Merge tag 'mac80211-next-for-net-next-2021-06-25' of git://git.kernel.org/pub/scm...
[platform/kernel/linux-starfive.git] / arch / sh / kernel / perf_event.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support framework for SuperH hardware counters.
4  *
5  *  Copyright (C) 2009  Paul Mundt
6  *
7  * Heavily based on the x86 and PowerPC implementations.
8  *
9  * x86:
10  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
11  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
12  *  Copyright (C) 2009 Jaswinder Singh Rajput
13  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
14  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16  *
17  * ppc:
18  *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/perf_event.h>
25 #include <linux/export.h>
26 #include <asm/processor.h>
27
28 struct cpu_hw_events {
29         struct perf_event       *events[MAX_HWEVENTS];
30         unsigned long           used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
31         unsigned long           active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
32 };
33
34 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
35
36 static struct sh_pmu *sh_pmu __read_mostly;
37
38 /* Number of perf_events counting hardware events */
39 static atomic_t num_events;
40 /* Used to avoid races in calling reserve/release_pmc_hardware */
41 static DEFINE_MUTEX(pmc_reserve_mutex);
42
43 /*
44  * Stub these out for now, do something more profound later.
45  */
46 int reserve_pmc_hardware(void)
47 {
48         return 0;
49 }
50
51 void release_pmc_hardware(void)
52 {
53 }
54
55 static inline int sh_pmu_initialized(void)
56 {
57         return !!sh_pmu;
58 }
59
60 /*
61  * Release the PMU if this is the last perf_event.
62  */
63 static void hw_perf_event_destroy(struct perf_event *event)
64 {
65         if (!atomic_add_unless(&num_events, -1, 1)) {
66                 mutex_lock(&pmc_reserve_mutex);
67                 if (atomic_dec_return(&num_events) == 0)
68                         release_pmc_hardware();
69                 mutex_unlock(&pmc_reserve_mutex);
70         }
71 }
72
73 static int hw_perf_cache_event(int config, int *evp)
74 {
75         unsigned long type, op, result;
76         int ev;
77
78         if (!sh_pmu->cache_events)
79                 return -EINVAL;
80
81         /* unpack config */
82         type = config & 0xff;
83         op = (config >> 8) & 0xff;
84         result = (config >> 16) & 0xff;
85
86         if (type >= PERF_COUNT_HW_CACHE_MAX ||
87             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
88             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
89                 return -EINVAL;
90
91         ev = (*sh_pmu->cache_events)[type][op][result];
92         if (ev == 0)
93                 return -EOPNOTSUPP;
94         if (ev == -1)
95                 return -EINVAL;
96         *evp = ev;
97         return 0;
98 }
99
100 static int __hw_perf_event_init(struct perf_event *event)
101 {
102         struct perf_event_attr *attr = &event->attr;
103         struct hw_perf_event *hwc = &event->hw;
104         int config = -1;
105         int err;
106
107         if (!sh_pmu_initialized())
108                 return -ENODEV;
109
110         /*
111          * See if we need to reserve the counter.
112          *
113          * If no events are currently in use, then we have to take a
114          * mutex to ensure that we don't race with another task doing
115          * reserve_pmc_hardware or release_pmc_hardware.
116          */
117         err = 0;
118         if (!atomic_inc_not_zero(&num_events)) {
119                 mutex_lock(&pmc_reserve_mutex);
120                 if (atomic_read(&num_events) == 0 &&
121                     reserve_pmc_hardware())
122                         err = -EBUSY;
123                 else
124                         atomic_inc(&num_events);
125                 mutex_unlock(&pmc_reserve_mutex);
126         }
127
128         if (err)
129                 return err;
130
131         event->destroy = hw_perf_event_destroy;
132
133         switch (attr->type) {
134         case PERF_TYPE_RAW:
135                 config = attr->config & sh_pmu->raw_event_mask;
136                 break;
137         case PERF_TYPE_HW_CACHE:
138                 err = hw_perf_cache_event(attr->config, &config);
139                 if (err)
140                         return err;
141                 break;
142         case PERF_TYPE_HARDWARE:
143                 if (attr->config >= sh_pmu->max_events)
144                         return -EINVAL;
145
146                 config = sh_pmu->event_map(attr->config);
147                 break;
148         }
149
150         if (config == -1)
151                 return -EINVAL;
152
153         hwc->config |= config;
154
155         return 0;
156 }
157
158 static void sh_perf_event_update(struct perf_event *event,
159                                    struct hw_perf_event *hwc, int idx)
160 {
161         u64 prev_raw_count, new_raw_count;
162         s64 delta;
163         int shift = 0;
164
165         /*
166          * Depending on the counter configuration, they may or may not
167          * be chained, in which case the previous counter value can be
168          * updated underneath us if the lower-half overflows.
169          *
170          * Our tactic to handle this is to first atomically read and
171          * exchange a new raw count - then add that new-prev delta
172          * count to the generic counter atomically.
173          *
174          * As there is no interrupt associated with the overflow events,
175          * this is the simplest approach for maintaining consistency.
176          */
177 again:
178         prev_raw_count = local64_read(&hwc->prev_count);
179         new_raw_count = sh_pmu->read(idx);
180
181         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
182                              new_raw_count) != prev_raw_count)
183                 goto again;
184
185         /*
186          * Now we have the new raw value and have updated the prev
187          * timestamp already. We can now calculate the elapsed delta
188          * (counter-)time and add that to the generic counter.
189          *
190          * Careful, not all hw sign-extends above the physical width
191          * of the count.
192          */
193         delta = (new_raw_count << shift) - (prev_raw_count << shift);
194         delta >>= shift;
195
196         local64_add(delta, &event->count);
197 }
198
199 static void sh_pmu_stop(struct perf_event *event, int flags)
200 {
201         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
202         struct hw_perf_event *hwc = &event->hw;
203         int idx = hwc->idx;
204
205         if (!(event->hw.state & PERF_HES_STOPPED)) {
206                 sh_pmu->disable(hwc, idx);
207                 cpuc->events[idx] = NULL;
208                 event->hw.state |= PERF_HES_STOPPED;
209         }
210
211         if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
212                 sh_perf_event_update(event, &event->hw, idx);
213                 event->hw.state |= PERF_HES_UPTODATE;
214         }
215 }
216
217 static void sh_pmu_start(struct perf_event *event, int flags)
218 {
219         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
220         struct hw_perf_event *hwc = &event->hw;
221         int idx = hwc->idx;
222
223         if (WARN_ON_ONCE(idx == -1))
224                 return;
225
226         if (flags & PERF_EF_RELOAD)
227                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
228
229         cpuc->events[idx] = event;
230         event->hw.state = 0;
231         sh_pmu->enable(hwc, idx);
232 }
233
234 static void sh_pmu_del(struct perf_event *event, int flags)
235 {
236         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
237
238         sh_pmu_stop(event, PERF_EF_UPDATE);
239         __clear_bit(event->hw.idx, cpuc->used_mask);
240
241         perf_event_update_userpage(event);
242 }
243
244 static int sh_pmu_add(struct perf_event *event, int flags)
245 {
246         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
247         struct hw_perf_event *hwc = &event->hw;
248         int idx = hwc->idx;
249         int ret = -EAGAIN;
250
251         perf_pmu_disable(event->pmu);
252
253         if (__test_and_set_bit(idx, cpuc->used_mask)) {
254                 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
255                 if (idx == sh_pmu->num_events)
256                         goto out;
257
258                 __set_bit(idx, cpuc->used_mask);
259                 hwc->idx = idx;
260         }
261
262         sh_pmu->disable(hwc, idx);
263
264         event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
265         if (flags & PERF_EF_START)
266                 sh_pmu_start(event, PERF_EF_RELOAD);
267
268         perf_event_update_userpage(event);
269         ret = 0;
270 out:
271         perf_pmu_enable(event->pmu);
272         return ret;
273 }
274
275 static void sh_pmu_read(struct perf_event *event)
276 {
277         sh_perf_event_update(event, &event->hw, event->hw.idx);
278 }
279
280 static int sh_pmu_event_init(struct perf_event *event)
281 {
282         int err;
283
284         /* does not support taken branch sampling */
285         if (has_branch_stack(event))
286                 return -EOPNOTSUPP;
287
288         switch (event->attr.type) {
289         case PERF_TYPE_RAW:
290         case PERF_TYPE_HW_CACHE:
291         case PERF_TYPE_HARDWARE:
292                 err = __hw_perf_event_init(event);
293                 break;
294
295         default:
296                 return -ENOENT;
297         }
298
299         if (unlikely(err)) {
300                 if (event->destroy)
301                         event->destroy(event);
302         }
303
304         return err;
305 }
306
307 static void sh_pmu_enable(struct pmu *pmu)
308 {
309         if (!sh_pmu_initialized())
310                 return;
311
312         sh_pmu->enable_all();
313 }
314
315 static void sh_pmu_disable(struct pmu *pmu)
316 {
317         if (!sh_pmu_initialized())
318                 return;
319
320         sh_pmu->disable_all();
321 }
322
323 static struct pmu pmu = {
324         .pmu_enable     = sh_pmu_enable,
325         .pmu_disable    = sh_pmu_disable,
326         .event_init     = sh_pmu_event_init,
327         .add            = sh_pmu_add,
328         .del            = sh_pmu_del,
329         .start          = sh_pmu_start,
330         .stop           = sh_pmu_stop,
331         .read           = sh_pmu_read,
332 };
333
334 static int sh_pmu_prepare_cpu(unsigned int cpu)
335 {
336         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
337
338         memset(cpuhw, 0, sizeof(struct cpu_hw_events));
339         return 0;
340 }
341
342 int register_sh_pmu(struct sh_pmu *_pmu)
343 {
344         if (sh_pmu)
345                 return -EBUSY;
346         sh_pmu = _pmu;
347
348         pr_info("Performance Events: %s support registered\n", _pmu->name);
349
350         /*
351          * All of the on-chip counters are "limited", in that they have
352          * no interrupts, and are therefore unable to do sampling without
353          * further work and timer assistance.
354          */
355         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
356
357         WARN_ON(_pmu->num_events > MAX_HWEVENTS);
358
359         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
360         cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
361                           NULL);
362         return 0;
363 }