep);
610                 }
611                 if (start > (0xffffffffUL - PMD_SIZE))
612                         break;
613                 start = (start + PMD_SIZE) & PMD_MASK;
614         }
615 }
616
617 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
618                                                   unsigned long end)
619 {
620         pgd_t *pgdp;
621         pmd_t *pmdp;
622         pte_t *ptep;
623
624         while (start < end) {
625                 pgdp = pgd_offset_k(start);
626                 if (pgd_none(*pgdp)) {
627                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
628                         if (pmdp == NULL)
629                                 early_pgtable_allocfail("pmd");
630                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
631                         pgd_set(pgdp, pmdp);
632                 }
633                 pmdp = pmd_offset(pgdp, start);
634                 if (srmmu_pmd_none(*pmdp)) {
635                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
636                                                              PTE_SIZE);
637                         if (ptep == NULL)
638                                 early_pgtable_allocfail("pte");
639                         memset(ptep, 0, PTE_SIZE);
640                         pmd_set(pmdp, ptep);
641                 }
642                 if (start > (0xffffffffUL - PMD_SIZE))
643                         break;
644                 start = (start + PMD_SIZE) & PMD_MASK;
645         }
646 }
647
648 /* These flush types are not available on all chips... */
649 static inline unsigned long srmmu_probe(unsigned long vaddr)
650 {
651         unsigned long retval;
652
653         if (sparc_cpu_model != sparc_leon) {
654
655                 vaddr &= PAGE_MASK;
656                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
657                                      "=r" (retval) :
658                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
659         } else {
660                 retval = leon_swprobe(vaddr, 0);
661         }
662         return retval;
663 }
664
665 /*
666  * This is much cleaner than poking around physical address space
667  * looking at the prom's page table directly which is what most
668  * other OS's do.  Yuck... this is much better.
669  */
670 static void __init srmmu_inherit_prom_mappings(unsigned long start,
671                                                unsigned long end)
672 {
673         pgd_t *pgdp;
674         pmd_t *pmdp;
675         pte_t *ptep;
676         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
677         unsigned long prompte;
678
679         while (start <= end) {
680                 if (start == 0)
681                         break; /* probably wrap around */
682                 if (start == 0xfef00000)
683                         start = KADB_DEBUGGER_BEGVM;
684                 if (!(prompte = srmmu_probe(start))) {
685                         start += PAGE_SIZE;
686                         continue;
687                 }
688
689                 /* A red snapper, see what it really is. */
690                 what = 0;
691
692                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
693                         if (srmmu_probe((start - PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
694                                 what = 1;
695                 }
696
697                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
698                         if (srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
699                            prompte)
700                                 what = 2;
701                 }
702
703                 pgdp = pgd_offset_k(start);
704                 if (what == 2) {
705                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
706                         start += SRMMU_PGDIR_SIZE;
707                         continue;
708                 }
709                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
710                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
711                         if (pmdp == NULL)
712                                 early_pgtable_allocfail("pmd");
713                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
714                         pgd_set(__nocache_fix(pgdp), pmdp);
715                 }
716                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
717                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
718                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
719                         if (ptep == NULL)
720                                 early_pgtable_allocfail("pte");
721                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
722                         pmd_set(__nocache_fix(pmdp), ptep);
723                 }
724                 if (what == 1) {
725                         /* We bend the rule where all 16 PTPs in a pmd_t point
726                          * inside the same PTE page, and we leak a perfectly
727                          * good hardware PTE piece. Alternatives seem worse.
728                          */
729                         unsigned int x; /* Index of HW PMD in soft cluster */
730                         x = (start >> PMD_SHIFT) & 15;
731                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
732                         start += SRMMU_REAL_PMD_SIZE;
733                         continue;
734                 }
735                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
736                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
737                 start += PAGE_SIZE;
738         }
739 }
740
741 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
742
743 /* Create a third-level SRMMU 16MB page mapping. */
744 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
745 {
746         pgd_t *pgdp = pgd_offset_k(vaddr);
747         unsigned long big_pte;
748
749         big_pte = KERNEL_PTE(phys_base >> 4);
750         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
751 }
752
753 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
754 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
755 {
756         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
757         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
758         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
759         /* Map "low" memory only */
760         const unsigned long min_vaddr = PAGE_OFFSET;
761         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
762
763         if (vstart < min_vaddr || vstart >= max_vaddr)
764                 return vstart;
765
766         if (vend > max_vaddr || vend < min_vaddr)
767                 vend = max_vaddr;
768
769         while (vstart < vend) {
770                 do_large_mapping(vstart, pstart);
771                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
772         }
773         return vstart;
774 }
775
776 static void __init map_kernel(void)
777 {
778         int i;
779
780         if (phys_base > 0) {
781                 do_large_mapping(PAGE_OFFSET, phys_base);
782         }
783
784         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
785                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
786         }
787 }
788
789 /* Paging initialization on the Sparc Reference MMU. */
790 extern void sparc_context_init(int);
791
792 void (*poke_srmmu)(void) __cpuinitdata = NULL;
793
794 extern unsigned long bootmem_init(unsigned long *pages_avail);
795
796 void __init srmmu_paging_init(void)
797 {
798         int i;
799         phandle cpunode;
800         char node_str[128];
801         pgd_t *pgd;
802         pmd_t *pmd;
803         pte_t *pte;
804         unsigned long pages_avail;
805
806         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
807
808         if (sparc_cpu_model == sun4d)
809                 num_contexts = 65536; /* We know it is Viking */
810         else {
811                 /* Find the number of contexts on the srmmu. */
812                 cpunode = prom_getchild(prom_root_node);
813                 num_contexts = 0;
814                 while (cpunode != 0) {
815                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
816                         if (!strcmp(node_str, "cpu")) {
817                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
818                                 break;
819                         }
820                         cpunode = prom_getsibling(cpunode);
821                 }
822         }
823
824         if (!num_contexts) {
825                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
826                 prom_halt();
827         }
828
829         pages_avail = 0;
830         last_valid_pfn = bootmem_init(&pages_avail);
831
832         srmmu_nocache_calcsize();
833         srmmu_nocache_init();
834         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM-PAGE_SIZE));
835         map_kernel();
836
837         /* ctx table has to be physically aligned to its size */
838         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
839         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
840
841         for (i = 0; i < num_contexts; i++)
842                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
843
844         flush_cache_all();
845         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
846 #ifdef CONFIG_SMP
847         /* Stop from hanging here... */
848         local_ops->tlb_all();
849 #else
850         flush_tlb_all();
851 #endif
852         poke_srmmu();
853
854         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
855         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
856
857         srmmu_allocate_ptable_skeleton(
858                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
859         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
860
861         pgd = pgd_offset_k(PKMAP_BASE);
862         pmd = pmd_offset(pgd, PKMAP_BASE);
863         pte = pte_offset_kernel(pmd, PKMAP_BASE);
864         pkmap_page_table = pte;
865
866         flush_cache_all();
867         flush_tlb_all();
868
869         sparc_context_init(num_contexts);
870
871         kmap_init();
872
873         {
874                 unsigned long zones_size[MAX_NR_ZONES];
875                 unsigned long zholes_size[MAX_NR_ZONES];
876                 unsigned long npages;
877                 int znum;
878
879                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
880                         zones_size[znum] = zholes_size[znum] = 0;
881
882                 npages = max_low_pfn - pfn_base;
883
884                 zones_size[ZONE_DMA] = npages;
885                 zholes_size[ZONE_DMA] = npages - pages_avail;
886
887                 npages = highend_pfn - max_low_pfn;
888                 zones_size[ZONE_HIGHMEM] = npages;
889                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
890
891                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
892         }
893 }
894
895 void mmu_info(struct seq_file *m)
896 {
897         seq_printf(m,
898                    "MMU type\t: %s\n"
899                    "contexts\t: %d\n"
900                    "nocache total\t: %ld\n"
901                    "nocache used\t: %d\n",
902                    srmmu_name,
903                    num_contexts,
904                    srmmu_nocache_size,
905                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
906 }
907
908 void destroy_context(struct mm_struct *mm)
909 {
910
911         if (mm->context != NO_CONTEXT) {
912                 flush_cache_mm(mm);
913                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
914                 flush_tlb_mm(mm);
915                 spin_lock(&srmmu_context_spinlock);
916                 free_context(mm->context);
917                 spin_unlock(&srmmu_context_spinlock);
918                 mm->context = NO_CONTEXT;
919         }
920 }
921
922 /* Init various srmmu chip types. */
923 static void __init srmmu_is_bad(void)
924 {
925         prom_printf("Could not determine SRMMU chip type.\n");
926         prom_halt();
927 }
928
929 static void __init init_vac_layout(void)
930 {
931         phandle nd;
932         int cache_lines;
933         char node_str[128];
934 #ifdef CONFIG_SMP
935         int cpu = 0;
936         unsigned long max_size = 0;
937         unsigned long min_line_size = 0x10000000;
938 #endif
939
940         nd = prom_getchild(prom_root_node);
941         while ((nd = prom_getsibling(nd)) != 0) {
942                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
943                 if (!strcmp(node_str, "cpu")) {
944                         vac_line_size = prom_getint(nd, "cache-line-size");
945                         if (vac_line_size == -1) {
946                                 prom_printf("can't determine cache-line-size, halting.\n");
947                                 prom_halt();
948                         }
949                         cache_lines = prom_getint(nd, "cache-nlines");
950                         if (cache_lines == -1) {
951                                 prom_printf("can't determine cache-nlines, halting.\n");
952                                 prom_halt();
953                         }
954
955                         vac_cache_size = cache_lines * vac_line_size;
956 #ifdef CONFIG_SMP
957                         if (vac_cache_size > max_size)
958                                 max_size = vac_cache_size;
959                         if (vac_line_size < min_line_size)
960                                 min_line_size = vac_line_size;
961                         //FIXME: cpus not contiguous!!
962                         cpu++;
963                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
964                                 break;
965 #else
966                         break;
967 #endif
968                 }
969         }
970         if (nd == 0) {
971                 prom_printf("No CPU nodes found, halting.\n");
972                 prom_halt();
973         }
974 #ifdef CONFIG_SMP
975         vac_cache_size = max_size;
976         vac_line_size = min_line_size;
977 #endif
978         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
979                (int)vac_cache_size, (int)vac_line_size);
980 }
981
982 static void __cpuinit poke_hypersparc(void)
983 {
984         volatile unsigned long clear;
985         unsigned long mreg = srmmu_get_mmureg();
986
987         hyper_flush_unconditional_combined();
988
989         mreg &= ~(HYPERSPARC_CWENABLE);
990         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
991         mreg |= (HYPERSPARC_CMODE);
992
993         srmmu_set_mmureg(mreg);
994
995 #if 0 /* XXX I think this is bad news... -DaveM */
996         hyper_clear_all_tags();
997 #endif
998
999         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1000         hyper_flush_whole_icache();
1001         clear = srmmu_get_faddr();
1002         clear = srmmu_get_fstatus();
1003 }
1004
1005 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1006         .cache_all      = hypersparc_flush_cache_all,
1007         .cache_mm       = hypersparc_flush_cache_mm,
1008         .cache_page     = hypersparc_flush_cache_page,
1009         .cache_range    = hypersparc_flush_cache_range,
1010         .tlb_all        = hypersparc_flush_tlb_all,
1011         .tlb_mm         = hypersparc_flush_tlb_mm,
1012         .tlb_page       = hypersparc_flush_tlb_page,
1013         .tlb_range      = hypersparc_flush_tlb_range,
1014         .page_to_ram    = hypersparc_flush_page_to_ram,
1015         .sig_insns      = hypersparc_flush_sig_insns,
1016         .page_for_dma   = hypersparc_flush_page_for_dma,
1017 };
1018
1019 static void __init init_hypersparc(void)
1020 {
1021         srmmu_name = "ROSS HyperSparc";
1022         srmmu_modtype = HyperSparc;
1023
1024         init_vac_layout();
1025
1026         is_hypersparc = 1;
1027         sparc32_cachetlb_ops = &hypersparc_ops;
1028
1029         poke_srmmu = poke_hypersparc;
1030
1031         hypersparc_setup_blockops();
1032 }
1033
1034 static void __cpuinit poke_swift(void)
1035 {
1036         unsigned long mreg;
1037
1038         /* Clear any crap from the cache or else... */
1039         swift_flush_cache_all();
1040
1041         /* Enable I & D caches */
1042         mreg = srmmu_get_mmureg();
1043         mreg |= (SWIFT_IE | SWIFT_DE);
1044         /*
1045          * The Swift branch folding logic is completely broken.  At
1046          * trap time, if things are just right, if can mistakenly
1047          * think that a trap is coming from kernel mode when in fact
1048          * it is coming from user mode (it mis-executes the branch in
1049          * the trap code).  So you see things like crashme completely
1050          * hosing your machine which is completely unacceptable.  Turn
1051          * this shit off... nice job Fujitsu.
1052          */
1053         mreg &= ~(SWIFT_BF);
1054         srmmu_set_mmureg(mreg);
1055 }
1056
1057 static const struct sparc32_cachetlb_ops swift_ops = {
1058         .cache_all      = swift_flush_cache_all,
1059         .cache_mm       = swift_flush_cache_mm,
1060         .cache_page     = swift_flush_cache_page,
1061         .cache_range    = swift_flush_cache_range,
1062         .tlb_all        = swift_flush_tlb_all,
1063         .tlb_mm         = swift_flush_tlb_mm,
1064         .tlb_page       = swift_flush_tlb_page,
1065         .tlb_range      = swift_flush_tlb_range,
1066         .page_to_ram    = swift_flush_page_to_ram,
1067         .sig_insns      = swift_flush_sig_insns,
1068         .page_for_dma   = swift_flush_page_for_dma,
1069 };
1070
1071 #define SWIFT_MASKID_ADDR  0x10003018
1072 static void __init init_swift(void)
1073 {
1074         unsigned long swift_rev;
1075
1076         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1077                              "srl %0, 0x18, %0\n\t" :
1078                              "=r" (swift_rev) :
1079                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1080         srmmu_name = "Fujitsu Swift";
1081         switch (swift_rev) {
1082         case 0x11:
1083         case 0x20:
1084         case 0x23:
1085         case 0x30:
1086                 srmmu_modtype = Swift_lots_o_bugs;
1087                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1088                 /*
1089                  * Gee george, I wonder why Sun is so hush hush about
1090                  * this hardware bug... really braindamage stuff going
1091                  * on here.  However I think we can find a way to avoid
1092                  * all of the workaround overhead under Linux.  Basically,
1093                  * any page fault can cause kernel pages to become user
1094                  * accessible (the mmu gets confused and clears some of
1095                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1096                  * horrible eh?  But wait, after extensive testing it appears
1097                  * that if you use pgd_t level large kernel pte's (like the
1098                  * 4MB pages on the Pentium) the bug does not get tripped
1099                  * at all.  This avoids almost all of the major overhead.
1100                  * Welcome to a world where your vendor tells you to,
1101                  * "apply this kernel patch" instead of "sorry for the
1102                  * broken hardware, send it back and we'll give you
1103                  * properly functioning parts"
1104                  */
1105                 break;
1106         case 0x25:
1107         case 0x31:
1108                 srmmu_modtype = Swift_bad_c;
1109                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1110                 /*
1111                  * You see Sun allude to this hardware bug but never
1112                  * admit things directly, they'll say things like,
1113                  * "the Swift chip cache problems" or similar.
1114                  */
1115                 break;
1116         default:
1117                 srmmu_modtype = Swift_ok;
1118                 break;
1119         }
1120
1121         sparc32_cachetlb_ops = &swift_ops;
1122         flush_page_for_dma_global = 0;
1123
1124         /*
1125          * Are you now convinced that the Swift is one of the
1126          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1127          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1128          * you examined the microcode of the Swift you'd find
1129          * XXX's all over the place.
1130          */
1131         poke_srmmu = poke_swift;
1132 }
1133
1134 static void turbosparc_flush_cache_all(void)
1135 {
1136         flush_user_windows();
1137         turbosparc_idflash_clear();
1138 }
1139
1140 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1141 {
1142         FLUSH_BEGIN(mm)
1143         flush_user_windows();
1144         turbosparc_idflash_clear();
1145         FLUSH_END
1146 }
1147
1148 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1149 {
1150         FLUSH_BEGIN(vma->vm_mm)
1151         flush_user_windows();
1152         turbosparc_idflash_clear();
1153         FLUSH_END
1154 }
1155
1156 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1157 {
1158         FLUSH_BEGIN(vma->vm_mm)
1159         flush_user_windows();
1160         if (vma->vm_flags & VM_EXEC)
1161                 turbosparc_flush_icache();
1162         turbosparc_flush_dcache();
1163         FLUSH_END
1164 }
1165
1166 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1167 static void turbosparc_flush_page_to_ram(unsigned long page)
1168 {
1169 #ifdef TURBOSPARC_WRITEBACK
1170         volatile unsigned long clear;
1171
1172         if (srmmu_probe(page))
1173                 turbosparc_flush_page_cache(page);
1174         clear = srmmu_get_fstatus();
1175 #endif
1176 }
1177
1178 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1179 {
1180 }
1181
1182 static void turbosparc_flush_page_for_dma(unsigned long page)
1183 {
1184         turbosparc_flush_dcache();
1185 }
1186
1187 static void turbosparc_flush_tlb_all(void)
1188 {
1189         srmmu_flush_whole_tlb();
1190 }
1191
1192 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1193 {
1194         FLUSH_BEGIN(mm)
1195         srmmu_flush_whole_tlb();
1196         FLUSH_END
1197 }
1198
1199 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1200 {
1201         FLUSH_BEGIN(vma->vm_mm)
1202         srmmu_flush_whole_tlb();
1203         FLUSH_END
1204 }
1205
1206 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1207 {
1208         FLUSH_BEGIN(vma->vm_mm)
1209         srmmu_flush_whole_tlb();
1210         FLUSH_END
1211 }
1212
1213
1214 static void __cpuinit poke_turbosparc(void)
1215 {
1216         unsigned long mreg = srmmu_get_mmureg();
1217         unsigned long ccreg;
1218
1219         /* Clear any crap from the cache or else... */
1220         turbosparc_flush_cache_all();
1221         /* Temporarily disable I & D caches */
1222         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1223         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1224         srmmu_set_mmureg(mreg);
1225
1226         ccreg = turbosparc_get_ccreg();
1227
1228 #ifdef TURBOSPARC_WRITEBACK
1229         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1230         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1231                         /* Write-back D-cache, emulate VLSI
1232                          * abortion number three, not number one */
1233 #else
1234         /* For now let's play safe, optimize later */
1235         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1236                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1237         ccreg &= ~(TURBOSPARC_uS2);
1238                         /* Emulate VLSI abortion number three, not number one */
1239 #endif
1240
1241         switch (ccreg & 7) {
1242         case 0: /* No SE cache */
1243         case 7: /* Test mode */
1244                 break;
1245         default:
1246                 ccreg |= (TURBOSPARC_SCENABLE);
1247         }
1248         turbosparc_set_ccreg(ccreg);
1249
1250         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1251         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1252         srmmu_set_mmureg(mreg);
1253 }
1254
1255 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1256         .cache_all      = turbosparc_flush_cache_all,
1257         .cache_mm       = turbosparc_flush_cache_mm,
1258         .cache_page     = turbosparc_flush_cache_page,
1259         .cache_range    = turbosparc_flush_cache_range,
1260         .tlb_all        = turbosparc_flush_tlb_all,
1261         .tlb_mm         = turbosparc_flush_tlb_mm,
1262         .tlb_page       = turbosparc_flush_tlb_page,
1263         .tlb_range      = turbosparc_flush_tlb_range,
1264         .page_to_ram    = turbosparc_flush_page_to_ram,
1265         .sig_insns      = turbosparc_flush_sig_insns,
1266         .page_for_dma   = turbosparc_flush_page_for_dma,
1267 };
1268
1269 static void __init init_turbosparc(void)
1270 {
1271         srmmu_name = "Fujitsu TurboSparc";
1272         srmmu_modtype = TurboSparc;
1273         sparc32_cachetlb_ops = &turbosparc_ops;
1274         poke_srmmu = poke_turbosparc;
1275 }
1276
1277 static void __cpuinit poke_tsunami(void)
1278 {
1279         unsigned long mreg = srmmu_get_mmureg();
1280
1281         tsunami_flush_icache();
1282         tsunami_flush_dcache();
1283         mreg &= ~TSUNAMI_ITD;
1284         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1285         srmmu_set_mmureg(mreg);
1286 }
1287
1288 static const struct sparc32_cachetlb_ops tsunami_ops = {
1289         .cache_all      = tsunami_flush_cache_all,
1290         .cache_mm       = tsunami_flush_cache_mm,
1291         .cache_page     = tsunami_flush_cache_page,
1292         .cache_range    = tsunami_flush_cache_range,
1293         .tlb_all        = tsunami_flush_tlb_all,
1294         .tlb_mm         = tsunami_flush_tlb_mm,
1295         .tlb_page       = tsunami_flush_tlb_page,
1296         .tlb_range      = tsunami_flush_tlb_range,
1297         .page_to_ram    = tsunami_flush_page_to_ram,
1298         .sig_insns      = tsunami_flush_sig_insns,
1299         .page_for_dma   = tsunami_flush_page_for_dma,
1300 };
1301
1302 static void __init init_tsunami(void)
1303 {
1304         /*
1305          * Tsunami's pretty sane, Sun and TI actually got it
1306          * somewhat right this time.  Fujitsu should have
1307          * taken some lessons from them.
1308          */
1309
1310         srmmu_name = "TI Tsunami";
1311         srmmu_modtype = Tsunami;
1312         sparc32_cachetlb_ops = &tsunami_ops;
1313         poke_srmmu = poke_tsunami;
1314
1315         tsunami_setup_blockops();
1316 }
1317
1318 static void __cpuinit poke_viking(void)
1319 {
1320         unsigned long mreg = srmmu_get_mmureg();
1321         static int smp_catch;
1322
1323         if (viking_mxcc_present) {
1324                 unsigned long mxcc_control = mxcc_get_creg();
1325
1326                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1327                 mxcc_control &= ~(MXCC_CTL_RRC);
1328                 mxcc_set_creg(mxcc_control);
1329
1330                 /*
1331                  * We don't need memory parity checks.
1332                  * XXX This is a mess, have to dig out later. ecd.
1333                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1334                  */
1335
1336                 /* We do cache ptables on MXCC. */
1337                 mreg |= VIKING_TCENABLE;
1338         } else {
1339                 unsigned long bpreg;
1340
1341                 mreg &= ~(VIKING_TCENABLE);
1342                 if (smp_catch++) {
1343                         /* Must disable mixed-cmd mode here for other cpu's. */
1344                         bpreg = viking_get_bpreg();
1345                         bpreg &= ~(VIKING_ACTION_MIX);
1346                         viking_set_bpreg(bpreg);
1347
1348                         /* Just in case PROM does something funny. */
1349                         msi_set_sync();
1350                 }
1351         }
1352
1353         mreg |= VIKING_SPENABLE;
1354         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1355         mreg |= VIKING_SBENABLE;
1356         mreg &= ~(VIKING_ACENABLE);
1357         srmmu_set_mmureg(mreg);
1358 }
1359
1360 static struct sparc32_cachetlb_ops viking_ops = {
1361         .cache_all      = viking_flush_cache_all,
1362         .cache_mm       = viking_flush_cache_mm,
1363         .cache_page     = viking_flush_cache_page,
1364         .cache_range    = viking_flush_cache_range,
1365         .tlb_all        = viking_flush_tlb_all,
1366         .tlb_mm         = viking_flush_tlb_mm,
1367         .tlb_page       = viking_flush_tlb_page,
1368         .tlb_range      = viking_flush_tlb_range,
1369         .page_to_ram    = viking_flush_page_to_ram,
1370         .sig_insns      = viking_flush_sig_insns,
1371         .page_for_dma   = viking_flush_page_for_dma,
1372 };
1373
1374 #ifdef CONFIG_SMP
1375 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1376  * perform the local TLB flush and all the other cpus will see it.
1377  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1378  * that requires that we add some synchronization to these flushes.
1379  *
1380  * The bug is that the fifo which keeps track of all the pending TLB
1381  * broadcasts in the system is an entry or two too small, so if we
1382  * have too many going at once we'll overflow that fifo and lose a TLB
1383  * flush resulting in corruption.
1384  *
1385  * Our workaround is to take a global spinlock around the TLB flushes,
1386  * which guarentees we won't ever have too many pending.  It's a big
1387  * hammer, but a semaphore like system to make sure we only have N TLB
1388  * flushes going at once will require SMP locking anyways so there's
1389  * no real value in trying any harder than this.
1390  */
1391 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1392         .cache_all      = viking_flush_cache_all,
1393         .cache_mm       = viking_flush_cache_mm,
1394         .cache_page     = viking_flush_cache_page,
1395         .cache_range    = viking_flush_cache_range,
1396         .tlb_all        = sun4dsmp_flush_tlb_all,
1397         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1398         .tlb_page       = sun4dsmp_flush_tlb_page,
1399         .tlb_range      = sun4dsmp_flush_tlb_range,
1400         .page_to_ram    = viking_flush_page_to_ram,
1401         .sig_insns      = viking_flush_sig_insns,
1402         .page_for_dma   = viking_flush_page_for_dma,
1403 };
1404 #endif
1405
1406 static void __init init_viking(void)
1407 {
1408         unsigned long mreg = srmmu_get_mmureg();
1409
1410         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1411         if (mreg & VIKING_MMODE) {
1412                 srmmu_name = "TI Viking";
1413                 viking_mxcc_present = 0;
1414                 msi_set_sync();
1415
1416                 /*
1417                  * We need this to make sure old viking takes no hits
1418                  * on it's cache for dma snoops to workaround the
1419                  * "load from non-cacheable memory" interrupt bug.
1420                  * This is only necessary because of the new way in
1421                  * which we use the IOMMU.
1422                  */
1423                 viking_ops.page_for_dma = viking_flush_page;
1424 #ifdef CONFIG_SMP
1425                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1426 #endif
1427                 flush_page_for_dma_global = 0;
1428         } else {
1429                 srmmu_name = "TI Viking/MXCC";
1430                 viking_mxcc_present = 1;
1431                 srmmu_cache_pagetables = 1;
1432         }
1433
1434         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1435                 &viking_ops;
1436 #ifdef CONFIG_SMP
1437         if (sparc_cpu_model == sun4d)
1438                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1439                         &viking_sun4d_smp_ops;
1440 #endif
1441
1442         poke_srmmu = poke_viking;
1443 }
1444
1445 /* Probe for the srmmu chip version. */
1446 static void __init get_srmmu_type(void)
1447 {
1448         unsigned long mreg, psr;
1449         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1450
1451         srmmu_modtype = SRMMU_INVAL_MOD;
1452         hwbug_bitmask = 0;
1453
1454         mreg = srmmu_get_mmureg(); psr = get_psr();
1455         mod_typ = (mreg & 0xf0000000) >> 28;
1456         mod_rev = (mreg & 0x0f000000) >> 24;
1457         psr_typ = (psr >> 28) & 0xf;
1458         psr_vers = (psr >> 24) & 0xf;
1459
1460         /* First, check for sparc-leon. */
1461         if (sparc_cpu_model == sparc_leon) {
1462                 init_leon();
1463                 return;
1464         }
1465
1466         /* Second, check for HyperSparc or Cypress. */
1467         if (mod_typ == 1) {
1468                 switch (mod_rev) {
1469                 case 7:
1470                         /* UP or MP Hypersparc */
1471                         init_hypersparc();
1472                         break;
1473                 case 0:
1474                 case 2:
1475                 case 10:
1476                 case 11:
1477                 case 12:
1478                 case 13:
1479                 case 14:
1480                 case 15:
1481                 default:
1482                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1483                         prom_halt();
1484                         break;
1485                 }
1486                 return;
1487         }
1488
1489         /* Now Fujitsu TurboSparc. It might happen that it is
1490          * in Swift emulation mode, so we will check later...
1491          */
1492         if (psr_typ == 0 && psr_vers == 5) {
1493                 init_turbosparc();
1494                 return;
1495         }
1496
1497         /* Next check for Fujitsu Swift. */
1498         if (psr_typ == 0 && psr_vers == 4) {
1499                 phandle cpunode;
1500                 char node_str[128];
1501
1502                 /* Look if it is not a TurboSparc emulating Swift... */
1503                 cpunode = prom_getchild(prom_root_node);
1504                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1505                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1506                         if (!strcmp(node_str, "cpu")) {
1507                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1508                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1509                                         init_turbosparc();
1510                                         return;
1511                                 }
1512                                 break;
1513                         }
1514                 }
1515
1516                 init_swift();
1517                 return;
1518         }
1519
1520         /* Now the Viking family of srmmu. */
1521         if (psr_typ == 4 &&
1522            ((psr_vers == 0) ||
1523             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1524                 init_viking();
1525                 return;
1526         }
1527
1528         /* Finally the Tsunami. */
1529         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1530                 init_tsunami();
1531                 return;
1532         }
1533
1534         /* Oh well */
1535         srmmu_is_bad();
1536 }
1537
1538 #ifdef CONFIG_SMP
1539 /* Local cross-calls. */
1540 static void smp_flush_page_for_dma(unsigned long page)
1541 {
1542         xc1((smpfunc_t) local_ops->page_for_dma, page);
1543         local_ops->page_for_dma(page);
1544 }
1545
1546 static void smp_flush_cache_all(void)
1547 {
1548         xc0((smpfunc_t) local_ops->cache_all);
1549         local_ops->cache_all();
1550 }
1551
1552 static void smp_flush_tlb_all(void)
1553 {
1554         xc0((smpfunc_t) local_ops->tlb_all);
1555         local_ops->tlb_all();
1556 }
1557
1558 static void smp_flush_cache_mm(struct mm_struct *mm)
1559 {
1560         if (mm->context != NO_CONTEXT) {
1561                 cpumask_t cpu_mask;
1562                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1563                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1564                 if (!cpumask_empty(&cpu_mask))
1565                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1566                 local_ops->cache_mm(mm);
1567         }
1568 }
1569
1570 static void smp_flush_tlb_mm(struct mm_struct *mm)
1571 {
1572         if (mm->context != NO_CONTEXT) {
1573                 cpumask_t cpu_mask;
1574                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1575                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1576                 if (!cpumask_empty(&cpu_mask)) {
1577                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1578                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1579                                 cpumask_copy(mm_cpumask(mm),
1580                                              cpumask_of(smp_processor_id()));
1581                 }
1582                 local_ops->tlb_mm(mm);
1583         }
1584 }
1585
1586 static void smp_flush_cache_range(struct vm_area_struct *vma,
1587                                   unsigned long start,
1588                                   unsigned long end)
1589 {
1590         struct mm_struct *mm = vma->vm_mm;
1591
1592         if (mm->context != NO_CONTEXT) {
1593                 cpumask_t cpu_mask;
1594                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1595                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1596                 if (!cpumask_empty(&cpu_mask))
1597                         xc3((smpfunc_t) local_ops->cache_range,
1598                             (unsigned long) vma, start, end);
1599                 local_ops->cache_range(vma, start, end);
1600         }
1601 }
1602
1603 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1604                                 unsigned long start,
1605                                 unsigned long end)
1606 {
1607         struct mm_struct *mm = vma->vm_mm;
1608
1609         if (mm->context != NO_CONTEXT) {
1610                 cpumask_t cpu_mask;
1611                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1612                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1613                 if (!cpumask_empty(&cpu_mask))
1614                         xc3((smpfunc_t) local_ops->tlb_range,
1615                             (unsigned long) vma, start, end);
1616                 local_ops->tlb_range(vma, start, end);
1617         }
1618 }
1619
1620 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1621 {
1622         struct mm_struct *mm = vma->vm_mm;
1623
1624         if (mm->context != NO_CONTEXT) {
1625                 cpumask_t cpu_mask;
1626                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1627                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1628                 if (!cpumask_empty(&cpu_mask))
1629                         xc2((smpfunc_t) local_ops->cache_page,
1630                             (unsigned long) vma, page);
1631                 local_ops->cache_page(vma, page);
1632         }
1633 }
1634
1635 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1636 {
1637         struct mm_struct *mm = vma->vm_mm;
1638
1639         if (mm->context != NO_CONTEXT) {
1640                 cpumask_t cpu_mask;
1641                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643                 if (!cpumask_empty(&cpu_mask))
1644                         xc2((smpfunc_t) local_ops->tlb_page,
1645                             (unsigned long) vma, page);
1646                 local_ops->tlb_page(vma, page);
1647         }
1648 }
1649
1650 static void smp_flush_page_to_ram(unsigned long page)
1651 {
1652         /* Current theory is that those who call this are the one's
1653          * who have just dirtied their cache with the pages contents
1654          * in kernel space, therefore we only run this on local cpu.
1655          *
1656          * XXX This experiment failed, research further... -DaveM
1657          */
1658 #if 1
1659         xc1((smpfunc_t) local_ops->page_to_ram, page);
1660 #endif
1661         local_ops->page_to_ram(page);
1662 }
1663
1664 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1665 {
1666         cpumask_t cpu_mask;
1667         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1668         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1669         if (!cpumask_empty(&cpu_mask))
1670                 xc2((smpfunc_t) local_ops->sig_insns,
1671                     (unsigned long) mm, insn_addr);
1672         local_ops->sig_insns(mm, insn_addr);
1673 }
1674
1675 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1676         .cache_all      = smp_flush_cache_all,
1677         .cache_mm       = smp_flush_cache_mm,
1678         .cache_page     = smp_flush_cache_page,
1679         .cache_range    = smp_flush_cache_range,
1680         .tlb_all        = smp_flush_tlb_all,
1681         .tlb_mm         = smp_flush_tlb_mm,
1682         .tlb_page       = smp_flush_tlb_page,
1683         .tlb_range      = smp_flush_tlb_range,
1684         .page_to_ram    = smp_flush_page_to_ram,
1685         .sig_insns      = smp_flush_sig_insns,
1686         .page_for_dma   = smp_flush_page_for_dma,
1687 };
1688 #endif
1689
1690 /* Load up routines and constants for sun4m and sun4d mmu */
1691 void __init load_mmu(void)
1692 {
1693         extern void ld_mmu_iommu(void);
1694         extern void ld_mmu_iounit(void);
1695
1696         /* Functions */
1697         get_srmmu_type();
1698
1699 #ifdef CONFIG_SMP
1700         /* El switcheroo... */
1701         local_ops = sparc32_cachetlb_ops;
1702
1703         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1704                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1705                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1706                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1707                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1708         }
1709
1710         if (poke_srmmu == poke_viking) {
1711                 /* Avoid unnecessary cross calls. */
1712                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1713                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1714                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1715                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1716
1717                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1718                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1719                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1720         }
1721
1722         /* It really is const after this point. */
1723         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1724                 &smp_cachetlb_ops;
1725 #endif
1726
1727         if (sparc_cpu_model == sun4d)
1728                 ld_mmu_iounit();
1729         else
1730                 ld_mmu_iommu();
1731 #ifdef CONFIG_SMP
1732         if (sparc_cpu_model == sun4d)
1733                 sun4d_init_smp();
1734         else if (sparc_cpu_model == sparc_leon)
1735                 leon_init_smp();
1736         else
1737                 sun4m_init_smp();
1738 #endif
1739 }