384a6846a65e0cfc6a0f374835b460d20051faa9
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54
55 /* logical cpu to cpu address */
56 int __cpu_logical_map[NR_CPUS];
57
58 static struct task_struct *current_set[NR_CPUS];
59
60 static u8 smp_cpu_type;
61 static int smp_use_sigp_detection;
62
63 enum s390_cpu_state {
64         CPU_STATE_STANDBY,
65         CPU_STATE_CONFIGURED,
66 };
67
68 DEFINE_MUTEX(smp_cpu_state_mutex);
69 int smp_cpu_polarization[NR_CPUS];
70 static int smp_cpu_state[NR_CPUS];
71 static int cpu_management;
72
73 static DEFINE_PER_CPU(struct cpu, cpu_devices);
74
75 static void smp_ext_bitcall(int, ec_bit_sig);
76
77 static int cpu_stopped(int cpu)
78 {
79         __u32 status;
80
81         switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
82         case sigp_status_stored:
83                 /* Check for stopped and check stop state */
84                 if (status & 0x50)
85                         return 1;
86                 break;
87         default:
88                 break;
89         }
90         return 0;
91 }
92
93 void smp_send_stop(void)
94 {
95         int cpu, rc;
96
97         /* Disable all interrupts/machine checks */
98         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
99         trace_hardirqs_off();
100
101         /* stop all processors */
102         for_each_online_cpu(cpu) {
103                 if (cpu == smp_processor_id())
104                         continue;
105                 do {
106                         rc = signal_processor(cpu, sigp_stop);
107                 } while (rc == sigp_busy);
108
109                 while (!cpu_stopped(cpu))
110                         cpu_relax();
111         }
112 }
113
114 /*
115  * This is the main routine where commands issued by other
116  * cpus are handled.
117  */
118
119 static void do_ext_call_interrupt(__u16 code)
120 {
121         unsigned long bits;
122
123         /*
124          * handle bit signal external calls
125          *
126          * For the ec_schedule signal we have to do nothing. All the work
127          * is done automatically when we return from the interrupt.
128          */
129         bits = xchg(&S390_lowcore.ext_call_fast, 0);
130
131         if (test_bit(ec_call_function, &bits))
132                 generic_smp_call_function_interrupt();
133
134         if (test_bit(ec_call_function_single, &bits))
135                 generic_smp_call_function_single_interrupt();
136 }
137
138 /*
139  * Send an external call sigp to another cpu and return without waiting
140  * for its completion.
141  */
142 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
143 {
144         /*
145          * Set signaling bit in lowcore of target cpu and kick it
146          */
147         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
148         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
149                 udelay(10);
150 }
151
152 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
153 {
154         int cpu;
155
156         for_each_cpu(cpu, mask)
157                 smp_ext_bitcall(cpu, ec_call_function);
158 }
159
160 void arch_send_call_function_single_ipi(int cpu)
161 {
162         smp_ext_bitcall(cpu, ec_call_function_single);
163 }
164
165 #ifndef CONFIG_64BIT
166 /*
167  * this function sends a 'purge tlb' signal to another CPU.
168  */
169 static void smp_ptlb_callback(void *info)
170 {
171         __tlb_flush_local();
172 }
173
174 void smp_ptlb_all(void)
175 {
176         on_each_cpu(smp_ptlb_callback, NULL, 1);
177 }
178 EXPORT_SYMBOL(smp_ptlb_all);
179 #endif /* ! CONFIG_64BIT */
180
181 /*
182  * this function sends a 'reschedule' IPI to another CPU.
183  * it goes straight through and wastes no time serializing
184  * anything. Worst case is that we lose a reschedule ...
185  */
186 void smp_send_reschedule(int cpu)
187 {
188         smp_ext_bitcall(cpu, ec_schedule);
189 }
190
191 /*
192  * parameter area for the set/clear control bit callbacks
193  */
194 struct ec_creg_mask_parms {
195         unsigned long orvals[16];
196         unsigned long andvals[16];
197 };
198
199 /*
200  * callback for setting/clearing control bits
201  */
202 static void smp_ctl_bit_callback(void *info)
203 {
204         struct ec_creg_mask_parms *pp = info;
205         unsigned long cregs[16];
206         int i;
207
208         __ctl_store(cregs, 0, 15);
209         for (i = 0; i <= 15; i++)
210                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
211         __ctl_load(cregs, 0, 15);
212 }
213
214 /*
215  * Set a bit in a control register of all cpus
216  */
217 void smp_ctl_set_bit(int cr, int bit)
218 {
219         struct ec_creg_mask_parms parms;
220
221         memset(&parms.orvals, 0, sizeof(parms.orvals));
222         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
223         parms.orvals[cr] = 1 << bit;
224         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
225 }
226 EXPORT_SYMBOL(smp_ctl_set_bit);
227
228 /*
229  * Clear a bit in a control register of all cpus
230  */
231 void smp_ctl_clear_bit(int cr, int bit)
232 {
233         struct ec_creg_mask_parms parms;
234
235         memset(&parms.orvals, 0, sizeof(parms.orvals));
236         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
237         parms.andvals[cr] = ~(1L << bit);
238         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
239 }
240 EXPORT_SYMBOL(smp_ctl_clear_bit);
241
242 /*
243  * In early ipl state a temp. logically cpu number is needed, so the sigp
244  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
245  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
246  */
247 #define CPU_INIT_NO     1
248
249 #ifdef CONFIG_ZFCPDUMP
250
251 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
252 {
253         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
254                 return;
255         if (cpu >= NR_CPUS) {
256                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
257                            "the dump\n", cpu, NR_CPUS - 1);
258                 return;
259         }
260         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
261         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
262         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
263                sigp_busy)
264                 cpu_relax();
265         memcpy(zfcpdump_save_areas[cpu],
266                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
267                sizeof(struct save_area));
268 }
269
270 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
271 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
272
273 #else
274
275 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
276
277 #endif /* CONFIG_ZFCPDUMP */
278
279 static int cpu_known(int cpu_id)
280 {
281         int cpu;
282
283         for_each_present_cpu(cpu) {
284                 if (__cpu_logical_map[cpu] == cpu_id)
285                         return 1;
286         }
287         return 0;
288 }
289
290 static int smp_rescan_cpus_sigp(cpumask_t avail)
291 {
292         int cpu_id, logical_cpu;
293
294         logical_cpu = cpumask_first(&avail);
295         if (logical_cpu >= nr_cpu_ids)
296                 return 0;
297         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
298                 if (cpu_known(cpu_id))
299                         continue;
300                 __cpu_logical_map[logical_cpu] = cpu_id;
301                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
302                 if (!cpu_stopped(logical_cpu))
303                         continue;
304                 cpu_set(logical_cpu, cpu_present_map);
305                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
306                 logical_cpu = cpumask_next(logical_cpu, &avail);
307                 if (logical_cpu >= nr_cpu_ids)
308                         break;
309         }
310         return 0;
311 }
312
313 static int smp_rescan_cpus_sclp(cpumask_t avail)
314 {
315         struct sclp_cpu_info *info;
316         int cpu_id, logical_cpu, cpu;
317         int rc;
318
319         logical_cpu = cpumask_first(&avail);
320         if (logical_cpu >= nr_cpu_ids)
321                 return 0;
322         info = kmalloc(sizeof(*info), GFP_KERNEL);
323         if (!info)
324                 return -ENOMEM;
325         rc = sclp_get_cpu_info(info);
326         if (rc)
327                 goto out;
328         for (cpu = 0; cpu < info->combined; cpu++) {
329                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
330                         continue;
331                 cpu_id = info->cpu[cpu].address;
332                 if (cpu_known(cpu_id))
333                         continue;
334                 __cpu_logical_map[logical_cpu] = cpu_id;
335                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
336                 cpu_set(logical_cpu, cpu_present_map);
337                 if (cpu >= info->configured)
338                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
339                 else
340                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
341                 logical_cpu = cpumask_next(logical_cpu, &avail);
342                 if (logical_cpu >= nr_cpu_ids)
343                         break;
344         }
345 out:
346         kfree(info);
347         return rc;
348 }
349
350 static int __smp_rescan_cpus(void)
351 {
352         cpumask_t avail;
353
354         cpus_xor(avail, cpu_possible_map, cpu_present_map);
355         if (smp_use_sigp_detection)
356                 return smp_rescan_cpus_sigp(avail);
357         else
358                 return smp_rescan_cpus_sclp(avail);
359 }
360
361 static void __init smp_detect_cpus(void)
362 {
363         unsigned int cpu, c_cpus, s_cpus;
364         struct sclp_cpu_info *info;
365         u16 boot_cpu_addr, cpu_addr;
366
367         c_cpus = 1;
368         s_cpus = 0;
369         boot_cpu_addr = __cpu_logical_map[0];
370         info = kmalloc(sizeof(*info), GFP_KERNEL);
371         if (!info)
372                 panic("smp_detect_cpus failed to allocate memory\n");
373         /* Use sigp detection algorithm if sclp doesn't work. */
374         if (sclp_get_cpu_info(info)) {
375                 smp_use_sigp_detection = 1;
376                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
377                         if (cpu == boot_cpu_addr)
378                                 continue;
379                         __cpu_logical_map[CPU_INIT_NO] = cpu;
380                         if (!cpu_stopped(CPU_INIT_NO))
381                                 continue;
382                         smp_get_save_area(c_cpus, cpu);
383                         c_cpus++;
384                 }
385                 goto out;
386         }
387
388         if (info->has_cpu_type) {
389                 for (cpu = 0; cpu < info->combined; cpu++) {
390                         if (info->cpu[cpu].address == boot_cpu_addr) {
391                                 smp_cpu_type = info->cpu[cpu].type;
392                                 break;
393                         }
394                 }
395         }
396
397         for (cpu = 0; cpu < info->combined; cpu++) {
398                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
399                         continue;
400                 cpu_addr = info->cpu[cpu].address;
401                 if (cpu_addr == boot_cpu_addr)
402                         continue;
403                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
404                 if (!cpu_stopped(CPU_INIT_NO)) {
405                         s_cpus++;
406                         continue;
407                 }
408                 smp_get_save_area(c_cpus, cpu_addr);
409                 c_cpus++;
410         }
411 out:
412         kfree(info);
413         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
414         get_online_cpus();
415         __smp_rescan_cpus();
416         put_online_cpus();
417 }
418
419 /*
420  *      Activate a secondary processor.
421  */
422 int __cpuinit start_secondary(void *cpuvoid)
423 {
424         /* Setup the cpu */
425         cpu_init();
426         preempt_disable();
427         /* Enable TOD clock interrupts on the secondary cpu. */
428         init_cpu_timer();
429         /* Enable cpu timer interrupts on the secondary cpu. */
430         init_cpu_vtimer();
431         /* Enable pfault pseudo page faults on this cpu. */
432         pfault_init();
433
434         /* call cpu notifiers */
435         notify_cpu_starting(smp_processor_id());
436         /* Mark this cpu as online */
437         ipi_call_lock();
438         cpu_set(smp_processor_id(), cpu_online_map);
439         ipi_call_unlock();
440         /* Switch on interrupts */
441         local_irq_enable();
442         /* Print info about this processor */
443         print_cpu_info();
444         /* cpu_idle will call schedule for us */
445         cpu_idle();
446         return 0;
447 }
448
449 static void __init smp_create_idle(unsigned int cpu)
450 {
451         struct task_struct *p;
452
453         /*
454          *  don't care about the psw and regs settings since we'll never
455          *  reschedule the forked task.
456          */
457         p = fork_idle(cpu);
458         if (IS_ERR(p))
459                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
460         current_set[cpu] = p;
461 }
462
463 static int __cpuinit smp_alloc_lowcore(int cpu)
464 {
465         unsigned long async_stack, panic_stack;
466         struct _lowcore *lowcore;
467
468         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
469         if (!lowcore)
470                 return -ENOMEM;
471         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
472         panic_stack = __get_free_page(GFP_KERNEL);
473         if (!panic_stack || !async_stack)
474                 goto out;
475         memcpy(lowcore, &S390_lowcore, 512);
476         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
477         lowcore->async_stack = async_stack + ASYNC_SIZE;
478         lowcore->panic_stack = panic_stack + PAGE_SIZE;
479
480 #ifndef CONFIG_64BIT
481         if (MACHINE_HAS_IEEE) {
482                 unsigned long save_area;
483
484                 save_area = get_zeroed_page(GFP_KERNEL);
485                 if (!save_area)
486                         goto out;
487                 lowcore->extended_save_area_addr = (u32) save_area;
488         }
489 #else
490         if (vdso_alloc_per_cpu(cpu, lowcore))
491                 goto out;
492 #endif
493         lowcore_ptr[cpu] = lowcore;
494         return 0;
495
496 out:
497         free_page(panic_stack);
498         free_pages(async_stack, ASYNC_ORDER);
499         free_pages((unsigned long) lowcore, LC_ORDER);
500         return -ENOMEM;
501 }
502
503 static void smp_free_lowcore(int cpu)
504 {
505         struct _lowcore *lowcore;
506
507         lowcore = lowcore_ptr[cpu];
508 #ifndef CONFIG_64BIT
509         if (MACHINE_HAS_IEEE)
510                 free_page((unsigned long) lowcore->extended_save_area_addr);
511 #else
512         vdso_free_per_cpu(cpu, lowcore);
513 #endif
514         free_page(lowcore->panic_stack - PAGE_SIZE);
515         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
516         free_pages((unsigned long) lowcore, LC_ORDER);
517         lowcore_ptr[cpu] = NULL;
518 }
519
520 /* Upping and downing of CPUs */
521 int __cpuinit __cpu_up(unsigned int cpu)
522 {
523         struct task_struct *idle;
524         struct _lowcore *cpu_lowcore;
525         struct stack_frame *sf;
526         sigp_ccode ccode;
527         u32 lowcore;
528
529         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
530                 return -EIO;
531         if (smp_alloc_lowcore(cpu))
532                 return -ENOMEM;
533         do {
534                 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
535                 if (ccode == sigp_busy)
536                         udelay(10);
537                 if (ccode == sigp_not_operational)
538                         goto err_out;
539         } while (ccode == sigp_busy);
540
541         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
542         while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
543                 udelay(10);
544
545         idle = current_set[cpu];
546         cpu_lowcore = lowcore_ptr[cpu];
547         cpu_lowcore->kernel_stack = (unsigned long)
548                 task_stack_page(idle) + THREAD_SIZE;
549         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
550         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
551                                      - sizeof(struct pt_regs)
552                                      - sizeof(struct stack_frame));
553         memset(sf, 0, sizeof(struct stack_frame));
554         sf->gprs[9] = (unsigned long) sf;
555         cpu_lowcore->save_area[15] = (unsigned long) sf;
556         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
557         asm volatile(
558                 "       stam    0,15,0(%0)"
559                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
560         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
561         cpu_lowcore->current_task = (unsigned long) idle;
562         cpu_lowcore->cpu_nr = cpu;
563         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
564         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
565         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
566         eieio();
567
568         while (signal_processor(cpu, sigp_restart) == sigp_busy)
569                 udelay(10);
570
571         while (!cpu_online(cpu))
572                 cpu_relax();
573         return 0;
574
575 err_out:
576         smp_free_lowcore(cpu);
577         return -EIO;
578 }
579
580 static int __init setup_possible_cpus(char *s)
581 {
582         int pcpus, cpu;
583
584         pcpus = simple_strtoul(s, NULL, 0);
585         init_cpu_possible(cpumask_of(0));
586         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
587                 set_cpu_possible(cpu, true);
588         return 0;
589 }
590 early_param("possible_cpus", setup_possible_cpus);
591
592 #ifdef CONFIG_HOTPLUG_CPU
593
594 int __cpu_disable(void)
595 {
596         struct ec_creg_mask_parms cr_parms;
597         int cpu = smp_processor_id();
598
599         cpu_clear(cpu, cpu_online_map);
600
601         /* Disable pfault pseudo page faults on this cpu. */
602         pfault_fini();
603
604         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
605         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
606
607         /* disable all external interrupts */
608         cr_parms.orvals[0] = 0;
609         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
610                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
611         /* disable all I/O interrupts */
612         cr_parms.orvals[6] = 0;
613         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
614                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
615         /* disable most machine checks */
616         cr_parms.orvals[14] = 0;
617         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
618                                  1 << 25 | 1 << 24);
619
620         smp_ctl_bit_callback(&cr_parms);
621
622         return 0;
623 }
624
625 void __cpu_die(unsigned int cpu)
626 {
627         /* Wait until target cpu is down */
628         while (!cpu_stopped(cpu))
629                 cpu_relax();
630         while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
631                 udelay(10);
632         smp_free_lowcore(cpu);
633         pr_info("Processor %d stopped\n", cpu);
634 }
635
636 void cpu_die(void)
637 {
638         idle_task_exit();
639         while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
640                 cpu_relax();
641         for (;;);
642 }
643
644 #endif /* CONFIG_HOTPLUG_CPU */
645
646 void __init smp_prepare_cpus(unsigned int max_cpus)
647 {
648 #ifndef CONFIG_64BIT
649         unsigned long save_area = 0;
650 #endif
651         unsigned long async_stack, panic_stack;
652         struct _lowcore *lowcore;
653         unsigned int cpu;
654
655         smp_detect_cpus();
656
657         /* request the 0x1201 emergency signal external interrupt */
658         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
659                 panic("Couldn't request external interrupt 0x1201");
660         print_cpu_info();
661
662         /* Reallocate current lowcore, but keep its contents. */
663         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
664         panic_stack = __get_free_page(GFP_KERNEL);
665         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
666         BUG_ON(!lowcore || !panic_stack || !async_stack);
667 #ifndef CONFIG_64BIT
668         if (MACHINE_HAS_IEEE)
669                 save_area = get_zeroed_page(GFP_KERNEL);
670 #endif
671         local_irq_disable();
672         local_mcck_disable();
673         lowcore_ptr[smp_processor_id()] = lowcore;
674         *lowcore = S390_lowcore;
675         lowcore->panic_stack = panic_stack + PAGE_SIZE;
676         lowcore->async_stack = async_stack + ASYNC_SIZE;
677 #ifndef CONFIG_64BIT
678         if (MACHINE_HAS_IEEE)
679                 lowcore->extended_save_area_addr = (u32) save_area;
680 #endif
681         set_prefix((u32)(unsigned long) lowcore);
682         local_mcck_enable();
683         local_irq_enable();
684 #ifdef CONFIG_64BIT
685         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
686                 BUG();
687 #endif
688         for_each_possible_cpu(cpu)
689                 if (cpu != smp_processor_id())
690                         smp_create_idle(cpu);
691 }
692
693 void __init smp_prepare_boot_cpu(void)
694 {
695         BUG_ON(smp_processor_id() != 0);
696
697         current_thread_info()->cpu = 0;
698         cpu_set(0, cpu_present_map);
699         cpu_set(0, cpu_online_map);
700         S390_lowcore.percpu_offset = __per_cpu_offset[0];
701         current_set[0] = current;
702         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
703         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
704 }
705
706 void __init smp_cpus_done(unsigned int max_cpus)
707 {
708 }
709
710 void __init smp_setup_processor_id(void)
711 {
712         S390_lowcore.cpu_nr = 0;
713         __cpu_logical_map[0] = stap();
714 }
715
716 /*
717  * the frequency of the profiling timer can be changed
718  * by writing a multiplier value into /proc/profile.
719  *
720  * usually you want to run this on all CPUs ;)
721  */
722 int setup_profiling_timer(unsigned int multiplier)
723 {
724         return 0;
725 }
726
727 #ifdef CONFIG_HOTPLUG_CPU
728 static ssize_t cpu_configure_show(struct sys_device *dev,
729                                 struct sysdev_attribute *attr, char *buf)
730 {
731         ssize_t count;
732
733         mutex_lock(&smp_cpu_state_mutex);
734         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
735         mutex_unlock(&smp_cpu_state_mutex);
736         return count;
737 }
738
739 static ssize_t cpu_configure_store(struct sys_device *dev,
740                                   struct sysdev_attribute *attr,
741                                   const char *buf, size_t count)
742 {
743         int cpu = dev->id;
744         int val, rc;
745         char delim;
746
747         if (sscanf(buf, "%d %c", &val, &delim) != 1)
748                 return -EINVAL;
749         if (val != 0 && val != 1)
750                 return -EINVAL;
751
752         get_online_cpus();
753         mutex_lock(&smp_cpu_state_mutex);
754         rc = -EBUSY;
755         if (cpu_online(cpu))
756                 goto out;
757         rc = 0;
758         switch (val) {
759         case 0:
760                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
761                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
762                         if (!rc) {
763                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
764                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
765                         }
766                 }
767                 break;
768         case 1:
769                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
770                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
771                         if (!rc) {
772                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
773                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
774                         }
775                 }
776                 break;
777         default:
778                 break;
779         }
780 out:
781         mutex_unlock(&smp_cpu_state_mutex);
782         put_online_cpus();
783         return rc ? rc : count;
784 }
785 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
786 #endif /* CONFIG_HOTPLUG_CPU */
787
788 static ssize_t cpu_polarization_show(struct sys_device *dev,
789                                      struct sysdev_attribute *attr, char *buf)
790 {
791         int cpu = dev->id;
792         ssize_t count;
793
794         mutex_lock(&smp_cpu_state_mutex);
795         switch (smp_cpu_polarization[cpu]) {
796         case POLARIZATION_HRZ:
797                 count = sprintf(buf, "horizontal\n");
798                 break;
799         case POLARIZATION_VL:
800                 count = sprintf(buf, "vertical:low\n");
801                 break;
802         case POLARIZATION_VM:
803                 count = sprintf(buf, "vertical:medium\n");
804                 break;
805         case POLARIZATION_VH:
806                 count = sprintf(buf, "vertical:high\n");
807                 break;
808         default:
809                 count = sprintf(buf, "unknown\n");
810                 break;
811         }
812         mutex_unlock(&smp_cpu_state_mutex);
813         return count;
814 }
815 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
816
817 static ssize_t show_cpu_address(struct sys_device *dev,
818                                 struct sysdev_attribute *attr, char *buf)
819 {
820         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
821 }
822 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
823
824
825 static struct attribute *cpu_common_attrs[] = {
826 #ifdef CONFIG_HOTPLUG_CPU
827         &attr_configure.attr,
828 #endif
829         &attr_address.attr,
830         &attr_polarization.attr,
831         NULL,
832 };
833
834 static struct attribute_group cpu_common_attr_group = {
835         .attrs = cpu_common_attrs,
836 };
837
838 static ssize_t show_capability(struct sys_device *dev,
839                                 struct sysdev_attribute *attr, char *buf)
840 {
841         unsigned int capability;
842         int rc;
843
844         rc = get_cpu_capability(&capability);
845         if (rc)
846                 return rc;
847         return sprintf(buf, "%u\n", capability);
848 }
849 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
850
851 static ssize_t show_idle_count(struct sys_device *dev,
852                                 struct sysdev_attribute *attr, char *buf)
853 {
854         struct s390_idle_data *idle;
855         unsigned long long idle_count;
856         unsigned int sequence;
857
858         idle = &per_cpu(s390_idle, dev->id);
859 repeat:
860         sequence = idle->sequence;
861         smp_rmb();
862         if (sequence & 1)
863                 goto repeat;
864         idle_count = idle->idle_count;
865         if (idle->idle_enter)
866                 idle_count++;
867         smp_rmb();
868         if (idle->sequence != sequence)
869                 goto repeat;
870         return sprintf(buf, "%llu\n", idle_count);
871 }
872 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
873
874 static ssize_t show_idle_time(struct sys_device *dev,
875                                 struct sysdev_attribute *attr, char *buf)
876 {
877         struct s390_idle_data *idle;
878         unsigned long long now, idle_time, idle_enter;
879         unsigned int sequence;
880
881         idle = &per_cpu(s390_idle, dev->id);
882         now = get_clock();
883 repeat:
884         sequence = idle->sequence;
885         smp_rmb();
886         if (sequence & 1)
887                 goto repeat;
888         idle_time = idle->idle_time;
889         idle_enter = idle->idle_enter;
890         if (idle_enter != 0ULL && idle_enter < now)
891                 idle_time += now - idle_enter;
892         smp_rmb();
893         if (idle->sequence != sequence)
894                 goto repeat;
895         return sprintf(buf, "%llu\n", idle_time >> 12);
896 }
897 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
898
899 static struct attribute *cpu_online_attrs[] = {
900         &attr_capability.attr,
901         &attr_idle_count.attr,
902         &attr_idle_time_us.attr,
903         NULL,
904 };
905
906 static struct attribute_group cpu_online_attr_group = {
907         .attrs = cpu_online_attrs,
908 };
909
910 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
911                                     unsigned long action, void *hcpu)
912 {
913         unsigned int cpu = (unsigned int)(long)hcpu;
914         struct cpu *c = &per_cpu(cpu_devices, cpu);
915         struct sys_device *s = &c->sysdev;
916         struct s390_idle_data *idle;
917
918         switch (action) {
919         case CPU_ONLINE:
920         case CPU_ONLINE_FROZEN:
921                 idle = &per_cpu(s390_idle, cpu);
922                 memset(idle, 0, sizeof(struct s390_idle_data));
923                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
924                         return NOTIFY_BAD;
925                 break;
926         case CPU_DEAD:
927         case CPU_DEAD_FROZEN:
928                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
929                 break;
930         }
931         return NOTIFY_OK;
932 }
933
934 static struct notifier_block __cpuinitdata smp_cpu_nb = {
935         .notifier_call = smp_cpu_notify,
936 };
937
938 static int __devinit smp_add_present_cpu(int cpu)
939 {
940         struct cpu *c = &per_cpu(cpu_devices, cpu);
941         struct sys_device *s = &c->sysdev;
942         int rc;
943
944         c->hotpluggable = 1;
945         rc = register_cpu(c, cpu);
946         if (rc)
947                 goto out;
948         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
949         if (rc)
950                 goto out_cpu;
951         if (!cpu_online(cpu))
952                 goto out;
953         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
954         if (!rc)
955                 return 0;
956         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
957 out_cpu:
958 #ifdef CONFIG_HOTPLUG_CPU
959         unregister_cpu(c);
960 #endif
961 out:
962         return rc;
963 }
964
965 #ifdef CONFIG_HOTPLUG_CPU
966
967 int __ref smp_rescan_cpus(void)
968 {
969         cpumask_t newcpus;
970         int cpu;
971         int rc;
972
973         get_online_cpus();
974         mutex_lock(&smp_cpu_state_mutex);
975         newcpus = cpu_present_map;
976         rc = __smp_rescan_cpus();
977         if (rc)
978                 goto out;
979         cpus_andnot(newcpus, cpu_present_map, newcpus);
980         for_each_cpu_mask(cpu, newcpus) {
981                 rc = smp_add_present_cpu(cpu);
982                 if (rc)
983                         cpu_clear(cpu, cpu_present_map);
984         }
985         rc = 0;
986 out:
987         mutex_unlock(&smp_cpu_state_mutex);
988         put_online_cpus();
989         if (!cpus_empty(newcpus))
990                 topology_schedule_update();
991         return rc;
992 }
993
994 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
995                                   size_t count)
996 {
997         int rc;
998
999         rc = smp_rescan_cpus();
1000         return rc ? rc : count;
1001 }
1002 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1003 #endif /* CONFIG_HOTPLUG_CPU */
1004
1005 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1006 {
1007         ssize_t count;
1008
1009         mutex_lock(&smp_cpu_state_mutex);
1010         count = sprintf(buf, "%d\n", cpu_management);
1011         mutex_unlock(&smp_cpu_state_mutex);
1012         return count;
1013 }
1014
1015 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1016                                  size_t count)
1017 {
1018         int val, rc;
1019         char delim;
1020
1021         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1022                 return -EINVAL;
1023         if (val != 0 && val != 1)
1024                 return -EINVAL;
1025         rc = 0;
1026         get_online_cpus();
1027         mutex_lock(&smp_cpu_state_mutex);
1028         if (cpu_management == val)
1029                 goto out;
1030         rc = topology_set_cpu_management(val);
1031         if (!rc)
1032                 cpu_management = val;
1033 out:
1034         mutex_unlock(&smp_cpu_state_mutex);
1035         put_online_cpus();
1036         return rc ? rc : count;
1037 }
1038 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1039                          dispatching_store);
1040
1041 static int __init topology_init(void)
1042 {
1043         int cpu;
1044         int rc;
1045
1046         register_cpu_notifier(&smp_cpu_nb);
1047
1048 #ifdef CONFIG_HOTPLUG_CPU
1049         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1050         if (rc)
1051                 return rc;
1052 #endif
1053         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1054         if (rc)
1055                 return rc;
1056         for_each_present_cpu(cpu) {
1057                 rc = smp_add_present_cpu(cpu);
1058                 if (rc)
1059                         return rc;
1060         }
1061         return 0;
1062 }
1063 subsys_initcall(topology_init);