982b72ca677c28aeb9a6c530712a66b3a6fe479c
[platform/kernel/linux-rpi.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (pcpu_devices[cpu].address == address)
177                         return pcpu_devices + cpu;
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199         async_stack = stack_alloc();
200         mcck_stack = stack_alloc();
201         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202                 goto out;
203         memcpy(lc, &S390_lowcore, 512);
204         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205         lc->async_stack = async_stack + STACK_INIT_OFFSET;
206         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208         lc->cpu_nr = cpu;
209         lc->spinlock_lockval = arch_spin_lockval(cpu);
210         lc->spinlock_index = 0;
211         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
212         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
213         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
214         lc->preempt_count = PREEMPT_DISABLED;
215         if (nmi_alloc_per_cpu(lc))
216                 goto out;
217         lowcore_ptr[cpu] = lc;
218         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
219         return 0;
220
221 out:
222         stack_free(mcck_stack);
223         stack_free(async_stack);
224         free_pages(nodat_stack, THREAD_SIZE_ORDER);
225         free_pages((unsigned long) lc, LC_ORDER);
226         return -ENOMEM;
227 }
228
229 static void pcpu_free_lowcore(struct pcpu *pcpu)
230 {
231         unsigned long async_stack, nodat_stack, mcck_stack;
232         struct lowcore *lc;
233         int cpu;
234
235         cpu = pcpu - pcpu_devices;
236         lc = lowcore_ptr[cpu];
237         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
238         async_stack = lc->async_stack - STACK_INIT_OFFSET;
239         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
240         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241         lowcore_ptr[cpu] = NULL;
242         nmi_free_per_cpu(lc);
243         stack_free(async_stack);
244         stack_free(mcck_stack);
245         free_pages(nodat_stack, THREAD_SIZE_ORDER);
246         free_pages((unsigned long) lc, LC_ORDER);
247 }
248
249 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
250 {
251         struct lowcore *lc = lowcore_ptr[cpu];
252
253         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
254         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
255         lc->cpu_nr = cpu;
256         lc->restart_flags = RESTART_FLAG_CTLREGS;
257         lc->spinlock_lockval = arch_spin_lockval(cpu);
258         lc->spinlock_index = 0;
259         lc->percpu_offset = __per_cpu_offset[cpu];
260         lc->kernel_asce = S390_lowcore.kernel_asce;
261         lc->user_asce = s390_invalid_asce;
262         lc->machine_flags = S390_lowcore.machine_flags;
263         lc->user_timer = lc->system_timer =
264                 lc->steal_timer = lc->avg_steal_timer = 0;
265         __ctl_store(lc->cregs_save_area, 0, 15);
266         lc->cregs_save_area[1] = lc->kernel_asce;
267         lc->cregs_save_area[7] = lc->user_asce;
268         save_access_regs((unsigned int *) lc->access_regs_save_area);
269         arch_spin_lock_setup(cpu);
270 }
271
272 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
273 {
274         struct lowcore *lc;
275         int cpu;
276
277         cpu = pcpu - pcpu_devices;
278         lc = lowcore_ptr[cpu];
279         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
280                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
281         lc->current_task = (unsigned long) tsk;
282         lc->lpp = LPP_MAGIC;
283         lc->current_pid = tsk->pid;
284         lc->user_timer = tsk->thread.user_timer;
285         lc->guest_timer = tsk->thread.guest_timer;
286         lc->system_timer = tsk->thread.system_timer;
287         lc->hardirq_timer = tsk->thread.hardirq_timer;
288         lc->softirq_timer = tsk->thread.softirq_timer;
289         lc->steal_timer = 0;
290 }
291
292 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
293 {
294         struct lowcore *lc;
295         int cpu;
296
297         cpu = pcpu - pcpu_devices;
298         lc = lowcore_ptr[cpu];
299         lc->restart_stack = lc->kernel_stack;
300         lc->restart_fn = (unsigned long) func;
301         lc->restart_data = (unsigned long) data;
302         lc->restart_source = -1U;
303         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 }
305
306 typedef void (pcpu_delegate_fn)(void *);
307
308 /*
309  * Call function via PSW restart on pcpu and stop the current cpu.
310  */
311 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
312 {
313         func(data);     /* should not return */
314 }
315
316 static void pcpu_delegate(struct pcpu *pcpu,
317                           pcpu_delegate_fn *func,
318                           void *data, unsigned long stack)
319 {
320         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321         unsigned int source_cpu = stap();
322
323         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324         if (pcpu->address == source_cpu) {
325                 call_on_stack(2, stack, void, __pcpu_delegate,
326                               pcpu_delegate_fn *, func, void *, data);
327         }
328         /* Stop target cpu (if func returns this stops the current cpu). */
329         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
330         /* Restart func on the target cpu and stop the current cpu. */
331         if (lc) {
332                 lc->restart_stack = stack;
333                 lc->restart_fn = (unsigned long)func;
334                 lc->restart_data = (unsigned long)data;
335                 lc->restart_source = source_cpu;
336         } else {
337                 mem_assign_absolute(lc->restart_stack, stack);
338                 mem_assign_absolute(lc->restart_fn, (unsigned long)func);
339                 mem_assign_absolute(lc->restart_data, (unsigned long)data);
340                 mem_assign_absolute(lc->restart_source, source_cpu);
341         }
342         __bpon();
343         asm volatile(
344                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
345                 "       brc     2,0b    # busy, try again\n"
346                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
347                 "       brc     2,1b    # busy, try again\n"
348                 : : "d" (pcpu->address), "d" (source_cpu),
349                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
350                 : "0", "1", "cc");
351         for (;;) ;
352 }
353
354 /*
355  * Enable additional logical cpus for multi-threading.
356  */
357 static int pcpu_set_smt(unsigned int mtid)
358 {
359         int cc;
360
361         if (smp_cpu_mtid == mtid)
362                 return 0;
363         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
364         if (cc == 0) {
365                 smp_cpu_mtid = mtid;
366                 smp_cpu_mt_shift = 0;
367                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
368                         smp_cpu_mt_shift++;
369                 pcpu_devices[0].address = stap();
370         }
371         return cc;
372 }
373
374 /*
375  * Call function on an online CPU.
376  */
377 void smp_call_online_cpu(void (*func)(void *), void *data)
378 {
379         struct pcpu *pcpu;
380
381         /* Use the current cpu if it is online. */
382         pcpu = pcpu_find_address(cpu_online_mask, stap());
383         if (!pcpu)
384                 /* Use the first online cpu. */
385                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
386         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
387 }
388
389 /*
390  * Call function on the ipl CPU.
391  */
392 void smp_call_ipl_cpu(void (*func)(void *), void *data)
393 {
394         struct lowcore *lc = lowcore_ptr[0];
395
396         if (pcpu_devices[0].address == stap())
397                 lc = &S390_lowcore;
398
399         pcpu_delegate(&pcpu_devices[0], func, data,
400                       lc->nodat_stack);
401 }
402
403 int smp_find_processor_id(u16 address)
404 {
405         int cpu;
406
407         for_each_present_cpu(cpu)
408                 if (pcpu_devices[cpu].address == address)
409                         return cpu;
410         return -1;
411 }
412
413 void schedule_mcck_handler(void)
414 {
415         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
416 }
417
418 bool notrace arch_vcpu_is_preempted(int cpu)
419 {
420         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
421                 return false;
422         if (pcpu_running(pcpu_devices + cpu))
423                 return false;
424         return true;
425 }
426 EXPORT_SYMBOL(arch_vcpu_is_preempted);
427
428 void notrace smp_yield_cpu(int cpu)
429 {
430         if (!MACHINE_HAS_DIAG9C)
431                 return;
432         diag_stat_inc_norecursion(DIAG_STAT_X09C);
433         asm volatile("diag %0,0,0x9c"
434                      : : "d" (pcpu_devices[cpu].address));
435 }
436 EXPORT_SYMBOL_GPL(smp_yield_cpu);
437
438 /*
439  * Send cpus emergency shutdown signal. This gives the cpus the
440  * opportunity to complete outstanding interrupts.
441  */
442 void notrace smp_emergency_stop(void)
443 {
444         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
445         static cpumask_t cpumask;
446         u64 end;
447         int cpu;
448
449         arch_spin_lock(&lock);
450         cpumask_copy(&cpumask, cpu_online_mask);
451         cpumask_clear_cpu(smp_processor_id(), &cpumask);
452
453         end = get_tod_clock() + (1000000UL << 12);
454         for_each_cpu(cpu, &cpumask) {
455                 struct pcpu *pcpu = pcpu_devices + cpu;
456                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
457                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
458                                    0, NULL) == SIGP_CC_BUSY &&
459                        get_tod_clock() < end)
460                         cpu_relax();
461         }
462         while (get_tod_clock() < end) {
463                 for_each_cpu(cpu, &cpumask)
464                         if (pcpu_stopped(pcpu_devices + cpu))
465                                 cpumask_clear_cpu(cpu, &cpumask);
466                 if (cpumask_empty(&cpumask))
467                         break;
468                 cpu_relax();
469         }
470         arch_spin_unlock(&lock);
471 }
472 NOKPROBE_SYMBOL(smp_emergency_stop);
473
474 /*
475  * Stop all cpus but the current one.
476  */
477 void smp_send_stop(void)
478 {
479         int cpu;
480
481         /* Disable all interrupts/machine checks */
482         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
483         trace_hardirqs_off();
484
485         debug_set_critical();
486
487         if (oops_in_progress)
488                 smp_emergency_stop();
489
490         /* stop all processors */
491         for_each_online_cpu(cpu) {
492                 if (cpu == smp_processor_id())
493                         continue;
494                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
495                 while (!pcpu_stopped(pcpu_devices + cpu))
496                         cpu_relax();
497         }
498 }
499
500 /*
501  * This is the main routine where commands issued by other
502  * cpus are handled.
503  */
504 static void smp_handle_ext_call(void)
505 {
506         unsigned long bits;
507
508         /* handle bit signal external calls */
509         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
510         if (test_bit(ec_stop_cpu, &bits))
511                 smp_stop_cpu();
512         if (test_bit(ec_schedule, &bits))
513                 scheduler_ipi();
514         if (test_bit(ec_call_function_single, &bits))
515                 generic_smp_call_function_single_interrupt();
516         if (test_bit(ec_mcck_pending, &bits))
517                 __s390_handle_mcck();
518         if (test_bit(ec_irq_work, &bits))
519                 irq_work_run();
520 }
521
522 static void do_ext_call_interrupt(struct ext_code ext_code,
523                                   unsigned int param32, unsigned long param64)
524 {
525         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
526         smp_handle_ext_call();
527 }
528
529 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
530 {
531         int cpu;
532
533         for_each_cpu(cpu, mask)
534                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
535 }
536
537 void arch_send_call_function_single_ipi(int cpu)
538 {
539         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
540 }
541
542 /*
543  * this function sends a 'reschedule' IPI to another CPU.
544  * it goes straight through and wastes no time serializing
545  * anything. Worst case is that we lose a reschedule ...
546  */
547 void smp_send_reschedule(int cpu)
548 {
549         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
550 }
551
552 #ifdef CONFIG_IRQ_WORK
553 void arch_irq_work_raise(void)
554 {
555         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
556 }
557 #endif
558
559 /*
560  * parameter area for the set/clear control bit callbacks
561  */
562 struct ec_creg_mask_parms {
563         unsigned long orval;
564         unsigned long andval;
565         int cr;
566 };
567
568 /*
569  * callback for setting/clearing control bits
570  */
571 static void smp_ctl_bit_callback(void *info)
572 {
573         struct ec_creg_mask_parms *pp = info;
574         unsigned long cregs[16];
575
576         __ctl_store(cregs, 0, 15);
577         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
578         __ctl_load(cregs, 0, 15);
579 }
580
581 static DEFINE_SPINLOCK(ctl_lock);
582 static unsigned long ctlreg;
583
584 /*
585  * Set a bit in a control register of all cpus
586  */
587 void smp_ctl_set_bit(int cr, int bit)
588 {
589         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
590
591         spin_lock(&ctl_lock);
592         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
593         __set_bit(bit, &ctlreg);
594         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
595         spin_unlock(&ctl_lock);
596         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
597 }
598 EXPORT_SYMBOL(smp_ctl_set_bit);
599
600 /*
601  * Clear a bit in a control register of all cpus
602  */
603 void smp_ctl_clear_bit(int cr, int bit)
604 {
605         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
606
607         spin_lock(&ctl_lock);
608         memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
609         __clear_bit(bit, &ctlreg);
610         memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
611         spin_unlock(&ctl_lock);
612         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
613 }
614 EXPORT_SYMBOL(smp_ctl_clear_bit);
615
616 #ifdef CONFIG_CRASH_DUMP
617
618 int smp_store_status(int cpu)
619 {
620         struct lowcore *lc;
621         struct pcpu *pcpu;
622         unsigned long pa;
623
624         pcpu = pcpu_devices + cpu;
625         lc = lowcore_ptr[cpu];
626         pa = __pa(&lc->floating_pt_save_area);
627         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
628                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
629                 return -EIO;
630         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
631                 return 0;
632         pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
633         if (MACHINE_HAS_GS)
634                 pa |= lc->mcesad & MCESA_LC_MASK;
635         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
636                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
637                 return -EIO;
638         return 0;
639 }
640
641 /*
642  * Collect CPU state of the previous, crashed system.
643  * There are four cases:
644  * 1) standard zfcp/nvme dump
645  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
646  *    The state for all CPUs except the boot CPU needs to be collected
647  *    with sigp stop-and-store-status. The boot CPU state is located in
648  *    the absolute lowcore of the memory stored in the HSA. The zcore code
649  *    will copy the boot CPU state from the HSA.
650  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
651  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
652  *    The state for all CPUs except the boot CPU needs to be collected
653  *    with sigp stop-and-store-status. The firmware or the boot-loader
654  *    stored the registers of the boot CPU in the absolute lowcore in the
655  *    memory of the old system.
656  * 3) kdump and the old kernel did not store the CPU state,
657  *    or stand-alone kdump for DASD
658  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
659  *    The state for all CPUs except the boot CPU needs to be collected
660  *    with sigp stop-and-store-status. The kexec code or the boot-loader
661  *    stored the registers of the boot CPU in the memory of the old system.
662  * 4) kdump and the old kernel stored the CPU state
663  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
664  *    This case does not exist for s390 anymore, setup_arch explicitly
665  *    deactivates the elfcorehdr= kernel parameter
666  */
667 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
668                                      bool is_boot_cpu, unsigned long page)
669 {
670         __vector128 *vxrs = (__vector128 *) page;
671
672         if (is_boot_cpu)
673                 vxrs = boot_cpu_vector_save_area;
674         else
675                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
676         save_area_add_vxrs(sa, vxrs);
677 }
678
679 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
680                                      bool is_boot_cpu, unsigned long page)
681 {
682         void *regs = (void *) page;
683
684         if (is_boot_cpu)
685                 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
686         else
687                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
688         save_area_add_regs(sa, regs);
689 }
690
691 void __init smp_save_dump_cpus(void)
692 {
693         int addr, boot_cpu_addr, max_cpu_addr;
694         struct save_area *sa;
695         unsigned long page;
696         bool is_boot_cpu;
697
698         if (!(oldmem_data.start || is_ipl_type_dump()))
699                 /* No previous system present, normal boot. */
700                 return;
701         /* Allocate a page as dumping area for the store status sigps */
702         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
703         if (!page)
704                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
705                       PAGE_SIZE, 1UL << 31);
706
707         /* Set multi-threading state to the previous system. */
708         pcpu_set_smt(sclp.mtid_prev);
709         boot_cpu_addr = stap();
710         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
711         for (addr = 0; addr <= max_cpu_addr; addr++) {
712                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
713                     SIGP_CC_NOT_OPERATIONAL)
714                         continue;
715                 is_boot_cpu = (addr == boot_cpu_addr);
716                 /* Allocate save area */
717                 sa = save_area_alloc(is_boot_cpu);
718                 if (!sa)
719                         panic("could not allocate memory for save area\n");
720                 if (MACHINE_HAS_VX)
721                         /* Get the vector registers */
722                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
723                 /*
724                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
725                  * of the boot CPU are stored in the HSA. To retrieve
726                  * these registers an SCLP request is required which is
727                  * done by drivers/s390/char/zcore.c:init_cpu_info()
728                  */
729                 if (!is_boot_cpu || oldmem_data.start)
730                         /* Get the CPU registers */
731                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
732         }
733         memblock_free(page, PAGE_SIZE);
734         diag_amode31_ops.diag308_reset();
735         pcpu_set_smt(0);
736 }
737 #endif /* CONFIG_CRASH_DUMP */
738
739 void smp_cpu_set_polarization(int cpu, int val)
740 {
741         pcpu_devices[cpu].polarization = val;
742 }
743
744 int smp_cpu_get_polarization(int cpu)
745 {
746         return pcpu_devices[cpu].polarization;
747 }
748
749 int smp_cpu_get_cpu_address(int cpu)
750 {
751         return pcpu_devices[cpu].address;
752 }
753
754 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
755 {
756         static int use_sigp_detection;
757         int address;
758
759         if (use_sigp_detection || sclp_get_core_info(info, early)) {
760                 use_sigp_detection = 1;
761                 for (address = 0;
762                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
763                      address += (1U << smp_cpu_mt_shift)) {
764                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
765                             SIGP_CC_NOT_OPERATIONAL)
766                                 continue;
767                         info->core[info->configured].core_id =
768                                 address >> smp_cpu_mt_shift;
769                         info->configured++;
770                 }
771                 info->combined = info->configured;
772         }
773 }
774
775 static int smp_add_present_cpu(int cpu);
776
777 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
778                         bool configured, bool early)
779 {
780         struct pcpu *pcpu;
781         int cpu, nr, i;
782         u16 address;
783
784         nr = 0;
785         if (sclp.has_core_type && core->type != boot_core_type)
786                 return nr;
787         cpu = cpumask_first(avail);
788         address = core->core_id << smp_cpu_mt_shift;
789         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
790                 if (pcpu_find_address(cpu_present_mask, address + i))
791                         continue;
792                 pcpu = pcpu_devices + cpu;
793                 pcpu->address = address + i;
794                 if (configured)
795                         pcpu->state = CPU_STATE_CONFIGURED;
796                 else
797                         pcpu->state = CPU_STATE_STANDBY;
798                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
799                 set_cpu_present(cpu, true);
800                 if (!early && smp_add_present_cpu(cpu) != 0)
801                         set_cpu_present(cpu, false);
802                 else
803                         nr++;
804                 cpumask_clear_cpu(cpu, avail);
805                 cpu = cpumask_next(cpu, avail);
806         }
807         return nr;
808 }
809
810 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
811 {
812         struct sclp_core_entry *core;
813         static cpumask_t avail;
814         bool configured;
815         u16 core_id;
816         int nr, i;
817
818         cpus_read_lock();
819         mutex_lock(&smp_cpu_state_mutex);
820         nr = 0;
821         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
822         /*
823          * Add IPL core first (which got logical CPU number 0) to make sure
824          * that all SMT threads get subsequent logical CPU numbers.
825          */
826         if (early) {
827                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
828                 for (i = 0; i < info->configured; i++) {
829                         core = &info->core[i];
830                         if (core->core_id == core_id) {
831                                 nr += smp_add_core(core, &avail, true, early);
832                                 break;
833                         }
834                 }
835         }
836         for (i = 0; i < info->combined; i++) {
837                 configured = i < info->configured;
838                 nr += smp_add_core(&info->core[i], &avail, configured, early);
839         }
840         mutex_unlock(&smp_cpu_state_mutex);
841         cpus_read_unlock();
842         return nr;
843 }
844
845 void __init smp_detect_cpus(void)
846 {
847         unsigned int cpu, mtid, c_cpus, s_cpus;
848         struct sclp_core_info *info;
849         u16 address;
850
851         /* Get CPU information */
852         info = memblock_alloc(sizeof(*info), 8);
853         if (!info)
854                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
855                       __func__, sizeof(*info), 8);
856         smp_get_core_info(info, 1);
857         /* Find boot CPU type */
858         if (sclp.has_core_type) {
859                 address = stap();
860                 for (cpu = 0; cpu < info->combined; cpu++)
861                         if (info->core[cpu].core_id == address) {
862                                 /* The boot cpu dictates the cpu type. */
863                                 boot_core_type = info->core[cpu].type;
864                                 break;
865                         }
866                 if (cpu >= info->combined)
867                         panic("Could not find boot CPU type");
868         }
869
870         /* Set multi-threading state for the current system */
871         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
872         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
873         pcpu_set_smt(mtid);
874
875         /* Print number of CPUs */
876         c_cpus = s_cpus = 0;
877         for (cpu = 0; cpu < info->combined; cpu++) {
878                 if (sclp.has_core_type &&
879                     info->core[cpu].type != boot_core_type)
880                         continue;
881                 if (cpu < info->configured)
882                         c_cpus += smp_cpu_mtid + 1;
883                 else
884                         s_cpus += smp_cpu_mtid + 1;
885         }
886         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
887
888         /* Add CPUs present at boot */
889         __smp_rescan_cpus(info, true);
890         memblock_free_early((unsigned long)info, sizeof(*info));
891 }
892
893 /*
894  *      Activate a secondary processor.
895  */
896 static void smp_start_secondary(void *cpuvoid)
897 {
898         int cpu = raw_smp_processor_id();
899
900         S390_lowcore.last_update_clock = get_tod_clock();
901         S390_lowcore.restart_stack = (unsigned long)restart_stack;
902         S390_lowcore.restart_fn = (unsigned long)do_restart;
903         S390_lowcore.restart_data = 0;
904         S390_lowcore.restart_source = -1U;
905         S390_lowcore.restart_flags = 0;
906         restore_access_regs(S390_lowcore.access_regs_save_area);
907         cpu_init();
908         rcu_cpu_starting(cpu);
909         init_cpu_timer();
910         vtime_init();
911         vdso_getcpu_init();
912         pfault_init();
913         cpumask_set_cpu(cpu, &cpu_setup_mask);
914         update_cpu_masks();
915         notify_cpu_starting(cpu);
916         if (topology_cpu_dedicated(cpu))
917                 set_cpu_flag(CIF_DEDICATED_CPU);
918         else
919                 clear_cpu_flag(CIF_DEDICATED_CPU);
920         set_cpu_online(cpu, true);
921         inc_irq_stat(CPU_RST);
922         local_irq_enable();
923         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
924 }
925
926 /* Upping and downing of CPUs */
927 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
928 {
929         struct pcpu *pcpu = pcpu_devices + cpu;
930         int rc;
931
932         if (pcpu->state != CPU_STATE_CONFIGURED)
933                 return -EIO;
934         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
935             SIGP_CC_ORDER_CODE_ACCEPTED)
936                 return -EIO;
937
938         rc = pcpu_alloc_lowcore(pcpu, cpu);
939         if (rc)
940                 return rc;
941         pcpu_prepare_secondary(pcpu, cpu);
942         pcpu_attach_task(pcpu, tidle);
943         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
944         /* Wait until cpu puts itself in the online & active maps */
945         while (!cpu_online(cpu))
946                 cpu_relax();
947         return 0;
948 }
949
950 static unsigned int setup_possible_cpus __initdata;
951
952 static int __init _setup_possible_cpus(char *s)
953 {
954         get_option(&s, &setup_possible_cpus);
955         return 0;
956 }
957 early_param("possible_cpus", _setup_possible_cpus);
958
959 int __cpu_disable(void)
960 {
961         unsigned long cregs[16];
962         int cpu;
963
964         /* Handle possible pending IPIs */
965         smp_handle_ext_call();
966         cpu = smp_processor_id();
967         set_cpu_online(cpu, false);
968         cpumask_clear_cpu(cpu, &cpu_setup_mask);
969         update_cpu_masks();
970         /* Disable pseudo page faults on this cpu. */
971         pfault_fini();
972         /* Disable interrupt sources via control register. */
973         __ctl_store(cregs, 0, 15);
974         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
975         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
976         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
977         __ctl_load(cregs, 0, 15);
978         clear_cpu_flag(CIF_NOHZ_DELAY);
979         return 0;
980 }
981
982 void __cpu_die(unsigned int cpu)
983 {
984         struct pcpu *pcpu;
985
986         /* Wait until target cpu is down */
987         pcpu = pcpu_devices + cpu;
988         while (!pcpu_stopped(pcpu))
989                 cpu_relax();
990         pcpu_free_lowcore(pcpu);
991         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
992         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
993 }
994
995 void __noreturn cpu_die(void)
996 {
997         idle_task_exit();
998         __bpon();
999         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
1000         for (;;) ;
1001 }
1002
1003 void __init smp_fill_possible_mask(void)
1004 {
1005         unsigned int possible, sclp_max, cpu;
1006
1007         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1008         sclp_max = min(smp_max_threads, sclp_max);
1009         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1010         possible = setup_possible_cpus ?: nr_cpu_ids;
1011         possible = min(possible, sclp_max);
1012         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1013                 set_cpu_possible(cpu, true);
1014 }
1015
1016 void __init smp_prepare_cpus(unsigned int max_cpus)
1017 {
1018         /* request the 0x1201 emergency signal external interrupt */
1019         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1020                 panic("Couldn't request external interrupt 0x1201");
1021         /* request the 0x1202 external call external interrupt */
1022         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1023                 panic("Couldn't request external interrupt 0x1202");
1024 }
1025
1026 void __init smp_prepare_boot_cpu(void)
1027 {
1028         struct pcpu *pcpu = pcpu_devices;
1029
1030         WARN_ON(!cpu_present(0) || !cpu_online(0));
1031         pcpu->state = CPU_STATE_CONFIGURED;
1032         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1033         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1034 }
1035
1036 void __init smp_setup_processor_id(void)
1037 {
1038         pcpu_devices[0].address = stap();
1039         S390_lowcore.cpu_nr = 0;
1040         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1041         S390_lowcore.spinlock_index = 0;
1042 }
1043
1044 /*
1045  * the frequency of the profiling timer can be changed
1046  * by writing a multiplier value into /proc/profile.
1047  *
1048  * usually you want to run this on all CPUs ;)
1049  */
1050 int setup_profiling_timer(unsigned int multiplier)
1051 {
1052         return 0;
1053 }
1054
1055 static ssize_t cpu_configure_show(struct device *dev,
1056                                   struct device_attribute *attr, char *buf)
1057 {
1058         ssize_t count;
1059
1060         mutex_lock(&smp_cpu_state_mutex);
1061         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1062         mutex_unlock(&smp_cpu_state_mutex);
1063         return count;
1064 }
1065
1066 static ssize_t cpu_configure_store(struct device *dev,
1067                                    struct device_attribute *attr,
1068                                    const char *buf, size_t count)
1069 {
1070         struct pcpu *pcpu;
1071         int cpu, val, rc, i;
1072         char delim;
1073
1074         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1075                 return -EINVAL;
1076         if (val != 0 && val != 1)
1077                 return -EINVAL;
1078         cpus_read_lock();
1079         mutex_lock(&smp_cpu_state_mutex);
1080         rc = -EBUSY;
1081         /* disallow configuration changes of online cpus and cpu 0 */
1082         cpu = dev->id;
1083         cpu = smp_get_base_cpu(cpu);
1084         if (cpu == 0)
1085                 goto out;
1086         for (i = 0; i <= smp_cpu_mtid; i++)
1087                 if (cpu_online(cpu + i))
1088                         goto out;
1089         pcpu = pcpu_devices + cpu;
1090         rc = 0;
1091         switch (val) {
1092         case 0:
1093                 if (pcpu->state != CPU_STATE_CONFIGURED)
1094                         break;
1095                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1096                 if (rc)
1097                         break;
1098                 for (i = 0; i <= smp_cpu_mtid; i++) {
1099                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1100                                 continue;
1101                         pcpu[i].state = CPU_STATE_STANDBY;
1102                         smp_cpu_set_polarization(cpu + i,
1103                                                  POLARIZATION_UNKNOWN);
1104                 }
1105                 topology_expect_change();
1106                 break;
1107         case 1:
1108                 if (pcpu->state != CPU_STATE_STANDBY)
1109                         break;
1110                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1111                 if (rc)
1112                         break;
1113                 for (i = 0; i <= smp_cpu_mtid; i++) {
1114                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1115                                 continue;
1116                         pcpu[i].state = CPU_STATE_CONFIGURED;
1117                         smp_cpu_set_polarization(cpu + i,
1118                                                  POLARIZATION_UNKNOWN);
1119                 }
1120                 topology_expect_change();
1121                 break;
1122         default:
1123                 break;
1124         }
1125 out:
1126         mutex_unlock(&smp_cpu_state_mutex);
1127         cpus_read_unlock();
1128         return rc ? rc : count;
1129 }
1130 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1131
1132 static ssize_t show_cpu_address(struct device *dev,
1133                                 struct device_attribute *attr, char *buf)
1134 {
1135         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1136 }
1137 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1138
1139 static struct attribute *cpu_common_attrs[] = {
1140         &dev_attr_configure.attr,
1141         &dev_attr_address.attr,
1142         NULL,
1143 };
1144
1145 static struct attribute_group cpu_common_attr_group = {
1146         .attrs = cpu_common_attrs,
1147 };
1148
1149 static struct attribute *cpu_online_attrs[] = {
1150         &dev_attr_idle_count.attr,
1151         &dev_attr_idle_time_us.attr,
1152         NULL,
1153 };
1154
1155 static struct attribute_group cpu_online_attr_group = {
1156         .attrs = cpu_online_attrs,
1157 };
1158
1159 static int smp_cpu_online(unsigned int cpu)
1160 {
1161         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1162
1163         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1164 }
1165
1166 static int smp_cpu_pre_down(unsigned int cpu)
1167 {
1168         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1169
1170         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1171         return 0;
1172 }
1173
1174 static int smp_add_present_cpu(int cpu)
1175 {
1176         struct device *s;
1177         struct cpu *c;
1178         int rc;
1179
1180         c = kzalloc(sizeof(*c), GFP_KERNEL);
1181         if (!c)
1182                 return -ENOMEM;
1183         per_cpu(cpu_device, cpu) = c;
1184         s = &c->dev;
1185         c->hotpluggable = 1;
1186         rc = register_cpu(c, cpu);
1187         if (rc)
1188                 goto out;
1189         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1190         if (rc)
1191                 goto out_cpu;
1192         rc = topology_cpu_init(c);
1193         if (rc)
1194                 goto out_topology;
1195         return 0;
1196
1197 out_topology:
1198         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1199 out_cpu:
1200         unregister_cpu(c);
1201 out:
1202         return rc;
1203 }
1204
1205 int __ref smp_rescan_cpus(void)
1206 {
1207         struct sclp_core_info *info;
1208         int nr;
1209
1210         info = kzalloc(sizeof(*info), GFP_KERNEL);
1211         if (!info)
1212                 return -ENOMEM;
1213         smp_get_core_info(info, 0);
1214         nr = __smp_rescan_cpus(info, false);
1215         kfree(info);
1216         if (nr)
1217                 topology_schedule_update();
1218         return 0;
1219 }
1220
1221 static ssize_t __ref rescan_store(struct device *dev,
1222                                   struct device_attribute *attr,
1223                                   const char *buf,
1224                                   size_t count)
1225 {
1226         int rc;
1227
1228         rc = lock_device_hotplug_sysfs();
1229         if (rc)
1230                 return rc;
1231         rc = smp_rescan_cpus();
1232         unlock_device_hotplug();
1233         return rc ? rc : count;
1234 }
1235 static DEVICE_ATTR_WO(rescan);
1236
1237 static int __init s390_smp_init(void)
1238 {
1239         int cpu, rc = 0;
1240
1241         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1242         if (rc)
1243                 return rc;
1244         for_each_present_cpu(cpu) {
1245                 rc = smp_add_present_cpu(cpu);
1246                 if (rc)
1247                         goto out;
1248         }
1249
1250         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1251                                smp_cpu_online, smp_cpu_pre_down);
1252         rc = rc <= 0 ? rc : 0;
1253 out:
1254         return rc;
1255 }
1256 subsys_initcall(s390_smp_init);
1257
1258 static __always_inline void set_new_lowcore(struct lowcore *lc)
1259 {
1260         union register_pair dst, src;
1261         u32 pfx;
1262
1263         src.even = (unsigned long) &S390_lowcore;
1264         src.odd  = sizeof(S390_lowcore);
1265         dst.even = (unsigned long) lc;
1266         dst.odd  = sizeof(*lc);
1267         pfx = (unsigned long) lc;
1268
1269         asm volatile(
1270                 "       mvcl    %[dst],%[src]\n"
1271                 "       spx     %[pfx]\n"
1272                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1273                 : [pfx] "Q" (pfx)
1274                 : "memory", "cc");
1275 }
1276
1277 static int __init smp_reinit_ipl_cpu(void)
1278 {
1279         unsigned long async_stack, nodat_stack, mcck_stack;
1280         struct lowcore *lc, *lc_ipl;
1281         unsigned long flags;
1282
1283         lc_ipl = lowcore_ptr[0];
1284         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1285         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1286         async_stack = stack_alloc();
1287         mcck_stack = stack_alloc();
1288         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1289                 panic("Couldn't allocate memory");
1290
1291         local_irq_save(flags);
1292         local_mcck_disable();
1293         set_new_lowcore(lc);
1294         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1295         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1296         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1297         lowcore_ptr[0] = lc;
1298         local_mcck_enable();
1299         local_irq_restore(flags);
1300
1301         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1302         memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1303         memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1304
1305         return 0;
1306 }
1307 early_initcall(smp_reinit_ipl_cpu);