Merge branch 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[platform/kernel/linux-rpi.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
52
53 enum {
54         ec_schedule = 0,
55         ec_call_function_single,
56         ec_stop_cpu,
57 };
58
59 enum {
60         CPU_STATE_STANDBY,
61         CPU_STATE_CONFIGURED,
62 };
63
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
65
66 struct pcpu {
67         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
68         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
69         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
70         signed char state;              /* physical cpu state */
71         signed char polarization;       /* physical polarization */
72         u16 address;                    /* physical cpu address */
73 };
74
75 static u8 boot_core_type;
76 static struct pcpu pcpu_devices[NR_CPUS];
77
78 unsigned int smp_cpu_mt_shift;
79 EXPORT_SYMBOL(smp_cpu_mt_shift);
80
81 unsigned int smp_cpu_mtid;
82 EXPORT_SYMBOL(smp_cpu_mtid);
83
84 #ifdef CONFIG_CRASH_DUMP
85 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
86 #endif
87
88 static unsigned int smp_max_threads __initdata = -1U;
89
90 static int __init early_nosmt(char *s)
91 {
92         smp_max_threads = 1;
93         return 0;
94 }
95 early_param("nosmt", early_nosmt);
96
97 static int __init early_smt(char *s)
98 {
99         get_option(&s, &smp_max_threads);
100         return 0;
101 }
102 early_param("smt", early_smt);
103
104 /*
105  * The smp_cpu_state_mutex must be held when changing the state or polarization
106  * member of a pcpu data structure within the pcpu_devices arreay.
107  */
108 DEFINE_MUTEX(smp_cpu_state_mutex);
109
110 /*
111  * Signal processor helper functions.
112  */
113 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
114 {
115         int cc;
116
117         while (1) {
118                 cc = __pcpu_sigp(addr, order, parm, NULL);
119                 if (cc != SIGP_CC_BUSY)
120                         return cc;
121                 cpu_relax();
122         }
123 }
124
125 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
126 {
127         int cc, retry;
128
129         for (retry = 0; ; retry++) {
130                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
131                 if (cc != SIGP_CC_BUSY)
132                         break;
133                 if (retry >= 3)
134                         udelay(10);
135         }
136         return cc;
137 }
138
139 static inline int pcpu_stopped(struct pcpu *pcpu)
140 {
141         u32 uninitialized_var(status);
142
143         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
144                         0, &status) != SIGP_CC_STATUS_STORED)
145                 return 0;
146         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
147 }
148
149 static inline int pcpu_running(struct pcpu *pcpu)
150 {
151         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
152                         0, NULL) != SIGP_CC_STATUS_STORED)
153                 return 1;
154         /* Status stored condition code is equivalent to cpu not running. */
155         return 0;
156 }
157
158 /*
159  * Find struct pcpu by cpu address.
160  */
161 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
162 {
163         int cpu;
164
165         for_each_cpu(cpu, mask)
166                 if (pcpu_devices[cpu].address == address)
167                         return pcpu_devices + cpu;
168         return NULL;
169 }
170
171 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
172 {
173         int order;
174
175         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
176                 return;
177         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
178         pcpu->ec_clk = get_tod_clock_fast();
179         pcpu_sigp_retry(pcpu, order, 0);
180 }
181
182 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
183 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
184
185 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
186 {
187         unsigned long async_stack, panic_stack;
188         struct lowcore *lc;
189
190         if (pcpu != &pcpu_devices[0]) {
191                 pcpu->lowcore = (struct lowcore *)
192                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
194                 panic_stack = __get_free_page(GFP_KERNEL);
195                 if (!pcpu->lowcore || !panic_stack || !async_stack)
196                         goto out;
197         } else {
198                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
199                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
200         }
201         lc = pcpu->lowcore;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
205         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
206         lc->cpu_nr = cpu;
207         lc->spinlock_lockval = arch_spin_lockval(cpu);
208         if (MACHINE_HAS_VX)
209                 lc->vector_save_area_addr =
210                         (unsigned long) &lc->vector_save_area;
211         if (vdso_alloc_per_cpu(lc))
212                 goto out;
213         lowcore_ptr[cpu] = lc;
214         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
215         return 0;
216 out:
217         if (pcpu != &pcpu_devices[0]) {
218                 free_page(panic_stack);
219                 free_pages(async_stack, ASYNC_ORDER);
220                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
221         }
222         return -ENOMEM;
223 }
224
225 #ifdef CONFIG_HOTPLUG_CPU
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
230         lowcore_ptr[pcpu - pcpu_devices] = NULL;
231         vdso_free_per_cpu(pcpu->lowcore);
232         if (pcpu == &pcpu_devices[0])
233                 return;
234         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
235         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
236         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
237 }
238
239 #endif /* CONFIG_HOTPLUG_CPU */
240
241 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
242 {
243         struct lowcore *lc = pcpu->lowcore;
244
245         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
246         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
247         lc->cpu_nr = cpu;
248         lc->spinlock_lockval = arch_spin_lockval(cpu);
249         lc->percpu_offset = __per_cpu_offset[cpu];
250         lc->kernel_asce = S390_lowcore.kernel_asce;
251         lc->machine_flags = S390_lowcore.machine_flags;
252         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
253         __ctl_store(lc->cregs_save_area, 0, 15);
254         save_access_regs((unsigned int *) lc->access_regs_save_area);
255         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
256                MAX_FACILITY_BIT/8);
257 }
258
259 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
260 {
261         struct lowcore *lc = pcpu->lowcore;
262         struct thread_info *ti = task_thread_info(tsk);
263
264         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
265                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
266         lc->thread_info = (unsigned long) task_thread_info(tsk);
267         lc->current_task = (unsigned long) tsk;
268         lc->lpp = LPP_MAGIC;
269         lc->current_pid = tsk->pid;
270         lc->user_timer = ti->user_timer;
271         lc->system_timer = ti->system_timer;
272         lc->steal_timer = 0;
273 }
274
275 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
276 {
277         struct lowcore *lc = pcpu->lowcore;
278
279         lc->restart_stack = lc->kernel_stack;
280         lc->restart_fn = (unsigned long) func;
281         lc->restart_data = (unsigned long) data;
282         lc->restart_source = -1UL;
283         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
284 }
285
286 /*
287  * Call function via PSW restart on pcpu and stop the current cpu.
288  */
289 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
290                           void *data, unsigned long stack)
291 {
292         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
293         unsigned long source_cpu = stap();
294
295         __load_psw_mask(PSW_KERNEL_BITS);
296         if (pcpu->address == source_cpu)
297                 func(data);     /* should not return */
298         /* Stop target cpu (if func returns this stops the current cpu). */
299         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
300         /* Restart func on the target cpu and stop the current cpu. */
301         mem_assign_absolute(lc->restart_stack, stack);
302         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
303         mem_assign_absolute(lc->restart_data, (unsigned long) data);
304         mem_assign_absolute(lc->restart_source, source_cpu);
305         asm volatile(
306                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
307                 "       brc     2,0b    # busy, try again\n"
308                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
309                 "       brc     2,1b    # busy, try again\n"
310                 : : "d" (pcpu->address), "d" (source_cpu),
311                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
312                 : "0", "1", "cc");
313         for (;;) ;
314 }
315
316 /*
317  * Enable additional logical cpus for multi-threading.
318  */
319 static int pcpu_set_smt(unsigned int mtid)
320 {
321         int cc;
322
323         if (smp_cpu_mtid == mtid)
324                 return 0;
325         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
326         if (cc == 0) {
327                 smp_cpu_mtid = mtid;
328                 smp_cpu_mt_shift = 0;
329                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
330                         smp_cpu_mt_shift++;
331                 pcpu_devices[0].address = stap();
332         }
333         return cc;
334 }
335
336 /*
337  * Call function on an online CPU.
338  */
339 void smp_call_online_cpu(void (*func)(void *), void *data)
340 {
341         struct pcpu *pcpu;
342
343         /* Use the current cpu if it is online. */
344         pcpu = pcpu_find_address(cpu_online_mask, stap());
345         if (!pcpu)
346                 /* Use the first online cpu. */
347                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
348         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
349 }
350
351 /*
352  * Call function on the ipl CPU.
353  */
354 void smp_call_ipl_cpu(void (*func)(void *), void *data)
355 {
356         pcpu_delegate(&pcpu_devices[0], func, data,
357                       pcpu_devices->lowcore->panic_stack -
358                       PANIC_FRAME_OFFSET + PAGE_SIZE);
359 }
360
361 int smp_find_processor_id(u16 address)
362 {
363         int cpu;
364
365         for_each_present_cpu(cpu)
366                 if (pcpu_devices[cpu].address == address)
367                         return cpu;
368         return -1;
369 }
370
371 bool arch_vcpu_is_preempted(int cpu)
372 {
373         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
374                 return false;
375         if (pcpu_running(pcpu_devices + cpu))
376                 return false;
377         return true;
378 }
379 EXPORT_SYMBOL(arch_vcpu_is_preempted);
380
381 void smp_yield_cpu(int cpu)
382 {
383         if (MACHINE_HAS_DIAG9C) {
384                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
385                 asm volatile("diag %0,0,0x9c"
386                              : : "d" (pcpu_devices[cpu].address));
387         } else if (MACHINE_HAS_DIAG44) {
388                 diag_stat_inc_norecursion(DIAG_STAT_X044);
389                 asm volatile("diag 0,0,0x44");
390         }
391 }
392
393 /*
394  * Send cpus emergency shutdown signal. This gives the cpus the
395  * opportunity to complete outstanding interrupts.
396  */
397 static void smp_emergency_stop(cpumask_t *cpumask)
398 {
399         u64 end;
400         int cpu;
401
402         end = get_tod_clock() + (1000000UL << 12);
403         for_each_cpu(cpu, cpumask) {
404                 struct pcpu *pcpu = pcpu_devices + cpu;
405                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
406                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
407                                    0, NULL) == SIGP_CC_BUSY &&
408                        get_tod_clock() < end)
409                         cpu_relax();
410         }
411         while (get_tod_clock() < end) {
412                 for_each_cpu(cpu, cpumask)
413                         if (pcpu_stopped(pcpu_devices + cpu))
414                                 cpumask_clear_cpu(cpu, cpumask);
415                 if (cpumask_empty(cpumask))
416                         break;
417                 cpu_relax();
418         }
419 }
420
421 /*
422  * Stop all cpus but the current one.
423  */
424 void smp_send_stop(void)
425 {
426         cpumask_t cpumask;
427         int cpu;
428
429         /* Disable all interrupts/machine checks */
430         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
431         trace_hardirqs_off();
432
433         debug_set_critical();
434         cpumask_copy(&cpumask, cpu_online_mask);
435         cpumask_clear_cpu(smp_processor_id(), &cpumask);
436
437         if (oops_in_progress)
438                 smp_emergency_stop(&cpumask);
439
440         /* stop all processors */
441         for_each_cpu(cpu, &cpumask) {
442                 struct pcpu *pcpu = pcpu_devices + cpu;
443                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
444                 while (!pcpu_stopped(pcpu))
445                         cpu_relax();
446         }
447 }
448
449 /*
450  * This is the main routine where commands issued by other
451  * cpus are handled.
452  */
453 static void smp_handle_ext_call(void)
454 {
455         unsigned long bits;
456
457         /* handle bit signal external calls */
458         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
459         if (test_bit(ec_stop_cpu, &bits))
460                 smp_stop_cpu();
461         if (test_bit(ec_schedule, &bits))
462                 scheduler_ipi();
463         if (test_bit(ec_call_function_single, &bits))
464                 generic_smp_call_function_single_interrupt();
465 }
466
467 static void do_ext_call_interrupt(struct ext_code ext_code,
468                                   unsigned int param32, unsigned long param64)
469 {
470         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
471         smp_handle_ext_call();
472 }
473
474 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
475 {
476         int cpu;
477
478         for_each_cpu(cpu, mask)
479                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
480 }
481
482 void arch_send_call_function_single_ipi(int cpu)
483 {
484         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
485 }
486
487 /*
488  * this function sends a 'reschedule' IPI to another CPU.
489  * it goes straight through and wastes no time serializing
490  * anything. Worst case is that we lose a reschedule ...
491  */
492 void smp_send_reschedule(int cpu)
493 {
494         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
495 }
496
497 /*
498  * parameter area for the set/clear control bit callbacks
499  */
500 struct ec_creg_mask_parms {
501         unsigned long orval;
502         unsigned long andval;
503         int cr;
504 };
505
506 /*
507  * callback for setting/clearing control bits
508  */
509 static void smp_ctl_bit_callback(void *info)
510 {
511         struct ec_creg_mask_parms *pp = info;
512         unsigned long cregs[16];
513
514         __ctl_store(cregs, 0, 15);
515         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
516         __ctl_load(cregs, 0, 15);
517 }
518
519 /*
520  * Set a bit in a control register of all cpus
521  */
522 void smp_ctl_set_bit(int cr, int bit)
523 {
524         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
525
526         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
527 }
528 EXPORT_SYMBOL(smp_ctl_set_bit);
529
530 /*
531  * Clear a bit in a control register of all cpus
532  */
533 void smp_ctl_clear_bit(int cr, int bit)
534 {
535         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
536
537         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
538 }
539 EXPORT_SYMBOL(smp_ctl_clear_bit);
540
541 #ifdef CONFIG_CRASH_DUMP
542
543 int smp_store_status(int cpu)
544 {
545         struct pcpu *pcpu = pcpu_devices + cpu;
546         unsigned long pa;
547
548         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
549         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
550                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
551                 return -EIO;
552         if (!MACHINE_HAS_VX)
553                 return 0;
554         pa = __pa(pcpu->lowcore->vector_save_area_addr);
555         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
556                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
557                 return -EIO;
558         return 0;
559 }
560
561 /*
562  * Collect CPU state of the previous, crashed system.
563  * There are four cases:
564  * 1) standard zfcp dump
565  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
566  *    The state for all CPUs except the boot CPU needs to be collected
567  *    with sigp stop-and-store-status. The boot CPU state is located in
568  *    the absolute lowcore of the memory stored in the HSA. The zcore code
569  *    will copy the boot CPU state from the HSA.
570  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
571  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
572  *    The state for all CPUs except the boot CPU needs to be collected
573  *    with sigp stop-and-store-status. The firmware or the boot-loader
574  *    stored the registers of the boot CPU in the absolute lowcore in the
575  *    memory of the old system.
576  * 3) kdump and the old kernel did not store the CPU state,
577  *    or stand-alone kdump for DASD
578  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
579  *    The state for all CPUs except the boot CPU needs to be collected
580  *    with sigp stop-and-store-status. The kexec code or the boot-loader
581  *    stored the registers of the boot CPU in the memory of the old system.
582  * 4) kdump and the old kernel stored the CPU state
583  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
584  *    This case does not exist for s390 anymore, setup_arch explicitly
585  *    deactivates the elfcorehdr= kernel parameter
586  */
587 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
588                                      bool is_boot_cpu, unsigned long page)
589 {
590         __vector128 *vxrs = (__vector128 *) page;
591
592         if (is_boot_cpu)
593                 vxrs = boot_cpu_vector_save_area;
594         else
595                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
596         save_area_add_vxrs(sa, vxrs);
597 }
598
599 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
600                                      bool is_boot_cpu, unsigned long page)
601 {
602         void *regs = (void *) page;
603
604         if (is_boot_cpu)
605                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
606         else
607                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
608         save_area_add_regs(sa, regs);
609 }
610
611 void __init smp_save_dump_cpus(void)
612 {
613         int addr, boot_cpu_addr, max_cpu_addr;
614         struct save_area *sa;
615         unsigned long page;
616         bool is_boot_cpu;
617
618         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
619                 /* No previous system present, normal boot. */
620                 return;
621         /* Allocate a page as dumping area for the store status sigps */
622         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
623         /* Set multi-threading state to the previous system. */
624         pcpu_set_smt(sclp.mtid_prev);
625         boot_cpu_addr = stap();
626         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
627         for (addr = 0; addr <= max_cpu_addr; addr++) {
628                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
629                     SIGP_CC_NOT_OPERATIONAL)
630                         continue;
631                 is_boot_cpu = (addr == boot_cpu_addr);
632                 /* Allocate save area */
633                 sa = save_area_alloc(is_boot_cpu);
634                 if (!sa)
635                         panic("could not allocate memory for save area\n");
636                 if (MACHINE_HAS_VX)
637                         /* Get the vector registers */
638                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
639                 /*
640                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
641                  * of the boot CPU are stored in the HSA. To retrieve
642                  * these registers an SCLP request is required which is
643                  * done by drivers/s390/char/zcore.c:init_cpu_info()
644                  */
645                 if (!is_boot_cpu || OLDMEM_BASE)
646                         /* Get the CPU registers */
647                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
648         }
649         memblock_free(page, PAGE_SIZE);
650         diag308_reset();
651         pcpu_set_smt(0);
652 }
653 #endif /* CONFIG_CRASH_DUMP */
654
655 void smp_cpu_set_polarization(int cpu, int val)
656 {
657         pcpu_devices[cpu].polarization = val;
658 }
659
660 int smp_cpu_get_polarization(int cpu)
661 {
662         return pcpu_devices[cpu].polarization;
663 }
664
665 static struct sclp_core_info *smp_get_core_info(void)
666 {
667         static int use_sigp_detection;
668         struct sclp_core_info *info;
669         int address;
670
671         info = kzalloc(sizeof(*info), GFP_KERNEL);
672         if (info && (use_sigp_detection || sclp_get_core_info(info))) {
673                 use_sigp_detection = 1;
674                 for (address = 0;
675                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
676                      address += (1U << smp_cpu_mt_shift)) {
677                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
678                             SIGP_CC_NOT_OPERATIONAL)
679                                 continue;
680                         info->core[info->configured].core_id =
681                                 address >> smp_cpu_mt_shift;
682                         info->configured++;
683                 }
684                 info->combined = info->configured;
685         }
686         return info;
687 }
688
689 static int smp_add_present_cpu(int cpu);
690
691 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
692 {
693         struct pcpu *pcpu;
694         cpumask_t avail;
695         int cpu, nr, i, j;
696         u16 address;
697
698         nr = 0;
699         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
700         cpu = cpumask_first(&avail);
701         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
702                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
703                         continue;
704                 address = info->core[i].core_id << smp_cpu_mt_shift;
705                 for (j = 0; j <= smp_cpu_mtid; j++) {
706                         if (pcpu_find_address(cpu_present_mask, address + j))
707                                 continue;
708                         pcpu = pcpu_devices + cpu;
709                         pcpu->address = address + j;
710                         pcpu->state =
711                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
712                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
713                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
714                         set_cpu_present(cpu, true);
715                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
716                                 set_cpu_present(cpu, false);
717                         else
718                                 nr++;
719                         cpu = cpumask_next(cpu, &avail);
720                         if (cpu >= nr_cpu_ids)
721                                 break;
722                 }
723         }
724         return nr;
725 }
726
727 static void __init smp_detect_cpus(void)
728 {
729         unsigned int cpu, mtid, c_cpus, s_cpus;
730         struct sclp_core_info *info;
731         u16 address;
732
733         /* Get CPU information */
734         info = smp_get_core_info();
735         if (!info)
736                 panic("smp_detect_cpus failed to allocate memory\n");
737
738         /* Find boot CPU type */
739         if (sclp.has_core_type) {
740                 address = stap();
741                 for (cpu = 0; cpu < info->combined; cpu++)
742                         if (info->core[cpu].core_id == address) {
743                                 /* The boot cpu dictates the cpu type. */
744                                 boot_core_type = info->core[cpu].type;
745                                 break;
746                         }
747                 if (cpu >= info->combined)
748                         panic("Could not find boot CPU type");
749         }
750
751         /* Set multi-threading state for the current system */
752         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
753         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
754         pcpu_set_smt(mtid);
755
756         /* Print number of CPUs */
757         c_cpus = s_cpus = 0;
758         for (cpu = 0; cpu < info->combined; cpu++) {
759                 if (sclp.has_core_type &&
760                     info->core[cpu].type != boot_core_type)
761                         continue;
762                 if (cpu < info->configured)
763                         c_cpus += smp_cpu_mtid + 1;
764                 else
765                         s_cpus += smp_cpu_mtid + 1;
766         }
767         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
768
769         /* Add CPUs present at boot */
770         get_online_cpus();
771         __smp_rescan_cpus(info, 0);
772         put_online_cpus();
773         kfree(info);
774 }
775
776 /*
777  *      Activate a secondary processor.
778  */
779 static void smp_start_secondary(void *cpuvoid)
780 {
781         S390_lowcore.last_update_clock = get_tod_clock();
782         S390_lowcore.restart_stack = (unsigned long) restart_stack;
783         S390_lowcore.restart_fn = (unsigned long) do_restart;
784         S390_lowcore.restart_data = 0;
785         S390_lowcore.restart_source = -1UL;
786         restore_access_regs(S390_lowcore.access_regs_save_area);
787         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
788         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
789         cpu_init();
790         preempt_disable();
791         init_cpu_timer();
792         vtime_init();
793         pfault_init();
794         notify_cpu_starting(smp_processor_id());
795         set_cpu_online(smp_processor_id(), true);
796         inc_irq_stat(CPU_RST);
797         local_irq_enable();
798         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
799 }
800
801 /* Upping and downing of CPUs */
802 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
803 {
804         struct pcpu *pcpu;
805         int base, i, rc;
806
807         pcpu = pcpu_devices + cpu;
808         if (pcpu->state != CPU_STATE_CONFIGURED)
809                 return -EIO;
810         base = cpu - (cpu % (smp_cpu_mtid + 1));
811         for (i = 0; i <= smp_cpu_mtid; i++) {
812                 if (base + i < nr_cpu_ids)
813                         if (cpu_online(base + i))
814                                 break;
815         }
816         /*
817          * If this is the first CPU of the core to get online
818          * do an initial CPU reset.
819          */
820         if (i > smp_cpu_mtid &&
821             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
822             SIGP_CC_ORDER_CODE_ACCEPTED)
823                 return -EIO;
824
825         rc = pcpu_alloc_lowcore(pcpu, cpu);
826         if (rc)
827                 return rc;
828         pcpu_prepare_secondary(pcpu, cpu);
829         pcpu_attach_task(pcpu, tidle);
830         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
831         /* Wait until cpu puts itself in the online & active maps */
832         while (!cpu_online(cpu))
833                 cpu_relax();
834         return 0;
835 }
836
837 static unsigned int setup_possible_cpus __initdata;
838
839 static int __init _setup_possible_cpus(char *s)
840 {
841         get_option(&s, &setup_possible_cpus);
842         return 0;
843 }
844 early_param("possible_cpus", _setup_possible_cpus);
845
846 #ifdef CONFIG_HOTPLUG_CPU
847
848 int __cpu_disable(void)
849 {
850         unsigned long cregs[16];
851
852         /* Handle possible pending IPIs */
853         smp_handle_ext_call();
854         set_cpu_online(smp_processor_id(), false);
855         /* Disable pseudo page faults on this cpu. */
856         pfault_fini();
857         /* Disable interrupt sources via control register. */
858         __ctl_store(cregs, 0, 15);
859         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
860         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
861         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
862         __ctl_load(cregs, 0, 15);
863         clear_cpu_flag(CIF_NOHZ_DELAY);
864         return 0;
865 }
866
867 void __cpu_die(unsigned int cpu)
868 {
869         struct pcpu *pcpu;
870
871         /* Wait until target cpu is down */
872         pcpu = pcpu_devices + cpu;
873         while (!pcpu_stopped(pcpu))
874                 cpu_relax();
875         pcpu_free_lowcore(pcpu);
876         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
877         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
878 }
879
880 void __noreturn cpu_die(void)
881 {
882         idle_task_exit();
883         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
884         for (;;) ;
885 }
886
887 #endif /* CONFIG_HOTPLUG_CPU */
888
889 void __init smp_fill_possible_mask(void)
890 {
891         unsigned int possible, sclp_max, cpu;
892
893         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
894         sclp_max = min(smp_max_threads, sclp_max);
895         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
896         possible = setup_possible_cpus ?: nr_cpu_ids;
897         possible = min(possible, sclp_max);
898         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
899                 set_cpu_possible(cpu, true);
900 }
901
902 void __init smp_prepare_cpus(unsigned int max_cpus)
903 {
904         /* request the 0x1201 emergency signal external interrupt */
905         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
906                 panic("Couldn't request external interrupt 0x1201");
907         /* request the 0x1202 external call external interrupt */
908         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
909                 panic("Couldn't request external interrupt 0x1202");
910         smp_detect_cpus();
911 }
912
913 void __init smp_prepare_boot_cpu(void)
914 {
915         struct pcpu *pcpu = pcpu_devices;
916
917         pcpu->state = CPU_STATE_CONFIGURED;
918         pcpu->address = stap();
919         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
920         S390_lowcore.percpu_offset = __per_cpu_offset[0];
921         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
922         set_cpu_present(0, true);
923         set_cpu_online(0, true);
924 }
925
926 void __init smp_cpus_done(unsigned int max_cpus)
927 {
928 }
929
930 void __init smp_setup_processor_id(void)
931 {
932         S390_lowcore.cpu_nr = 0;
933         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
934 }
935
936 /*
937  * the frequency of the profiling timer can be changed
938  * by writing a multiplier value into /proc/profile.
939  *
940  * usually you want to run this on all CPUs ;)
941  */
942 int setup_profiling_timer(unsigned int multiplier)
943 {
944         return 0;
945 }
946
947 #ifdef CONFIG_HOTPLUG_CPU
948 static ssize_t cpu_configure_show(struct device *dev,
949                                   struct device_attribute *attr, char *buf)
950 {
951         ssize_t count;
952
953         mutex_lock(&smp_cpu_state_mutex);
954         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
955         mutex_unlock(&smp_cpu_state_mutex);
956         return count;
957 }
958
959 static ssize_t cpu_configure_store(struct device *dev,
960                                    struct device_attribute *attr,
961                                    const char *buf, size_t count)
962 {
963         struct pcpu *pcpu;
964         int cpu, val, rc, i;
965         char delim;
966
967         if (sscanf(buf, "%d %c", &val, &delim) != 1)
968                 return -EINVAL;
969         if (val != 0 && val != 1)
970                 return -EINVAL;
971         get_online_cpus();
972         mutex_lock(&smp_cpu_state_mutex);
973         rc = -EBUSY;
974         /* disallow configuration changes of online cpus and cpu 0 */
975         cpu = dev->id;
976         cpu -= cpu % (smp_cpu_mtid + 1);
977         if (cpu == 0)
978                 goto out;
979         for (i = 0; i <= smp_cpu_mtid; i++)
980                 if (cpu_online(cpu + i))
981                         goto out;
982         pcpu = pcpu_devices + cpu;
983         rc = 0;
984         switch (val) {
985         case 0:
986                 if (pcpu->state != CPU_STATE_CONFIGURED)
987                         break;
988                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
989                 if (rc)
990                         break;
991                 for (i = 0; i <= smp_cpu_mtid; i++) {
992                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
993                                 continue;
994                         pcpu[i].state = CPU_STATE_STANDBY;
995                         smp_cpu_set_polarization(cpu + i,
996                                                  POLARIZATION_UNKNOWN);
997                 }
998                 topology_expect_change();
999                 break;
1000         case 1:
1001                 if (pcpu->state != CPU_STATE_STANDBY)
1002                         break;
1003                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1004                 if (rc)
1005                         break;
1006                 for (i = 0; i <= smp_cpu_mtid; i++) {
1007                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1008                                 continue;
1009                         pcpu[i].state = CPU_STATE_CONFIGURED;
1010                         smp_cpu_set_polarization(cpu + i,
1011                                                  POLARIZATION_UNKNOWN);
1012                 }
1013                 topology_expect_change();
1014                 break;
1015         default:
1016                 break;
1017         }
1018 out:
1019         mutex_unlock(&smp_cpu_state_mutex);
1020         put_online_cpus();
1021         return rc ? rc : count;
1022 }
1023 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1024 #endif /* CONFIG_HOTPLUG_CPU */
1025
1026 static ssize_t show_cpu_address(struct device *dev,
1027                                 struct device_attribute *attr, char *buf)
1028 {
1029         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1030 }
1031 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1032
1033 static struct attribute *cpu_common_attrs[] = {
1034 #ifdef CONFIG_HOTPLUG_CPU
1035         &dev_attr_configure.attr,
1036 #endif
1037         &dev_attr_address.attr,
1038         NULL,
1039 };
1040
1041 static struct attribute_group cpu_common_attr_group = {
1042         .attrs = cpu_common_attrs,
1043 };
1044
1045 static struct attribute *cpu_online_attrs[] = {
1046         &dev_attr_idle_count.attr,
1047         &dev_attr_idle_time_us.attr,
1048         NULL,
1049 };
1050
1051 static struct attribute_group cpu_online_attr_group = {
1052         .attrs = cpu_online_attrs,
1053 };
1054
1055 static int smp_cpu_online(unsigned int cpu)
1056 {
1057         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1058
1059         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1060 }
1061 static int smp_cpu_pre_down(unsigned int cpu)
1062 {
1063         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1064
1065         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1066         return 0;
1067 }
1068
1069 static int smp_add_present_cpu(int cpu)
1070 {
1071         struct device *s;
1072         struct cpu *c;
1073         int rc;
1074
1075         c = kzalloc(sizeof(*c), GFP_KERNEL);
1076         if (!c)
1077                 return -ENOMEM;
1078         per_cpu(cpu_device, cpu) = c;
1079         s = &c->dev;
1080         c->hotpluggable = 1;
1081         rc = register_cpu(c, cpu);
1082         if (rc)
1083                 goto out;
1084         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1085         if (rc)
1086                 goto out_cpu;
1087         rc = topology_cpu_init(c);
1088         if (rc)
1089                 goto out_topology;
1090         return 0;
1091
1092 out_topology:
1093         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1094 out_cpu:
1095 #ifdef CONFIG_HOTPLUG_CPU
1096         unregister_cpu(c);
1097 #endif
1098 out:
1099         return rc;
1100 }
1101
1102 #ifdef CONFIG_HOTPLUG_CPU
1103
1104 int __ref smp_rescan_cpus(void)
1105 {
1106         struct sclp_core_info *info;
1107         int nr;
1108
1109         info = smp_get_core_info();
1110         if (!info)
1111                 return -ENOMEM;
1112         get_online_cpus();
1113         mutex_lock(&smp_cpu_state_mutex);
1114         nr = __smp_rescan_cpus(info, 1);
1115         mutex_unlock(&smp_cpu_state_mutex);
1116         put_online_cpus();
1117         kfree(info);
1118         if (nr)
1119                 topology_schedule_update();
1120         return 0;
1121 }
1122
1123 static ssize_t __ref rescan_store(struct device *dev,
1124                                   struct device_attribute *attr,
1125                                   const char *buf,
1126                                   size_t count)
1127 {
1128         int rc;
1129
1130         rc = smp_rescan_cpus();
1131         return rc ? rc : count;
1132 }
1133 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1134 #endif /* CONFIG_HOTPLUG_CPU */
1135
1136 static int __init s390_smp_init(void)
1137 {
1138         int cpu, rc = 0;
1139
1140 #ifdef CONFIG_HOTPLUG_CPU
1141         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1142         if (rc)
1143                 return rc;
1144 #endif
1145         for_each_present_cpu(cpu) {
1146                 rc = smp_add_present_cpu(cpu);
1147                 if (rc)
1148                         goto out;
1149         }
1150
1151         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1152                                smp_cpu_online, smp_cpu_pre_down);
1153 out:
1154         return rc;
1155 }
1156 subsys_initcall(s390_smp_init);