Merge branch 'work.fdpic' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-starfive.git] / arch / sparc / kernel / process_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*  arch/sparc64/kernel/process.c
3  *
4  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
6  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
7  */
8
9 /*
10  * This file handles the architecture-dependent parts of process handling..
11  */
12
13 #include <stdarg.h>
14
15 #include <linux/errno.h>
16 #include <linux/export.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/fs.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/compat.h>
31 #include <linux/tick.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/perf_event.h>
35 #include <linux/elfcore.h>
36 #include <linux/sysrq.h>
37 #include <linux/nmi.h>
38 #include <linux/context_tracking.h>
39 #include <linux/signal.h>
40
41 #include <linux/uaccess.h>
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/processor.h>
45 #include <asm/pstate.h>
46 #include <asm/elf.h>
47 #include <asm/fpumacro.h>
48 #include <asm/head.h>
49 #include <asm/cpudata.h>
50 #include <asm/mmu_context.h>
51 #include <asm/unistd.h>
52 #include <asm/hypervisor.h>
53 #include <asm/syscalls.h>
54 #include <asm/irq_regs.h>
55 #include <asm/smp.h>
56 #include <asm/pcr.h>
57
58 #include "kstack.h"
59
60 /* Idle loop support on sparc64. */
61 void arch_cpu_idle(void)
62 {
63         if (tlb_type != hypervisor) {
64                 touch_nmi_watchdog();
65                 local_irq_enable();
66         } else {
67                 unsigned long pstate;
68
69                 local_irq_enable();
70
71                 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
72                  * the cpu sleep hypervisor call.
73                  */
74                 __asm__ __volatile__(
75                         "rdpr %%pstate, %0\n\t"
76                         "andn %0, %1, %0\n\t"
77                         "wrpr %0, %%g0, %%pstate"
78                         : "=&r" (pstate)
79                         : "i" (PSTATE_IE));
80
81                 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
82                         sun4v_cpu_yield();
83                         /* If resumed by cpu_poke then we need to explicitly
84                          * call scheduler_ipi().
85                          */
86                         scheduler_poke();
87                 }
88
89                 /* Re-enable interrupts. */
90                 __asm__ __volatile__(
91                         "rdpr %%pstate, %0\n\t"
92                         "or %0, %1, %0\n\t"
93                         "wrpr %0, %%g0, %%pstate"
94                         : "=&r" (pstate)
95                         : "i" (PSTATE_IE));
96         }
97 }
98
99 #ifdef CONFIG_HOTPLUG_CPU
100 void arch_cpu_idle_dead(void)
101 {
102         sched_preempt_enable_no_resched();
103         cpu_play_dead();
104 }
105 #endif
106
107 #ifdef CONFIG_COMPAT
108 static void show_regwindow32(struct pt_regs *regs)
109 {
110         struct reg_window32 __user *rw;
111         struct reg_window32 r_w;
112         mm_segment_t old_fs;
113         
114         __asm__ __volatile__ ("flushw");
115         rw = compat_ptr((unsigned int)regs->u_regs[14]);
116         old_fs = get_fs();
117         set_fs (USER_DS);
118         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
119                 set_fs (old_fs);
120                 return;
121         }
122
123         set_fs (old_fs);                        
124         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
125                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
126                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
127                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
128         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
129                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
130                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
131                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
132 }
133 #else
134 #define show_regwindow32(regs)  do { } while (0)
135 #endif
136
137 static void show_regwindow(struct pt_regs *regs)
138 {
139         struct reg_window __user *rw;
140         struct reg_window *rwk;
141         struct reg_window r_w;
142         mm_segment_t old_fs;
143
144         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
145                 __asm__ __volatile__ ("flushw");
146                 rw = (struct reg_window __user *)
147                         (regs->u_regs[14] + STACK_BIAS);
148                 rwk = (struct reg_window *)
149                         (regs->u_regs[14] + STACK_BIAS);
150                 if (!(regs->tstate & TSTATE_PRIV)) {
151                         old_fs = get_fs();
152                         set_fs (USER_DS);
153                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
154                                 set_fs (old_fs);
155                                 return;
156                         }
157                         rwk = &r_w;
158                         set_fs (old_fs);                        
159                 }
160         } else {
161                 show_regwindow32(regs);
162                 return;
163         }
164         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
165                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
166         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
167                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
168         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
169                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
170         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
171                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
172         if (regs->tstate & TSTATE_PRIV)
173                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
174 }
175
176 void show_regs(struct pt_regs *regs)
177 {
178         show_regs_print_info(KERN_DEFAULT);
179
180         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
181                regs->tpc, regs->tnpc, regs->y, print_tainted());
182         printk("TPC: <%pS>\n", (void *) regs->tpc);
183         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
184                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
185                regs->u_regs[3]);
186         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
187                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
188                regs->u_regs[7]);
189         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
190                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
191                regs->u_regs[11]);
192         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
193                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
194                regs->u_regs[15]);
195         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
196         show_regwindow(regs);
197         show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT);
198 }
199
200 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
201 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
202
203 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
204                               int this_cpu)
205 {
206         struct global_reg_snapshot *rp;
207
208         flushw_all();
209
210         rp = &global_cpu_snapshot[this_cpu].reg;
211
212         rp->tstate = regs->tstate;
213         rp->tpc = regs->tpc;
214         rp->tnpc = regs->tnpc;
215         rp->o7 = regs->u_regs[UREG_I7];
216
217         if (regs->tstate & TSTATE_PRIV) {
218                 struct reg_window *rw;
219
220                 rw = (struct reg_window *)
221                         (regs->u_regs[UREG_FP] + STACK_BIAS);
222                 if (kstack_valid(tp, (unsigned long) rw)) {
223                         rp->i7 = rw->ins[7];
224                         rw = (struct reg_window *)
225                                 (rw->ins[6] + STACK_BIAS);
226                         if (kstack_valid(tp, (unsigned long) rw))
227                                 rp->rpc = rw->ins[7];
228                 }
229         } else {
230                 rp->i7 = 0;
231                 rp->rpc = 0;
232         }
233         rp->thread = tp;
234 }
235
236 /* In order to avoid hangs we do not try to synchronize with the
237  * global register dump client cpus.  The last store they make is to
238  * the thread pointer, so do a short poll waiting for that to become
239  * non-NULL.
240  */
241 static void __global_reg_poll(struct global_reg_snapshot *gp)
242 {
243         int limit = 0;
244
245         while (!gp->thread && ++limit < 100) {
246                 barrier();
247                 udelay(1);
248         }
249 }
250
251 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
252 {
253         struct thread_info *tp = current_thread_info();
254         struct pt_regs *regs = get_irq_regs();
255         unsigned long flags;
256         int this_cpu, cpu;
257
258         if (!regs)
259                 regs = tp->kregs;
260
261         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
262
263         this_cpu = raw_smp_processor_id();
264
265         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
266
267         if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
268                 __global_reg_self(tp, regs, this_cpu);
269
270         smp_fetch_global_regs();
271
272         for_each_cpu(cpu, mask) {
273                 struct global_reg_snapshot *gp;
274
275                 if (exclude_self && cpu == this_cpu)
276                         continue;
277
278                 gp = &global_cpu_snapshot[cpu].reg;
279
280                 __global_reg_poll(gp);
281
282                 tp = gp->thread;
283                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
284                        (cpu == this_cpu ? '*' : ' '), cpu,
285                        gp->tstate, gp->tpc, gp->tnpc,
286                        ((tp && tp->task) ? tp->task->comm : "NULL"),
287                        ((tp && tp->task) ? tp->task->pid : -1));
288
289                 if (gp->tstate & TSTATE_PRIV) {
290                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
291                                (void *) gp->tpc,
292                                (void *) gp->o7,
293                                (void *) gp->i7,
294                                (void *) gp->rpc);
295                 } else {
296                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
297                                gp->tpc, gp->o7, gp->i7, gp->rpc);
298                 }
299
300                 touch_nmi_watchdog();
301         }
302
303         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
304
305         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
306 }
307
308 #ifdef CONFIG_MAGIC_SYSRQ
309
310 static void sysrq_handle_globreg(int key)
311 {
312         trigger_all_cpu_backtrace();
313 }
314
315 static const struct sysrq_key_op sparc_globalreg_op = {
316         .handler        = sysrq_handle_globreg,
317         .help_msg       = "global-regs(y)",
318         .action_msg     = "Show Global CPU Regs",
319 };
320
321 static void __global_pmu_self(int this_cpu)
322 {
323         struct global_pmu_snapshot *pp;
324         int i, num;
325
326         if (!pcr_ops)
327                 return;
328
329         pp = &global_cpu_snapshot[this_cpu].pmu;
330
331         num = 1;
332         if (tlb_type == hypervisor &&
333             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
334                 num = 4;
335
336         for (i = 0; i < num; i++) {
337                 pp->pcr[i] = pcr_ops->read_pcr(i);
338                 pp->pic[i] = pcr_ops->read_pic(i);
339         }
340 }
341
342 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
343 {
344         int limit = 0;
345
346         while (!pp->pcr[0] && ++limit < 100) {
347                 barrier();
348                 udelay(1);
349         }
350 }
351
352 static void pmu_snapshot_all_cpus(void)
353 {
354         unsigned long flags;
355         int this_cpu, cpu;
356
357         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
358
359         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
360
361         this_cpu = raw_smp_processor_id();
362
363         __global_pmu_self(this_cpu);
364
365         smp_fetch_global_pmu();
366
367         for_each_online_cpu(cpu) {
368                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
369
370                 __global_pmu_poll(pp);
371
372                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
373                        (cpu == this_cpu ? '*' : ' '), cpu,
374                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
375                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
376
377                 touch_nmi_watchdog();
378         }
379
380         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
381
382         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
383 }
384
385 static void sysrq_handle_globpmu(int key)
386 {
387         pmu_snapshot_all_cpus();
388 }
389
390 static const struct sysrq_key_op sparc_globalpmu_op = {
391         .handler        = sysrq_handle_globpmu,
392         .help_msg       = "global-pmu(x)",
393         .action_msg     = "Show Global PMU Regs",
394 };
395
396 static int __init sparc_sysrq_init(void)
397 {
398         int ret = register_sysrq_key('y', &sparc_globalreg_op);
399
400         if (!ret)
401                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
402         return ret;
403 }
404
405 core_initcall(sparc_sysrq_init);
406
407 #endif
408
409 /* Free current thread data structures etc.. */
410 void exit_thread(struct task_struct *tsk)
411 {
412         struct thread_info *t = task_thread_info(tsk);
413
414         if (t->utraps) {
415                 if (t->utraps[0] < 2)
416                         kfree (t->utraps);
417                 else
418                         t->utraps[0]--;
419         }
420 }
421
422 void flush_thread(void)
423 {
424         struct thread_info *t = current_thread_info();
425         struct mm_struct *mm;
426
427         mm = t->task->mm;
428         if (mm)
429                 tsb_context_switch(mm);
430
431         set_thread_wsaved(0);
432
433         /* Clear FPU register state. */
434         t->fpsaved[0] = 0;
435 }
436
437 /* It's a bit more tricky when 64-bit tasks are involved... */
438 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
439 {
440         bool stack_64bit = test_thread_64bit_stack(psp);
441         unsigned long fp, distance, rval;
442
443         if (stack_64bit) {
444                 csp += STACK_BIAS;
445                 psp += STACK_BIAS;
446                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
447                 fp += STACK_BIAS;
448                 if (test_thread_flag(TIF_32BIT))
449                         fp &= 0xffffffff;
450         } else
451                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
452
453         /* Now align the stack as this is mandatory in the Sparc ABI
454          * due to how register windows work.  This hides the
455          * restriction from thread libraries etc.
456          */
457         csp &= ~15UL;
458
459         distance = fp - psp;
460         rval = (csp - distance);
461         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
462                 rval = 0;
463         else if (!stack_64bit) {
464                 if (put_user(((u32)csp),
465                              &(((struct reg_window32 __user *)rval)->ins[6])))
466                         rval = 0;
467         } else {
468                 if (put_user(((u64)csp - STACK_BIAS),
469                              &(((struct reg_window __user *)rval)->ins[6])))
470                         rval = 0;
471                 else
472                         rval = rval - STACK_BIAS;
473         }
474
475         return rval;
476 }
477
478 /* Standard stuff. */
479 static inline void shift_window_buffer(int first_win, int last_win,
480                                        struct thread_info *t)
481 {
482         int i;
483
484         for (i = first_win; i < last_win; i++) {
485                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
486                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
487                        sizeof(struct reg_window));
488         }
489 }
490
491 void synchronize_user_stack(void)
492 {
493         struct thread_info *t = current_thread_info();
494         unsigned long window;
495
496         flush_user_windows();
497         if ((window = get_thread_wsaved()) != 0) {
498                 window -= 1;
499                 do {
500                         struct reg_window *rwin = &t->reg_window[window];
501                         int winsize = sizeof(struct reg_window);
502                         unsigned long sp;
503
504                         sp = t->rwbuf_stkptrs[window];
505
506                         if (test_thread_64bit_stack(sp))
507                                 sp += STACK_BIAS;
508                         else
509                                 winsize = sizeof(struct reg_window32);
510
511                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
512                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
513                                 set_thread_wsaved(get_thread_wsaved() - 1);
514                         }
515                 } while (window--);
516         }
517 }
518
519 static void stack_unaligned(unsigned long sp)
520 {
521         force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp, 0);
522 }
523
524 static const char uwfault32[] = KERN_INFO \
525         "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
526 static const char uwfault64[] = KERN_INFO \
527         "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
528
529 void fault_in_user_windows(struct pt_regs *regs)
530 {
531         struct thread_info *t = current_thread_info();
532         unsigned long window;
533
534         flush_user_windows();
535         window = get_thread_wsaved();
536
537         if (likely(window != 0)) {
538                 window -= 1;
539                 do {
540                         struct reg_window *rwin = &t->reg_window[window];
541                         int winsize = sizeof(struct reg_window);
542                         unsigned long sp, orig_sp;
543
544                         orig_sp = sp = t->rwbuf_stkptrs[window];
545
546                         if (test_thread_64bit_stack(sp))
547                                 sp += STACK_BIAS;
548                         else
549                                 winsize = sizeof(struct reg_window32);
550
551                         if (unlikely(sp & 0x7UL))
552                                 stack_unaligned(sp);
553
554                         if (unlikely(copy_to_user((char __user *)sp,
555                                                   rwin, winsize))) {
556                                 if (show_unhandled_signals)
557                                         printk_ratelimited(is_compat_task() ?
558                                                            uwfault32 : uwfault64,
559                                                            current->comm, current->pid,
560                                                            sp, orig_sp,
561                                                            regs->tpc,
562                                                            regs->u_regs[UREG_I7]);
563                                 goto barf;
564                         }
565                 } while (window--);
566         }
567         set_thread_wsaved(0);
568         return;
569
570 barf:
571         set_thread_wsaved(window + 1);
572         force_sig(SIGSEGV);
573 }
574
575 /* Copy a Sparc thread.  The fork() return value conventions
576  * under SunOS are nothing short of bletcherous:
577  * Parent -->  %o0 == childs  pid, %o1 == 0
578  * Child  -->  %o0 == parents pid, %o1 == 1
579  */
580 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
581                 struct task_struct *p, unsigned long tls)
582 {
583         struct thread_info *t = task_thread_info(p);
584         struct pt_regs *regs = current_pt_regs();
585         struct sparc_stackf *parent_sf;
586         unsigned long child_stack_sz;
587         char *child_trap_frame;
588
589         /* Calculate offset to stack_frame & pt_regs */
590         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
591         child_trap_frame = (task_stack_page(p) +
592                             (THREAD_SIZE - child_stack_sz));
593
594         t->new_child = 1;
595         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
596         t->kregs = (struct pt_regs *) (child_trap_frame +
597                                        sizeof(struct sparc_stackf));
598         t->fpsaved[0] = 0;
599
600         if (unlikely(p->flags & PF_KTHREAD)) {
601                 memset(child_trap_frame, 0, child_stack_sz);
602                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
603                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
604                 t->current_ds = ASI_P;
605                 t->kregs->u_regs[UREG_G1] = sp; /* function */
606                 t->kregs->u_regs[UREG_G2] = arg;
607                 return 0;
608         }
609
610         parent_sf = ((struct sparc_stackf *) regs) - 1;
611         memcpy(child_trap_frame, parent_sf, child_stack_sz);
612         if (t->flags & _TIF_32BIT) {
613                 sp &= 0x00000000ffffffffUL;
614                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
615         }
616         t->kregs->u_regs[UREG_FP] = sp;
617         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
618                 (regs->tstate + 1) & TSTATE_CWP;
619         t->current_ds = ASI_AIUS;
620         if (sp != regs->u_regs[UREG_FP]) {
621                 unsigned long csp;
622
623                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
624                 if (!csp)
625                         return -EFAULT;
626                 t->kregs->u_regs[UREG_FP] = csp;
627         }
628         if (t->utraps)
629                 t->utraps[0]++;
630
631         /* Set the return value for the child. */
632         t->kregs->u_regs[UREG_I0] = current->pid;
633         t->kregs->u_regs[UREG_I1] = 1;
634
635         /* Set the second return value for the parent. */
636         regs->u_regs[UREG_I1] = 0;
637
638         if (clone_flags & CLONE_SETTLS)
639                 t->kregs->u_regs[UREG_G7] = tls;
640
641         return 0;
642 }
643
644 /* TIF_MCDPER in thread info flags for current task is updated lazily upon
645  * a context switch. Update this flag in current task's thread flags
646  * before dup so the dup'd task will inherit the current TIF_MCDPER flag.
647  */
648 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
649 {
650         if (adi_capable()) {
651                 register unsigned long tmp_mcdper;
652
653                 __asm__ __volatile__(
654                         ".word 0x83438000\n\t"  /* rd  %mcdper, %g1 */
655                         "mov %%g1, %0\n\t"
656                         : "=r" (tmp_mcdper)
657                         :
658                         : "g1");
659                 if (tmp_mcdper)
660                         set_thread_flag(TIF_MCDPER);
661                 else
662                         clear_thread_flag(TIF_MCDPER);
663         }
664
665         *dst = *src;
666         return 0;
667 }
668
669 typedef struct {
670         union {
671                 unsigned int    pr_regs[32];
672                 unsigned long   pr_dregs[16];
673         } pr_fr;
674         unsigned int __unused;
675         unsigned int    pr_fsr;
676         unsigned char   pr_qcnt;
677         unsigned char   pr_q_entrysize;
678         unsigned char   pr_en;
679         unsigned int    pr_q[64];
680 } elf_fpregset_t32;
681
682 /*
683  * fill in the fpu structure for a core dump.
684  */
685 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
686 {
687         unsigned long *kfpregs = current_thread_info()->fpregs;
688         unsigned long fprs = current_thread_info()->fpsaved[0];
689
690         if (test_thread_flag(TIF_32BIT)) {
691                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
692
693                 if (fprs & FPRS_DL)
694                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
695                                sizeof(unsigned int) * 32);
696                 else
697                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
698                                sizeof(unsigned int) * 32);
699                 fpregs32->pr_qcnt = 0;
700                 fpregs32->pr_q_entrysize = 8;
701                 memset(&fpregs32->pr_q[0], 0,
702                        (sizeof(unsigned int) * 64));
703                 if (fprs & FPRS_FEF) {
704                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
705                         fpregs32->pr_en = 1;
706                 } else {
707                         fpregs32->pr_fsr = 0;
708                         fpregs32->pr_en = 0;
709                 }
710         } else {
711                 if(fprs & FPRS_DL)
712                         memcpy(&fpregs->pr_regs[0], kfpregs,
713                                sizeof(unsigned int) * 32);
714                 else
715                         memset(&fpregs->pr_regs[0], 0,
716                                sizeof(unsigned int) * 32);
717                 if(fprs & FPRS_DU)
718                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
719                                sizeof(unsigned int) * 32);
720                 else
721                         memset(&fpregs->pr_regs[16], 0,
722                                sizeof(unsigned int) * 32);
723                 if(fprs & FPRS_FEF) {
724                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
725                         fpregs->pr_gsr = current_thread_info()->gsr[0];
726                 } else {
727                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
728                 }
729                 fpregs->pr_fprs = fprs;
730         }
731         return 1;
732 }
733 EXPORT_SYMBOL(dump_fpu);
734
735 unsigned long get_wchan(struct task_struct *task)
736 {
737         unsigned long pc, fp, bias = 0;
738         struct thread_info *tp;
739         struct reg_window *rw;
740         unsigned long ret = 0;
741         int count = 0; 
742
743         if (!task || task == current ||
744             task->state == TASK_RUNNING)
745                 goto out;
746
747         tp = task_thread_info(task);
748         bias = STACK_BIAS;
749         fp = task_thread_info(task)->ksp + bias;
750
751         do {
752                 if (!kstack_valid(tp, fp))
753                         break;
754                 rw = (struct reg_window *) fp;
755                 pc = rw->ins[7];
756                 if (!in_sched_functions(pc)) {
757                         ret = pc;
758                         goto out;
759                 }
760                 fp = rw->ins[6] + bias;
761         } while (++count < 16);
762
763 out:
764         return ret;
765 }