sparse-vmemmap: specify vmemmap population range in bytes
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18
19 static DEFINE_MUTEX(vmem_mutex);
20
21 struct memory_segment {
22         struct list_head list;
23         unsigned long start;
24         unsigned long size;
25 };
26
27 static LIST_HEAD(mem_segs);
28
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31         if (slab_is_available())
32                 return (void *)__get_free_pages(GFP_KERNEL, order);
33         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38         pud_t *pud = NULL;
39
40 #ifdef CONFIG_64BIT
41         pud = vmem_alloc_pages(2);
42         if (!pud)
43                 return NULL;
44         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46         return pud;
47 }
48
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51         pmd_t *pmd = NULL;
52
53 #ifdef CONFIG_64BIT
54         pmd = vmem_alloc_pages(2);
55         if (!pmd)
56                 return NULL;
57         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59         return pmd;
60 }
61
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64         pte_t *pte;
65
66         if (slab_is_available())
67                 pte = (pte_t *) page_table_alloc(&init_mm, address);
68         else
69                 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70         if (!pte)
71                 return NULL;
72         clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73                     PTRS_PER_PTE * sizeof(pte_t));
74         return pte;
75 }
76
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82         unsigned long end = start + size;
83         unsigned long address = start;
84         pgd_t *pg_dir;
85         pud_t *pu_dir;
86         pmd_t *pm_dir;
87         pte_t *pt_dir;
88         int ret = -ENOMEM;
89
90         while (address < end) {
91                 pg_dir = pgd_offset_k(address);
92                 if (pgd_none(*pg_dir)) {
93                         pu_dir = vmem_pud_alloc();
94                         if (!pu_dir)
95                                 goto out;
96                         pgd_populate(&init_mm, pg_dir, pu_dir);
97                 }
98                 pu_dir = pud_offset(pg_dir, address);
99 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
100                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
101                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
102                         pud_val(*pu_dir) = __pa(address) |
103                                 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
104                                 (ro ? _REGION_ENTRY_RO : 0);
105                         address += PUD_SIZE;
106                         continue;
107                 }
108 #endif
109                 if (pud_none(*pu_dir)) {
110                         pm_dir = vmem_pmd_alloc();
111                         if (!pm_dir)
112                                 goto out;
113                         pud_populate(&init_mm, pu_dir, pm_dir);
114                 }
115                 pm_dir = pmd_offset(pu_dir, address);
116 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
117                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
119                         pmd_val(*pm_dir) = __pa(address) |
120                                 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
121                                 (ro ? _SEGMENT_ENTRY_RO : 0);
122                         address += PMD_SIZE;
123                         continue;
124                 }
125 #endif
126                 if (pmd_none(*pm_dir)) {
127                         pt_dir = vmem_pte_alloc(address);
128                         if (!pt_dir)
129                                 goto out;
130                         pmd_populate(&init_mm, pm_dir, pt_dir);
131                 }
132
133                 pt_dir = pte_offset_kernel(pm_dir, address);
134                 pte_val(*pt_dir) = __pa(address) | (ro ? _PAGE_RO : 0);
135                 address += PAGE_SIZE;
136         }
137         ret = 0;
138 out:
139         flush_tlb_kernel_range(start, end);
140         return ret;
141 }
142
143 /*
144  * Remove a physical memory range from the 1:1 mapping.
145  * Currently only invalidates page table entries.
146  */
147 static void vmem_remove_range(unsigned long start, unsigned long size)
148 {
149         unsigned long end = start + size;
150         unsigned long address = start;
151         pgd_t *pg_dir;
152         pud_t *pu_dir;
153         pmd_t *pm_dir;
154         pte_t *pt_dir;
155         pte_t  pte;
156
157         pte_val(pte) = _PAGE_TYPE_EMPTY;
158         while (address < end) {
159                 pg_dir = pgd_offset_k(address);
160                 if (pgd_none(*pg_dir)) {
161                         address += PGDIR_SIZE;
162                         continue;
163                 }
164                 pu_dir = pud_offset(pg_dir, address);
165                 if (pud_none(*pu_dir)) {
166                         address += PUD_SIZE;
167                         continue;
168                 }
169                 if (pud_large(*pu_dir)) {
170                         pud_clear(pu_dir);
171                         address += PUD_SIZE;
172                         continue;
173                 }
174                 pm_dir = pmd_offset(pu_dir, address);
175                 if (pmd_none(*pm_dir)) {
176                         address += PMD_SIZE;
177                         continue;
178                 }
179                 if (pmd_large(*pm_dir)) {
180                         pmd_clear(pm_dir);
181                         address += PMD_SIZE;
182                         continue;
183                 }
184                 pt_dir = pte_offset_kernel(pm_dir, address);
185                 *pt_dir = pte;
186                 address += PAGE_SIZE;
187         }
188         flush_tlb_kernel_range(start, end);
189 }
190
191 /*
192  * Add a backed mem_map array to the virtual mem_map array.
193  */
194 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
195 {
196         unsigned long address = start;
197         pgd_t *pg_dir;
198         pud_t *pu_dir;
199         pmd_t *pm_dir;
200         pte_t *pt_dir;
201         int ret = -ENOMEM;
202
203         for (address = start; address < end;) {
204                 pg_dir = pgd_offset_k(address);
205                 if (pgd_none(*pg_dir)) {
206                         pu_dir = vmem_pud_alloc();
207                         if (!pu_dir)
208                                 goto out;
209                         pgd_populate(&init_mm, pg_dir, pu_dir);
210                 }
211
212                 pu_dir = pud_offset(pg_dir, address);
213                 if (pud_none(*pu_dir)) {
214                         pm_dir = vmem_pmd_alloc();
215                         if (!pm_dir)
216                                 goto out;
217                         pud_populate(&init_mm, pu_dir, pm_dir);
218                 }
219
220                 pm_dir = pmd_offset(pu_dir, address);
221                 if (pmd_none(*pm_dir)) {
222 #ifdef CONFIG_64BIT
223                         /* Use 1MB frames for vmemmap if available. We always
224                          * use large frames even if they are only partially
225                          * used.
226                          * Otherwise we would have also page tables since
227                          * vmemmap_populate gets called for each section
228                          * separately. */
229                         if (MACHINE_HAS_EDAT1) {
230                                 void *new_page;
231
232                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
233                                 if (!new_page)
234                                         goto out;
235                                 pmd_val(*pm_dir) = __pa(new_page) |
236                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
237                                         _SEGMENT_ENTRY_CO;
238                                 address = (address + PMD_SIZE) & PMD_MASK;
239                                 continue;
240                         }
241 #endif
242                         pt_dir = vmem_pte_alloc(address);
243                         if (!pt_dir)
244                                 goto out;
245                         pmd_populate(&init_mm, pm_dir, pt_dir);
246                 } else if (pmd_large(*pm_dir)) {
247                         address = (address + PMD_SIZE) & PMD_MASK;
248                         continue;
249                 }
250
251                 pt_dir = pte_offset_kernel(pm_dir, address);
252                 if (pte_none(*pt_dir)) {
253                         unsigned long new_page;
254
255                         new_page =__pa(vmem_alloc_pages(0));
256                         if (!new_page)
257                                 goto out;
258                         pte_val(*pt_dir) = __pa(new_page);
259                 }
260                 address += PAGE_SIZE;
261         }
262         memset((void *)start, 0, end - start);
263         ret = 0;
264 out:
265         flush_tlb_kernel_range(start, end);
266         return ret;
267 }
268
269 void vmemmap_free(unsigned long start, unsigned long end)
270 {
271 }
272
273 /*
274  * Add memory segment to the segment list if it doesn't overlap with
275  * an already present segment.
276  */
277 static int insert_memory_segment(struct memory_segment *seg)
278 {
279         struct memory_segment *tmp;
280
281         if (seg->start + seg->size > VMEM_MAX_PHYS ||
282             seg->start + seg->size < seg->start)
283                 return -ERANGE;
284
285         list_for_each_entry(tmp, &mem_segs, list) {
286                 if (seg->start >= tmp->start + tmp->size)
287                         continue;
288                 if (seg->start + seg->size <= tmp->start)
289                         continue;
290                 return -ENOSPC;
291         }
292         list_add(&seg->list, &mem_segs);
293         return 0;
294 }
295
296 /*
297  * Remove memory segment from the segment list.
298  */
299 static void remove_memory_segment(struct memory_segment *seg)
300 {
301         list_del(&seg->list);
302 }
303
304 static void __remove_shared_memory(struct memory_segment *seg)
305 {
306         remove_memory_segment(seg);
307         vmem_remove_range(seg->start, seg->size);
308 }
309
310 int vmem_remove_mapping(unsigned long start, unsigned long size)
311 {
312         struct memory_segment *seg;
313         int ret;
314
315         mutex_lock(&vmem_mutex);
316
317         ret = -ENOENT;
318         list_for_each_entry(seg, &mem_segs, list) {
319                 if (seg->start == start && seg->size == size)
320                         break;
321         }
322
323         if (seg->start != start || seg->size != size)
324                 goto out;
325
326         ret = 0;
327         __remove_shared_memory(seg);
328         kfree(seg);
329 out:
330         mutex_unlock(&vmem_mutex);
331         return ret;
332 }
333
334 int vmem_add_mapping(unsigned long start, unsigned long size)
335 {
336         struct memory_segment *seg;
337         int ret;
338
339         mutex_lock(&vmem_mutex);
340         ret = -ENOMEM;
341         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
342         if (!seg)
343                 goto out;
344         seg->start = start;
345         seg->size = size;
346
347         ret = insert_memory_segment(seg);
348         if (ret)
349                 goto out_free;
350
351         ret = vmem_add_mem(start, size, 0);
352         if (ret)
353                 goto out_remove;
354         goto out;
355
356 out_remove:
357         __remove_shared_memory(seg);
358 out_free:
359         kfree(seg);
360 out:
361         mutex_unlock(&vmem_mutex);
362         return ret;
363 }
364
365 /*
366  * map whole physical memory to virtual memory (identity mapping)
367  * we reserve enough space in the vmalloc area for vmemmap to hotplug
368  * additional memory segments.
369  */
370 void __init vmem_map_init(void)
371 {
372         unsigned long ro_start, ro_end;
373         unsigned long start, end;
374         int i;
375
376         ro_start = PFN_ALIGN((unsigned long)&_stext);
377         ro_end = (unsigned long)&_eshared & PAGE_MASK;
378         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
379                 if (memory_chunk[i].type == CHUNK_CRASHK ||
380                     memory_chunk[i].type == CHUNK_OLDMEM)
381                         continue;
382                 start = memory_chunk[i].addr;
383                 end = memory_chunk[i].addr + memory_chunk[i].size;
384                 if (start >= ro_end || end <= ro_start)
385                         vmem_add_mem(start, end - start, 0);
386                 else if (start >= ro_start && end <= ro_end)
387                         vmem_add_mem(start, end - start, 1);
388                 else if (start >= ro_start) {
389                         vmem_add_mem(start, ro_end - start, 1);
390                         vmem_add_mem(ro_end, end - ro_end, 0);
391                 } else if (end < ro_end) {
392                         vmem_add_mem(start, ro_start - start, 0);
393                         vmem_add_mem(ro_start, end - ro_start, 1);
394                 } else {
395                         vmem_add_mem(start, ro_start - start, 0);
396                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
397                         vmem_add_mem(ro_end, end - ro_end, 0);
398                 }
399         }
400 }
401
402 /*
403  * Convert memory chunk array to a memory segment list so there is a single
404  * list that contains both r/w memory and shared memory segments.
405  */
406 static int __init vmem_convert_memory_chunk(void)
407 {
408         struct memory_segment *seg;
409         int i;
410
411         mutex_lock(&vmem_mutex);
412         for (i = 0; i < MEMORY_CHUNKS; i++) {
413                 if (!memory_chunk[i].size)
414                         continue;
415                 if (memory_chunk[i].type == CHUNK_CRASHK ||
416                     memory_chunk[i].type == CHUNK_OLDMEM)
417                         continue;
418                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
419                 if (!seg)
420                         panic("Out of memory...\n");
421                 seg->start = memory_chunk[i].addr;
422                 seg->size = memory_chunk[i].size;
423                 insert_memory_segment(seg);
424         }
425         mutex_unlock(&vmem_mutex);
426         return 0;
427 }
428
429 core_initcall(vmem_convert_memory_chunk);