1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
28 #include <asm/cacheflush.h>
33 /* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
68 #define MAX_HWEVENTS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
76 struct cpu_hw_events {
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
96 unsigned long events[MAX_HWEVENTS];
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
103 int current_idx[MAX_HWEVENTS];
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
108 /* Enabled/disable state. */
111 unsigned int group_flag;
113 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
115 /* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
119 * The mask is unused on SPARC-T4 and later.
121 struct perf_event_map {
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
135 static u8 perf_event_get_msk(unsigned long val)
140 static u64 perf_event_get_enc(unsigned long val)
145 #define C(x) PERF_COUNT_HW_CACHE_##x
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
150 typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
156 const struct perf_event_map *(*event_map)(int);
157 const cache_map_t *cache_map;
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
178 static u32 sparc_default_read_pmc(int idx)
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
186 return val & 0xffffffff;
189 static void sparc_default_write_pmc(int idx, u64 val)
191 u64 shift, mask, pic;
194 if (idx == PIC_UPPER_INDEX)
197 mask = ((u64) 0xffffffff) << shift;
200 pic = pcr_ops->read_pic(0);
203 pcr_ops->write_pic(0, pic);
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
213 static const struct perf_event_map *ultra3_event_map(int event_id)
215 return &ultra3_perfmon_event_map[event_id];
218 static const cache_map_t ultra3_cache_map = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
319 static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
351 static const struct perf_event_map *niagara1_event_map(int event_id)
353 return &niagara1_perfmon_event_map[event_id];
356 static const cache_map_t niagara1_cache_map = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
457 static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
486 static const struct perf_event_map *niagara2_event_map(int event_id)
488 return &niagara2_perfmon_event_map[event_id];
491 static const cache_map_t niagara2_cache_map = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
592 static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
594 .cache_map = &niagara2_cache_map,
595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
623 static const struct perf_event_map *niagara4_event_map(int event_id)
625 return &niagara4_perfmon_event_map[event_id];
628 static const cache_map_t niagara4_cache_map = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
729 static u32 sparc_vt_read_pmc(int idx)
731 u64 val = pcr_ops->read_pic(idx);
733 return val & 0xffffffff;
736 static void sparc_vt_write_pmc(int idx, u64 val)
740 /* There seems to be an internal latch on the overflow event
741 * on SPARC-T4 that prevents it from triggering unless you
742 * update the PIC exactly as we do here. The requirement
743 * seems to be that you have to turn off event counting in the
744 * PCR around the PIC update.
746 * For example, after the following sequence:
749 * 2) enable event counting and overflow reporting in PCR
750 * 3) overflow triggers, softint 15 handler invoked
751 * 4) clear OV bit in PCR
754 * a subsequent overflow event will not trigger. This
755 * sequence works on SPARC-T3 and previous chips.
757 pcr = pcr_ops->read_pcr(idx);
758 pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
760 pcr_ops->write_pic(idx, val & 0xffffffff);
762 pcr_ops->write_pcr(idx, pcr);
765 static const struct sparc_pmu niagara4_pmu = {
766 .event_map = niagara4_event_map,
767 .cache_map = &niagara4_cache_map,
768 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769 .read_pmc = sparc_vt_read_pmc,
770 .write_pmc = sparc_vt_write_pmc,
774 .user_bit = PCR_N4_UTRACE,
775 .priv_bit = PCR_N4_STRACE,
777 /* We explicitly don't support hypervisor tracing. The T4
778 * generates the overflow event for precise events via a trap
779 * which will not be generated (ie. it's completely lost) if
780 * we happen to be in the hypervisor when the event triggers.
781 * Essentially, the overflow event reporting is completely
782 * unusable when you have hypervisor mode tracing enabled.
786 .irq_bit = PCR_N4_TOE,
795 static const struct sparc_pmu *sparc_pmu __read_mostly;
797 static u64 event_encoding(u64 event_id, int idx)
799 if (idx == PIC_UPPER_INDEX)
800 event_id <<= sparc_pmu->upper_shift;
802 event_id <<= sparc_pmu->lower_shift;
806 static u64 mask_for_index(int idx)
808 return event_encoding(sparc_pmu->event_mask, idx);
811 static u64 nop_for_index(int idx)
813 return event_encoding(idx == PIC_UPPER_INDEX ?
814 sparc_pmu->upper_nop :
815 sparc_pmu->lower_nop, idx);
818 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
820 u64 val, mask = mask_for_index(idx);
823 if (sparc_pmu->num_pcrs > 1)
826 val = cpuc->pcr[pcr_index];
829 cpuc->pcr[pcr_index] = val;
831 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
836 u64 mask = mask_for_index(idx);
837 u64 nop = nop_for_index(idx);
841 if (sparc_pmu->num_pcrs > 1)
844 val = cpuc->pcr[pcr_index];
847 cpuc->pcr[pcr_index] = val;
849 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852 static u64 sparc_perf_event_update(struct perf_event *event,
853 struct hw_perf_event *hwc, int idx)
856 u64 prev_raw_count, new_raw_count;
860 prev_raw_count = local64_read(&hwc->prev_count);
861 new_raw_count = sparc_pmu->read_pmc(idx);
863 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
864 new_raw_count) != prev_raw_count)
867 delta = (new_raw_count << shift) - (prev_raw_count << shift);
870 local64_add(delta, &event->count);
871 local64_sub(delta, &hwc->period_left);
873 return new_raw_count;
876 static int sparc_perf_event_set_period(struct perf_event *event,
877 struct hw_perf_event *hwc, int idx)
879 s64 left = local64_read(&hwc->period_left);
880 s64 period = hwc->sample_period;
883 if (unlikely(left <= -period)) {
885 local64_set(&hwc->period_left, left);
886 hwc->last_period = period;
890 if (unlikely(left <= 0)) {
892 local64_set(&hwc->period_left, left);
893 hwc->last_period = period;
896 if (left > MAX_PERIOD)
899 local64_set(&hwc->prev_count, (u64)-left);
901 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
903 perf_event_update_userpage(event);
908 static void read_in_all_counters(struct cpu_hw_events *cpuc)
912 for (i = 0; i < cpuc->n_events; i++) {
913 struct perf_event *cp = cpuc->event[i];
915 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
916 cpuc->current_idx[i] != cp->hw.idx) {
917 sparc_perf_event_update(cp, &cp->hw,
918 cpuc->current_idx[i]);
919 cpuc->current_idx[i] = PIC_NO_INDEX;
924 /* On this PMU all PICs are programmed using a single PCR. Calculate
925 * the combined control register value.
927 * For such chips we require that all of the events have the same
928 * configuration, so just fetch the settings from the first entry.
930 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
937 /* Assign to counters all unassigned events. */
938 for (i = 0; i < cpuc->n_events; i++) {
939 struct perf_event *cp = cpuc->event[i];
940 struct hw_perf_event *hwc = &cp->hw;
944 if (cpuc->current_idx[i] != PIC_NO_INDEX)
947 sparc_perf_event_set_period(cp, hwc, idx);
948 cpuc->current_idx[i] = idx;
950 enc = perf_event_get_enc(cpuc->events[i]);
951 cpuc->pcr[0] &= ~mask_for_index(idx);
952 if (hwc->state & PERF_HES_STOPPED)
953 cpuc->pcr[0] |= nop_for_index(idx);
955 cpuc->pcr[0] |= event_encoding(enc, idx);
958 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
961 /* On this PMU each PIC has it's own PCR control register. */
962 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
969 for (i = 0; i < cpuc->n_events; i++) {
970 struct perf_event *cp = cpuc->event[i];
971 struct hw_perf_event *hwc = &cp->hw;
975 if (cpuc->current_idx[i] != PIC_NO_INDEX)
978 sparc_perf_event_set_period(cp, hwc, idx);
979 cpuc->current_idx[i] = idx;
981 enc = perf_event_get_enc(cpuc->events[i]);
982 cpuc->pcr[idx] &= ~mask_for_index(idx);
983 if (hwc->state & PERF_HES_STOPPED)
984 cpuc->pcr[idx] |= nop_for_index(idx);
986 cpuc->pcr[idx] |= event_encoding(enc, idx);
989 for (i = 0; i < cpuc->n_events; i++) {
990 struct perf_event *cp = cpuc->event[i];
991 int idx = cp->hw.idx;
993 cpuc->pcr[idx] |= cp->hw.config_base;
997 /* If performance event entries have been added, move existing events
998 * around (if necessary) and then assign new entries to counters.
1000 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003 read_in_all_counters(cpuc);
1005 if (sparc_pmu->num_pcrs == 1) {
1006 calculate_single_pcr(cpuc);
1008 calculate_multiple_pcrs(cpuc);
1012 static void sparc_pmu_enable(struct pmu *pmu)
1014 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1024 update_pcrs_for_enable(cpuc);
1026 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1027 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030 static void sparc_pmu_disable(struct pmu *pmu)
1032 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1041 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1042 u64 val = cpuc->pcr[i];
1044 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1045 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1047 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1051 static int active_event_index(struct cpu_hw_events *cpuc,
1052 struct perf_event *event)
1056 for (i = 0; i < cpuc->n_events; i++) {
1057 if (cpuc->event[i] == event)
1060 BUG_ON(i == cpuc->n_events);
1061 return cpuc->current_idx[i];
1064 static void sparc_pmu_start(struct perf_event *event, int flags)
1066 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1067 int idx = active_event_index(cpuc, event);
1069 if (flags & PERF_EF_RELOAD) {
1070 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1071 sparc_perf_event_set_period(event, &event->hw, idx);
1074 event->hw.state = 0;
1076 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079 static void sparc_pmu_stop(struct perf_event *event, int flags)
1081 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1082 int idx = active_event_index(cpuc, event);
1084 if (!(event->hw.state & PERF_HES_STOPPED)) {
1085 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1086 event->hw.state |= PERF_HES_STOPPED;
1089 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1090 sparc_perf_event_update(event, &event->hw, idx);
1091 event->hw.state |= PERF_HES_UPTODATE;
1095 static void sparc_pmu_del(struct perf_event *event, int _flags)
1097 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1098 unsigned long flags;
1101 local_irq_save(flags);
1102 perf_pmu_disable(event->pmu);
1104 for (i = 0; i < cpuc->n_events; i++) {
1105 if (event == cpuc->event[i]) {
1106 /* Absorb the final count and turn off the
1109 sparc_pmu_stop(event, PERF_EF_UPDATE);
1111 /* Shift remaining entries down into
1112 * the existing slot.
1114 while (++i < cpuc->n_events) {
1115 cpuc->event[i - 1] = cpuc->event[i];
1116 cpuc->events[i - 1] = cpuc->events[i];
1117 cpuc->current_idx[i - 1] =
1118 cpuc->current_idx[i];
1121 perf_event_update_userpage(event);
1128 perf_pmu_enable(event->pmu);
1129 local_irq_restore(flags);
1132 static void sparc_pmu_read(struct perf_event *event)
1134 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1135 int idx = active_event_index(cpuc, event);
1136 struct hw_perf_event *hwc = &event->hw;
1138 sparc_perf_event_update(event, hwc, idx);
1141 static atomic_t active_events = ATOMIC_INIT(0);
1142 static DEFINE_MUTEX(pmc_grab_mutex);
1144 static void perf_stop_nmi_watchdog(void *unused)
1146 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149 stop_nmi_watchdog(NULL);
1150 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1151 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154 void perf_event_grab_pmc(void)
1156 if (atomic_inc_not_zero(&active_events))
1159 mutex_lock(&pmc_grab_mutex);
1160 if (atomic_read(&active_events) == 0) {
1161 if (atomic_read(&nmi_active) > 0) {
1162 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1163 BUG_ON(atomic_read(&nmi_active) != 0);
1165 atomic_inc(&active_events);
1167 mutex_unlock(&pmc_grab_mutex);
1170 void perf_event_release_pmc(void)
1172 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1173 if (atomic_read(&nmi_active) == 0)
1174 on_each_cpu(start_nmi_watchdog, NULL, 1);
1175 mutex_unlock(&pmc_grab_mutex);
1179 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1181 unsigned int cache_type, cache_op, cache_result;
1182 const struct perf_event_map *pmap;
1184 if (!sparc_pmu->cache_map)
1185 return ERR_PTR(-ENOENT);
1187 cache_type = (config >> 0) & 0xff;
1188 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1189 return ERR_PTR(-EINVAL);
1191 cache_op = (config >> 8) & 0xff;
1192 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1193 return ERR_PTR(-EINVAL);
1195 cache_result = (config >> 16) & 0xff;
1196 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1197 return ERR_PTR(-EINVAL);
1199 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1201 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1202 return ERR_PTR(-ENOENT);
1204 if (pmap->encoding == CACHE_OP_NONSENSE)
1205 return ERR_PTR(-EINVAL);
1210 static void hw_perf_event_destroy(struct perf_event *event)
1212 perf_event_release_pmc();
1215 /* Make sure all events can be scheduled into the hardware at
1216 * the same time. This is simplified by the fact that we only
1217 * need to support 2 simultaneous HW events.
1219 * As a side effect, the evts[]->hw.idx values will be assigned
1220 * on success. These are pending indexes. When the events are
1221 * actually programmed into the chip, these values will propagate
1222 * to the per-cpu cpuc->current_idx[] slots, see the code in
1223 * maybe_change_configuration() for details.
1225 static int sparc_check_constraints(struct perf_event **evts,
1226 unsigned long *events, int n_ev)
1228 u8 msk0 = 0, msk1 = 0;
1231 /* This case is possible when we are invoked from
1232 * hw_perf_group_sched_in().
1237 if (n_ev > sparc_pmu->max_hw_events)
1240 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243 for (i = 0; i < n_ev; i++)
1244 evts[i]->hw.idx = i;
1248 msk0 = perf_event_get_msk(events[0]);
1250 if (msk0 & PIC_LOWER)
1255 msk1 = perf_event_get_msk(events[1]);
1257 /* If both events can go on any counter, OK. */
1258 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1259 msk1 == (PIC_UPPER | PIC_LOWER))
1262 /* If one event is limited to a specific counter,
1263 * and the other can go on both, OK.
1265 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1266 msk1 == (PIC_UPPER | PIC_LOWER)) {
1267 if (msk0 & PIC_LOWER)
1272 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1273 msk0 == (PIC_UPPER | PIC_LOWER)) {
1274 if (msk1 & PIC_UPPER)
1279 /* If the events are fixed to different counters, OK. */
1280 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1281 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1282 if (msk0 & PIC_LOWER)
1287 /* Otherwise, there is a conflict. */
1291 evts[0]->hw.idx = idx0;
1293 evts[1]->hw.idx = idx0 ^ 1;
1297 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1299 int eu = 0, ek = 0, eh = 0;
1300 struct perf_event *event;
1303 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1311 for (i = 0; i < n; i++) {
1314 eu = event->attr.exclude_user;
1315 ek = event->attr.exclude_kernel;
1316 eh = event->attr.exclude_hv;
1318 } else if (event->attr.exclude_user != eu ||
1319 event->attr.exclude_kernel != ek ||
1320 event->attr.exclude_hv != eh) {
1328 static int collect_events(struct perf_event *group, int max_count,
1329 struct perf_event *evts[], unsigned long *events,
1332 struct perf_event *event;
1335 if (!is_software_event(group)) {
1339 events[n] = group->hw.event_base;
1340 current_idx[n++] = PIC_NO_INDEX;
1342 list_for_each_entry(event, &group->sibling_list, group_entry) {
1343 if (!is_software_event(event) &&
1344 event->state != PERF_EVENT_STATE_OFF) {
1348 events[n] = event->hw.event_base;
1349 current_idx[n++] = PIC_NO_INDEX;
1355 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1357 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1358 int n0, ret = -EAGAIN;
1359 unsigned long flags;
1361 local_irq_save(flags);
1362 perf_pmu_disable(event->pmu);
1364 n0 = cpuc->n_events;
1365 if (n0 >= sparc_pmu->max_hw_events)
1368 cpuc->event[n0] = event;
1369 cpuc->events[n0] = event->hw.event_base;
1370 cpuc->current_idx[n0] = PIC_NO_INDEX;
1372 event->hw.state = PERF_HES_UPTODATE;
1373 if (!(ef_flags & PERF_EF_START))
1374 event->hw.state |= PERF_HES_STOPPED;
1377 * If group events scheduling transaction was started,
1378 * skip the schedulability test here, it will be performed
1379 * at commit time(->commit_txn) as a whole
1381 if (cpuc->group_flag & PERF_EVENT_TXN)
1384 if (check_excludes(cpuc->event, n0, 1))
1386 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1395 perf_pmu_enable(event->pmu);
1396 local_irq_restore(flags);
1400 static int sparc_pmu_event_init(struct perf_event *event)
1402 struct perf_event_attr *attr = &event->attr;
1403 struct perf_event *evts[MAX_HWEVENTS];
1404 struct hw_perf_event *hwc = &event->hw;
1405 unsigned long events[MAX_HWEVENTS];
1406 int current_idx_dmy[MAX_HWEVENTS];
1407 const struct perf_event_map *pmap;
1410 if (atomic_read(&nmi_active) < 0)
1413 /* does not support taken branch sampling */
1414 if (has_branch_stack(event))
1417 switch (attr->type) {
1418 case PERF_TYPE_HARDWARE:
1419 if (attr->config >= sparc_pmu->max_events)
1421 pmap = sparc_pmu->event_map(attr->config);
1424 case PERF_TYPE_HW_CACHE:
1425 pmap = sparc_map_cache_event(attr->config);
1427 return PTR_ERR(pmap);
1440 hwc->event_base = perf_event_encode(pmap);
1443 * User gives us "(encoding << 16) | pic_mask" for
1444 * PERF_TYPE_RAW events.
1446 hwc->event_base = attr->config;
1449 /* We save the enable bits in the config_base. */
1450 hwc->config_base = sparc_pmu->irq_bit;
1451 if (!attr->exclude_user)
1452 hwc->config_base |= sparc_pmu->user_bit;
1453 if (!attr->exclude_kernel)
1454 hwc->config_base |= sparc_pmu->priv_bit;
1455 if (!attr->exclude_hv)
1456 hwc->config_base |= sparc_pmu->hv_bit;
1459 if (event->group_leader != event) {
1460 n = collect_events(event->group_leader,
1461 sparc_pmu->max_hw_events - 1,
1462 evts, events, current_idx_dmy);
1466 events[n] = hwc->event_base;
1469 if (check_excludes(evts, n, 1))
1472 if (sparc_check_constraints(evts, events, n + 1))
1475 hwc->idx = PIC_NO_INDEX;
1477 /* Try to do all error checking before this point, as unwinding
1478 * state after grabbing the PMC is difficult.
1480 perf_event_grab_pmc();
1481 event->destroy = hw_perf_event_destroy;
1483 if (!hwc->sample_period) {
1484 hwc->sample_period = MAX_PERIOD;
1485 hwc->last_period = hwc->sample_period;
1486 local64_set(&hwc->period_left, hwc->sample_period);
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1497 static void sparc_pmu_start_txn(struct pmu *pmu)
1499 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1501 perf_pmu_disable(pmu);
1502 cpuhw->group_flag |= PERF_EVENT_TXN;
1506 * Stop group events scheduling transaction
1507 * Clear the flag and pmu::enable() will perform the
1508 * schedulability test.
1510 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1512 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1514 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1515 perf_pmu_enable(pmu);
1519 * Commit group events scheduling transaction
1520 * Perform the group schedulability test as a whole
1521 * Return 0 if success
1523 static int sparc_pmu_commit_txn(struct pmu *pmu)
1525 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1531 cpuc = &__get_cpu_var(cpu_hw_events);
1533 if (check_excludes(cpuc->event, 0, n))
1535 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538 cpuc->group_flag &= ~PERF_EVENT_TXN;
1539 perf_pmu_enable(pmu);
1543 static struct pmu pmu = {
1544 .pmu_enable = sparc_pmu_enable,
1545 .pmu_disable = sparc_pmu_disable,
1546 .event_init = sparc_pmu_event_init,
1547 .add = sparc_pmu_add,
1548 .del = sparc_pmu_del,
1549 .start = sparc_pmu_start,
1550 .stop = sparc_pmu_stop,
1551 .read = sparc_pmu_read,
1552 .start_txn = sparc_pmu_start_txn,
1553 .cancel_txn = sparc_pmu_cancel_txn,
1554 .commit_txn = sparc_pmu_commit_txn,
1557 void perf_event_print_debug(void)
1559 unsigned long flags;
1565 local_irq_save(flags);
1567 cpu = smp_processor_id();
1570 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1571 pr_info("CPU#%d: PCR%d[%016llx]\n",
1572 cpu, i, pcr_ops->read_pcr(i));
1573 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1574 pr_info("CPU#%d: PIC%d[%016llx]\n",
1575 cpu, i, pcr_ops->read_pic(i));
1577 local_irq_restore(flags);
1580 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1581 unsigned long cmd, void *__args)
1583 struct die_args *args = __args;
1584 struct perf_sample_data data;
1585 struct cpu_hw_events *cpuc;
1586 struct pt_regs *regs;
1589 if (!atomic_read(&active_events))
1602 cpuc = &__get_cpu_var(cpu_hw_events);
1604 /* If the PMU has the TOE IRQ enable bits, we need to do a
1605 * dummy write to the %pcr to clear the overflow bits and thus
1608 * Do this before we peek at the counters to determine
1609 * overflow so we don't lose any events.
1611 if (sparc_pmu->irq_bit &&
1612 sparc_pmu->num_pcrs == 1)
1613 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1615 for (i = 0; i < cpuc->n_events; i++) {
1616 struct perf_event *event = cpuc->event[i];
1617 int idx = cpuc->current_idx[i];
1618 struct hw_perf_event *hwc;
1621 if (sparc_pmu->irq_bit &&
1622 sparc_pmu->num_pcrs > 1)
1623 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626 val = sparc_perf_event_update(event, hwc, idx);
1627 if (val & (1ULL << 31))
1630 perf_sample_data_init(&data, 0, hwc->last_period);
1631 if (!sparc_perf_event_set_period(event, hwc, idx))
1634 if (perf_event_overflow(event, &data, regs))
1635 sparc_pmu_stop(event, 0);
1641 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1642 .notifier_call = perf_event_nmi_handler,
1645 static bool __init supported_pmu(void)
1647 if (!strcmp(sparc_pmu_type, "ultra3") ||
1648 !strcmp(sparc_pmu_type, "ultra3+") ||
1649 !strcmp(sparc_pmu_type, "ultra3i") ||
1650 !strcmp(sparc_pmu_type, "ultra4+")) {
1651 sparc_pmu = &ultra3_pmu;
1654 if (!strcmp(sparc_pmu_type, "niagara")) {
1655 sparc_pmu = &niagara1_pmu;
1658 if (!strcmp(sparc_pmu_type, "niagara2") ||
1659 !strcmp(sparc_pmu_type, "niagara3")) {
1660 sparc_pmu = &niagara2_pmu;
1663 if (!strcmp(sparc_pmu_type, "niagara4")) {
1664 sparc_pmu = &niagara4_pmu;
1670 int __init init_hw_perf_events(void)
1672 pr_info("Performance events: ");
1674 if (!supported_pmu()) {
1675 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1679 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1681 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1682 register_die_notifier(&perf_event_nmi_notifier);
1686 early_initcall(init_hw_perf_events);
1688 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1689 struct pt_regs *regs)
1691 unsigned long ksp, fp;
1692 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1696 stack_trace_flush();
1698 perf_callchain_store(entry, regs->tpc);
1700 ksp = regs->u_regs[UREG_I6];
1701 fp = ksp + STACK_BIAS;
1703 struct sparc_stackf *sf;
1704 struct pt_regs *regs;
1707 if (!kstack_valid(current_thread_info(), fp))
1710 sf = (struct sparc_stackf *) fp;
1711 regs = (struct pt_regs *) (sf + 1);
1713 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1714 if (user_mode(regs))
1717 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1719 pc = sf->callers_pc;
1720 fp = (unsigned long)sf->fp + STACK_BIAS;
1722 perf_callchain_store(entry, pc);
1723 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1724 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1725 int index = current->curr_ret_stack;
1726 if (current->ret_stack && index >= graph) {
1727 pc = current->ret_stack[index - graph].ret;
1728 perf_callchain_store(entry, pc);
1733 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1736 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1737 struct pt_regs *regs)
1741 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1743 struct sparc_stackf *usf, sf;
1746 usf = (struct sparc_stackf *) ufp;
1747 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1751 ufp = (unsigned long)sf.fp + STACK_BIAS;
1752 perf_callchain_store(entry, pc);
1753 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1756 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1757 struct pt_regs *regs)
1761 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1763 struct sparc_stackf32 *usf, sf;
1766 usf = (struct sparc_stackf32 *) ufp;
1767 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1771 ufp = (unsigned long)sf.fp;
1772 perf_callchain_store(entry, pc);
1773 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1777 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1779 perf_callchain_store(entry, regs->tpc);
1785 if (test_thread_flag(TIF_32BIT))
1786 perf_callchain_user_32(entry, regs);
1788 perf_callchain_user_64(entry, regs);