riscv: fix race when vmap stack overflow
[platform/kernel/linux-starfive.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
78         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
79         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
80         signed char state;              /* physical cpu state */
81         signed char polarization;       /* physical polarization */
82         u16 address;                    /* physical cpu address */
83 };
84
85 static u8 boot_core_type;
86 static struct pcpu pcpu_devices[NR_CPUS];
87
88 unsigned int smp_cpu_mt_shift;
89 EXPORT_SYMBOL(smp_cpu_mt_shift);
90
91 unsigned int smp_cpu_mtid;
92 EXPORT_SYMBOL(smp_cpu_mtid);
93
94 #ifdef CONFIG_CRASH_DUMP
95 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
96 #endif
97
98 static unsigned int smp_max_threads __initdata = -1U;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (pcpu_devices[cpu].address == address)
177                         return pcpu_devices + cpu;
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         if (pcpu != &pcpu_devices[0]) {
198                 pcpu->lowcore = (struct lowcore *)
199                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200                 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201                 if (!pcpu->lowcore || !nodat_stack)
202                         goto out;
203         } else {
204                 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
205         }
206         async_stack = stack_alloc();
207         mcck_stack = stack_alloc();
208         if (!async_stack || !mcck_stack)
209                 goto out_stack;
210         lc = pcpu->lowcore;
211         memcpy(lc, &S390_lowcore, 512);
212         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
213         lc->async_stack = async_stack + STACK_INIT_OFFSET;
214         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
215         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
216         lc->cpu_nr = cpu;
217         lc->spinlock_lockval = arch_spin_lockval(cpu);
218         lc->spinlock_index = 0;
219         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
220         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
221         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
222         if (nmi_alloc_per_cpu(lc))
223                 goto out_stack;
224         lowcore_ptr[cpu] = lc;
225         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
226         return 0;
227
228 out_stack:
229         stack_free(mcck_stack);
230         stack_free(async_stack);
231 out:
232         if (pcpu != &pcpu_devices[0]) {
233                 free_pages(nodat_stack, THREAD_SIZE_ORDER);
234                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
235         }
236         return -ENOMEM;
237 }
238
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 {
241         unsigned long async_stack, nodat_stack, mcck_stack, lowcore;
242
243         nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
244         async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
245         mcck_stack = pcpu->lowcore->mcck_stack - STACK_INIT_OFFSET;
246         lowcore = (unsigned long) pcpu->lowcore;
247
248         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
249         lowcore_ptr[pcpu - pcpu_devices] = NULL;
250         nmi_free_per_cpu(pcpu->lowcore);
251         stack_free(async_stack);
252         stack_free(mcck_stack);
253         if (pcpu == &pcpu_devices[0])
254                 return;
255         free_pages(nodat_stack, THREAD_SIZE_ORDER);
256         free_pages(lowcore, LC_ORDER);
257 }
258
259 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
260 {
261         struct lowcore *lc = pcpu->lowcore;
262
263         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
264         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
265         lc->cpu_nr = cpu;
266         lc->spinlock_lockval = arch_spin_lockval(cpu);
267         lc->spinlock_index = 0;
268         lc->percpu_offset = __per_cpu_offset[cpu];
269         lc->kernel_asce = S390_lowcore.kernel_asce;
270         lc->user_asce = s390_invalid_asce;
271         lc->machine_flags = S390_lowcore.machine_flags;
272         lc->user_timer = lc->system_timer =
273                 lc->steal_timer = lc->avg_steal_timer = 0;
274         __ctl_store(lc->cregs_save_area, 0, 15);
275         lc->cregs_save_area[1] = lc->kernel_asce;
276         lc->cregs_save_area[7] = lc->user_asce;
277         save_access_regs((unsigned int *) lc->access_regs_save_area);
278         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
279                sizeof(lc->stfle_fac_list));
280         memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
281                sizeof(lc->alt_stfle_fac_list));
282         arch_spin_lock_setup(cpu);
283 }
284
285 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
286 {
287         struct lowcore *lc = pcpu->lowcore;
288
289         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
290                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
291         lc->current_task = (unsigned long) tsk;
292         lc->lpp = LPP_MAGIC;
293         lc->current_pid = tsk->pid;
294         lc->user_timer = tsk->thread.user_timer;
295         lc->guest_timer = tsk->thread.guest_timer;
296         lc->system_timer = tsk->thread.system_timer;
297         lc->hardirq_timer = tsk->thread.hardirq_timer;
298         lc->softirq_timer = tsk->thread.softirq_timer;
299         lc->steal_timer = 0;
300 }
301
302 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
303 {
304         struct lowcore *lc = pcpu->lowcore;
305
306         lc->restart_stack = lc->nodat_stack;
307         lc->restart_fn = (unsigned long) func;
308         lc->restart_data = (unsigned long) data;
309         lc->restart_source = -1UL;
310         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
311 }
312
313 /*
314  * Call function via PSW restart on pcpu and stop the current cpu.
315  */
316 static void __pcpu_delegate(void (*func)(void*), void *data)
317 {
318         func(data);     /* should not return */
319 }
320
321 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
322                                                 void (*func)(void *),
323                                                 void *data, unsigned long stack)
324 {
325         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326         unsigned long source_cpu = stap();
327
328         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
329         if (pcpu->address == source_cpu)
330                 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
331         /* Stop target cpu (if func returns this stops the current cpu). */
332         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333         /* Restart func on the target cpu and stop the current cpu. */
334         mem_assign_absolute(lc->restart_stack, stack);
335         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336         mem_assign_absolute(lc->restart_data, (unsigned long) data);
337         mem_assign_absolute(lc->restart_source, source_cpu);
338         __bpon();
339         asm volatile(
340                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
341                 "       brc     2,0b    # busy, try again\n"
342                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
343                 "       brc     2,1b    # busy, try again\n"
344                 : : "d" (pcpu->address), "d" (source_cpu),
345                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
346                 : "0", "1", "cc");
347         for (;;) ;
348 }
349
350 /*
351  * Enable additional logical cpus for multi-threading.
352  */
353 static int pcpu_set_smt(unsigned int mtid)
354 {
355         int cc;
356
357         if (smp_cpu_mtid == mtid)
358                 return 0;
359         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360         if (cc == 0) {
361                 smp_cpu_mtid = mtid;
362                 smp_cpu_mt_shift = 0;
363                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364                         smp_cpu_mt_shift++;
365                 pcpu_devices[0].address = stap();
366         }
367         return cc;
368 }
369
370 /*
371  * Call function on an online CPU.
372  */
373 void smp_call_online_cpu(void (*func)(void *), void *data)
374 {
375         struct pcpu *pcpu;
376
377         /* Use the current cpu if it is online. */
378         pcpu = pcpu_find_address(cpu_online_mask, stap());
379         if (!pcpu)
380                 /* Use the first online cpu. */
381                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
383 }
384
385 /*
386  * Call function on the ipl CPU.
387  */
388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
389 {
390         struct lowcore *lc = pcpu_devices->lowcore;
391
392         if (pcpu_devices[0].address == stap())
393                 lc = &S390_lowcore;
394
395         pcpu_delegate(&pcpu_devices[0], func, data,
396                       lc->nodat_stack);
397 }
398
399 int smp_find_processor_id(u16 address)
400 {
401         int cpu;
402
403         for_each_present_cpu(cpu)
404                 if (pcpu_devices[cpu].address == address)
405                         return cpu;
406         return -1;
407 }
408
409 void schedule_mcck_handler(void)
410 {
411         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
412 }
413
414 bool notrace arch_vcpu_is_preempted(int cpu)
415 {
416         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
417                 return false;
418         if (pcpu_running(pcpu_devices + cpu))
419                 return false;
420         return true;
421 }
422 EXPORT_SYMBOL(arch_vcpu_is_preempted);
423
424 void notrace smp_yield_cpu(int cpu)
425 {
426         if (!MACHINE_HAS_DIAG9C)
427                 return;
428         diag_stat_inc_norecursion(DIAG_STAT_X09C);
429         asm volatile("diag %0,0,0x9c"
430                      : : "d" (pcpu_devices[cpu].address));
431 }
432 EXPORT_SYMBOL_GPL(smp_yield_cpu);
433
434 /*
435  * Send cpus emergency shutdown signal. This gives the cpus the
436  * opportunity to complete outstanding interrupts.
437  */
438 void notrace smp_emergency_stop(void)
439 {
440         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
441         static cpumask_t cpumask;
442         u64 end;
443         int cpu;
444
445         arch_spin_lock(&lock);
446         cpumask_copy(&cpumask, cpu_online_mask);
447         cpumask_clear_cpu(smp_processor_id(), &cpumask);
448
449         end = get_tod_clock() + (1000000UL << 12);
450         for_each_cpu(cpu, &cpumask) {
451                 struct pcpu *pcpu = pcpu_devices + cpu;
452                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
453                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
454                                    0, NULL) == SIGP_CC_BUSY &&
455                        get_tod_clock() < end)
456                         cpu_relax();
457         }
458         while (get_tod_clock() < end) {
459                 for_each_cpu(cpu, &cpumask)
460                         if (pcpu_stopped(pcpu_devices + cpu))
461                                 cpumask_clear_cpu(cpu, &cpumask);
462                 if (cpumask_empty(&cpumask))
463                         break;
464                 cpu_relax();
465         }
466         arch_spin_unlock(&lock);
467 }
468 NOKPROBE_SYMBOL(smp_emergency_stop);
469
470 /*
471  * Stop all cpus but the current one.
472  */
473 void smp_send_stop(void)
474 {
475         int cpu;
476
477         /* Disable all interrupts/machine checks */
478         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
479         trace_hardirqs_off();
480
481         debug_set_critical();
482
483         if (oops_in_progress)
484                 smp_emergency_stop();
485
486         /* stop all processors */
487         for_each_online_cpu(cpu) {
488                 if (cpu == smp_processor_id())
489                         continue;
490                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
491                 while (!pcpu_stopped(pcpu_devices + cpu))
492                         cpu_relax();
493         }
494 }
495
496 /*
497  * This is the main routine where commands issued by other
498  * cpus are handled.
499  */
500 static void smp_handle_ext_call(void)
501 {
502         unsigned long bits;
503
504         /* handle bit signal external calls */
505         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
506         if (test_bit(ec_stop_cpu, &bits))
507                 smp_stop_cpu();
508         if (test_bit(ec_schedule, &bits))
509                 scheduler_ipi();
510         if (test_bit(ec_call_function_single, &bits))
511                 generic_smp_call_function_single_interrupt();
512         if (test_bit(ec_mcck_pending, &bits))
513                 __s390_handle_mcck();
514         if (test_bit(ec_irq_work, &bits))
515                 irq_work_run();
516 }
517
518 static void do_ext_call_interrupt(struct ext_code ext_code,
519                                   unsigned int param32, unsigned long param64)
520 {
521         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
522         smp_handle_ext_call();
523 }
524
525 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
526 {
527         int cpu;
528
529         for_each_cpu(cpu, mask)
530                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
531 }
532
533 void arch_send_call_function_single_ipi(int cpu)
534 {
535         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
536 }
537
538 /*
539  * this function sends a 'reschedule' IPI to another CPU.
540  * it goes straight through and wastes no time serializing
541  * anything. Worst case is that we lose a reschedule ...
542  */
543 void smp_send_reschedule(int cpu)
544 {
545         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
546 }
547
548 #ifdef CONFIG_IRQ_WORK
549 void arch_irq_work_raise(void)
550 {
551         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
552 }
553 #endif
554
555 /*
556  * parameter area for the set/clear control bit callbacks
557  */
558 struct ec_creg_mask_parms {
559         unsigned long orval;
560         unsigned long andval;
561         int cr;
562 };
563
564 /*
565  * callback for setting/clearing control bits
566  */
567 static void smp_ctl_bit_callback(void *info)
568 {
569         struct ec_creg_mask_parms *pp = info;
570         unsigned long cregs[16];
571
572         __ctl_store(cregs, 0, 15);
573         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
574         __ctl_load(cregs, 0, 15);
575 }
576
577 /*
578  * Set a bit in a control register of all cpus
579  */
580 void smp_ctl_set_bit(int cr, int bit)
581 {
582         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
583
584         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
585 }
586 EXPORT_SYMBOL(smp_ctl_set_bit);
587
588 /*
589  * Clear a bit in a control register of all cpus
590  */
591 void smp_ctl_clear_bit(int cr, int bit)
592 {
593         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
594
595         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
596 }
597 EXPORT_SYMBOL(smp_ctl_clear_bit);
598
599 #ifdef CONFIG_CRASH_DUMP
600
601 int smp_store_status(int cpu)
602 {
603         struct pcpu *pcpu = pcpu_devices + cpu;
604         unsigned long pa;
605
606         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
607         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
608                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
609                 return -EIO;
610         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
611                 return 0;
612         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
613         if (MACHINE_HAS_GS)
614                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
615         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
616                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
617                 return -EIO;
618         return 0;
619 }
620
621 /*
622  * Collect CPU state of the previous, crashed system.
623  * There are four cases:
624  * 1) standard zfcp/nvme dump
625  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
626  *    The state for all CPUs except the boot CPU needs to be collected
627  *    with sigp stop-and-store-status. The boot CPU state is located in
628  *    the absolute lowcore of the memory stored in the HSA. The zcore code
629  *    will copy the boot CPU state from the HSA.
630  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
631  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The firmware or the boot-loader
634  *    stored the registers of the boot CPU in the absolute lowcore in the
635  *    memory of the old system.
636  * 3) kdump and the old kernel did not store the CPU state,
637  *    or stand-alone kdump for DASD
638  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
639  *    The state for all CPUs except the boot CPU needs to be collected
640  *    with sigp stop-and-store-status. The kexec code or the boot-loader
641  *    stored the registers of the boot CPU in the memory of the old system.
642  * 4) kdump and the old kernel stored the CPU state
643  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
644  *    This case does not exist for s390 anymore, setup_arch explicitly
645  *    deactivates the elfcorehdr= kernel parameter
646  */
647 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
648                                      bool is_boot_cpu, unsigned long page)
649 {
650         __vector128 *vxrs = (__vector128 *) page;
651
652         if (is_boot_cpu)
653                 vxrs = boot_cpu_vector_save_area;
654         else
655                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
656         save_area_add_vxrs(sa, vxrs);
657 }
658
659 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
660                                      bool is_boot_cpu, unsigned long page)
661 {
662         void *regs = (void *) page;
663
664         if (is_boot_cpu)
665                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
666         else
667                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
668         save_area_add_regs(sa, regs);
669 }
670
671 void __init smp_save_dump_cpus(void)
672 {
673         int addr, boot_cpu_addr, max_cpu_addr;
674         struct save_area *sa;
675         unsigned long page;
676         bool is_boot_cpu;
677
678         if (!(OLDMEM_BASE || is_ipl_type_dump()))
679                 /* No previous system present, normal boot. */
680                 return;
681         /* Allocate a page as dumping area for the store status sigps */
682         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
683         if (!page)
684                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
685                       PAGE_SIZE, 1UL << 31);
686
687         /* Set multi-threading state to the previous system. */
688         pcpu_set_smt(sclp.mtid_prev);
689         boot_cpu_addr = stap();
690         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
691         for (addr = 0; addr <= max_cpu_addr; addr++) {
692                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
693                     SIGP_CC_NOT_OPERATIONAL)
694                         continue;
695                 is_boot_cpu = (addr == boot_cpu_addr);
696                 /* Allocate save area */
697                 sa = save_area_alloc(is_boot_cpu);
698                 if (!sa)
699                         panic("could not allocate memory for save area\n");
700                 if (MACHINE_HAS_VX)
701                         /* Get the vector registers */
702                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
703                 /*
704                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
705                  * of the boot CPU are stored in the HSA. To retrieve
706                  * these registers an SCLP request is required which is
707                  * done by drivers/s390/char/zcore.c:init_cpu_info()
708                  */
709                 if (!is_boot_cpu || OLDMEM_BASE)
710                         /* Get the CPU registers */
711                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
712         }
713         memblock_free(page, PAGE_SIZE);
714         diag_dma_ops.diag308_reset();
715         pcpu_set_smt(0);
716 }
717 #endif /* CONFIG_CRASH_DUMP */
718
719 void smp_cpu_set_polarization(int cpu, int val)
720 {
721         pcpu_devices[cpu].polarization = val;
722 }
723
724 int smp_cpu_get_polarization(int cpu)
725 {
726         return pcpu_devices[cpu].polarization;
727 }
728
729 int smp_cpu_get_cpu_address(int cpu)
730 {
731         return pcpu_devices[cpu].address;
732 }
733
734 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
735 {
736         static int use_sigp_detection;
737         int address;
738
739         if (use_sigp_detection || sclp_get_core_info(info, early)) {
740                 use_sigp_detection = 1;
741                 for (address = 0;
742                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
743                      address += (1U << smp_cpu_mt_shift)) {
744                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
745                             SIGP_CC_NOT_OPERATIONAL)
746                                 continue;
747                         info->core[info->configured].core_id =
748                                 address >> smp_cpu_mt_shift;
749                         info->configured++;
750                 }
751                 info->combined = info->configured;
752         }
753 }
754
755 static int smp_add_present_cpu(int cpu);
756
757 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
758                         bool configured, bool early)
759 {
760         struct pcpu *pcpu;
761         int cpu, nr, i;
762         u16 address;
763
764         nr = 0;
765         if (sclp.has_core_type && core->type != boot_core_type)
766                 return nr;
767         cpu = cpumask_first(avail);
768         address = core->core_id << smp_cpu_mt_shift;
769         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
770                 if (pcpu_find_address(cpu_present_mask, address + i))
771                         continue;
772                 pcpu = pcpu_devices + cpu;
773                 pcpu->address = address + i;
774                 if (configured)
775                         pcpu->state = CPU_STATE_CONFIGURED;
776                 else
777                         pcpu->state = CPU_STATE_STANDBY;
778                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
779                 set_cpu_present(cpu, true);
780                 if (!early && smp_add_present_cpu(cpu) != 0)
781                         set_cpu_present(cpu, false);
782                 else
783                         nr++;
784                 cpumask_clear_cpu(cpu, avail);
785                 cpu = cpumask_next(cpu, avail);
786         }
787         return nr;
788 }
789
790 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
791 {
792         struct sclp_core_entry *core;
793         static cpumask_t avail;
794         bool configured;
795         u16 core_id;
796         int nr, i;
797
798         get_online_cpus();
799         mutex_lock(&smp_cpu_state_mutex);
800         nr = 0;
801         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
802         /*
803          * Add IPL core first (which got logical CPU number 0) to make sure
804          * that all SMT threads get subsequent logical CPU numbers.
805          */
806         if (early) {
807                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
808                 for (i = 0; i < info->configured; i++) {
809                         core = &info->core[i];
810                         if (core->core_id == core_id) {
811                                 nr += smp_add_core(core, &avail, true, early);
812                                 break;
813                         }
814                 }
815         }
816         for (i = 0; i < info->combined; i++) {
817                 configured = i < info->configured;
818                 nr += smp_add_core(&info->core[i], &avail, configured, early);
819         }
820         mutex_unlock(&smp_cpu_state_mutex);
821         put_online_cpus();
822         return nr;
823 }
824
825 void __init smp_detect_cpus(void)
826 {
827         unsigned int cpu, mtid, c_cpus, s_cpus;
828         struct sclp_core_info *info;
829         u16 address;
830
831         /* Get CPU information */
832         info = memblock_alloc(sizeof(*info), 8);
833         if (!info)
834                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
835                       __func__, sizeof(*info), 8);
836         smp_get_core_info(info, 1);
837         /* Find boot CPU type */
838         if (sclp.has_core_type) {
839                 address = stap();
840                 for (cpu = 0; cpu < info->combined; cpu++)
841                         if (info->core[cpu].core_id == address) {
842                                 /* The boot cpu dictates the cpu type. */
843                                 boot_core_type = info->core[cpu].type;
844                                 break;
845                         }
846                 if (cpu >= info->combined)
847                         panic("Could not find boot CPU type");
848         }
849
850         /* Set multi-threading state for the current system */
851         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
852         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
853         pcpu_set_smt(mtid);
854
855         /* Print number of CPUs */
856         c_cpus = s_cpus = 0;
857         for (cpu = 0; cpu < info->combined; cpu++) {
858                 if (sclp.has_core_type &&
859                     info->core[cpu].type != boot_core_type)
860                         continue;
861                 if (cpu < info->configured)
862                         c_cpus += smp_cpu_mtid + 1;
863                 else
864                         s_cpus += smp_cpu_mtid + 1;
865         }
866         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
867
868         /* Add CPUs present at boot */
869         __smp_rescan_cpus(info, true);
870         memblock_free_early((unsigned long)info, sizeof(*info));
871 }
872
873 static void smp_init_secondary(void)
874 {
875         int cpu = raw_smp_processor_id();
876
877         S390_lowcore.last_update_clock = get_tod_clock();
878         restore_access_regs(S390_lowcore.access_regs_save_area);
879         cpu_init();
880         rcu_cpu_starting(cpu);
881         preempt_disable();
882         init_cpu_timer();
883         vtime_init();
884         vdso_getcpu_init();
885         pfault_init();
886         notify_cpu_starting(cpu);
887         if (topology_cpu_dedicated(cpu))
888                 set_cpu_flag(CIF_DEDICATED_CPU);
889         else
890                 clear_cpu_flag(CIF_DEDICATED_CPU);
891         set_cpu_online(cpu, true);
892         update_cpu_masks();
893         inc_irq_stat(CPU_RST);
894         local_irq_enable();
895         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
896 }
897
898 /*
899  *      Activate a secondary processor.
900  */
901 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
902 {
903         S390_lowcore.restart_stack = (unsigned long) restart_stack;
904         S390_lowcore.restart_fn = (unsigned long) do_restart;
905         S390_lowcore.restart_data = 0;
906         S390_lowcore.restart_source = -1UL;
907         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
908         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
909         CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
910 }
911
912 /* Upping and downing of CPUs */
913 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
914 {
915         struct pcpu *pcpu = pcpu_devices + cpu;
916         int rc;
917
918         if (pcpu->state != CPU_STATE_CONFIGURED)
919                 return -EIO;
920         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
921             SIGP_CC_ORDER_CODE_ACCEPTED)
922                 return -EIO;
923
924         rc = pcpu_alloc_lowcore(pcpu, cpu);
925         if (rc)
926                 return rc;
927         pcpu_prepare_secondary(pcpu, cpu);
928         pcpu_attach_task(pcpu, tidle);
929         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
930         /* Wait until cpu puts itself in the online & active maps */
931         while (!cpu_online(cpu))
932                 cpu_relax();
933         return 0;
934 }
935
936 static unsigned int setup_possible_cpus __initdata;
937
938 static int __init _setup_possible_cpus(char *s)
939 {
940         get_option(&s, &setup_possible_cpus);
941         return 0;
942 }
943 early_param("possible_cpus", _setup_possible_cpus);
944
945 int __cpu_disable(void)
946 {
947         unsigned long cregs[16];
948
949         /* Handle possible pending IPIs */
950         smp_handle_ext_call();
951         set_cpu_online(smp_processor_id(), false);
952         update_cpu_masks();
953         /* Disable pseudo page faults on this cpu. */
954         pfault_fini();
955         /* Disable interrupt sources via control register. */
956         __ctl_store(cregs, 0, 15);
957         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
958         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
959         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
960         __ctl_load(cregs, 0, 15);
961         clear_cpu_flag(CIF_NOHZ_DELAY);
962         return 0;
963 }
964
965 void __cpu_die(unsigned int cpu)
966 {
967         struct pcpu *pcpu;
968
969         /* Wait until target cpu is down */
970         pcpu = pcpu_devices + cpu;
971         while (!pcpu_stopped(pcpu))
972                 cpu_relax();
973         pcpu_free_lowcore(pcpu);
974         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
975         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
976 }
977
978 void __noreturn cpu_die(void)
979 {
980         idle_task_exit();
981         __bpon();
982         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
983         for (;;) ;
984 }
985
986 void __init smp_fill_possible_mask(void)
987 {
988         unsigned int possible, sclp_max, cpu;
989
990         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
991         sclp_max = min(smp_max_threads, sclp_max);
992         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
993         possible = setup_possible_cpus ?: nr_cpu_ids;
994         possible = min(possible, sclp_max);
995         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
996                 set_cpu_possible(cpu, true);
997 }
998
999 void __init smp_prepare_cpus(unsigned int max_cpus)
1000 {
1001         /* request the 0x1201 emergency signal external interrupt */
1002         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1003                 panic("Couldn't request external interrupt 0x1201");
1004         /* request the 0x1202 external call external interrupt */
1005         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1006                 panic("Couldn't request external interrupt 0x1202");
1007 }
1008
1009 void __init smp_prepare_boot_cpu(void)
1010 {
1011         struct pcpu *pcpu = pcpu_devices;
1012
1013         WARN_ON(!cpu_present(0) || !cpu_online(0));
1014         pcpu->state = CPU_STATE_CONFIGURED;
1015         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1016         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1017         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1018 }
1019
1020 void __init smp_setup_processor_id(void)
1021 {
1022         pcpu_devices[0].address = stap();
1023         S390_lowcore.cpu_nr = 0;
1024         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1025         S390_lowcore.spinlock_index = 0;
1026 }
1027
1028 /*
1029  * the frequency of the profiling timer can be changed
1030  * by writing a multiplier value into /proc/profile.
1031  *
1032  * usually you want to run this on all CPUs ;)
1033  */
1034 int setup_profiling_timer(unsigned int multiplier)
1035 {
1036         return 0;
1037 }
1038
1039 static ssize_t cpu_configure_show(struct device *dev,
1040                                   struct device_attribute *attr, char *buf)
1041 {
1042         ssize_t count;
1043
1044         mutex_lock(&smp_cpu_state_mutex);
1045         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1046         mutex_unlock(&smp_cpu_state_mutex);
1047         return count;
1048 }
1049
1050 static ssize_t cpu_configure_store(struct device *dev,
1051                                    struct device_attribute *attr,
1052                                    const char *buf, size_t count)
1053 {
1054         struct pcpu *pcpu;
1055         int cpu, val, rc, i;
1056         char delim;
1057
1058         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1059                 return -EINVAL;
1060         if (val != 0 && val != 1)
1061                 return -EINVAL;
1062         get_online_cpus();
1063         mutex_lock(&smp_cpu_state_mutex);
1064         rc = -EBUSY;
1065         /* disallow configuration changes of online cpus and cpu 0 */
1066         cpu = dev->id;
1067         cpu = smp_get_base_cpu(cpu);
1068         if (cpu == 0)
1069                 goto out;
1070         for (i = 0; i <= smp_cpu_mtid; i++)
1071                 if (cpu_online(cpu + i))
1072                         goto out;
1073         pcpu = pcpu_devices + cpu;
1074         rc = 0;
1075         switch (val) {
1076         case 0:
1077                 if (pcpu->state != CPU_STATE_CONFIGURED)
1078                         break;
1079                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1080                 if (rc)
1081                         break;
1082                 for (i = 0; i <= smp_cpu_mtid; i++) {
1083                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1084                                 continue;
1085                         pcpu[i].state = CPU_STATE_STANDBY;
1086                         smp_cpu_set_polarization(cpu + i,
1087                                                  POLARIZATION_UNKNOWN);
1088                 }
1089                 topology_expect_change();
1090                 break;
1091         case 1:
1092                 if (pcpu->state != CPU_STATE_STANDBY)
1093                         break;
1094                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1095                 if (rc)
1096                         break;
1097                 for (i = 0; i <= smp_cpu_mtid; i++) {
1098                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1099                                 continue;
1100                         pcpu[i].state = CPU_STATE_CONFIGURED;
1101                         smp_cpu_set_polarization(cpu + i,
1102                                                  POLARIZATION_UNKNOWN);
1103                 }
1104                 topology_expect_change();
1105                 break;
1106         default:
1107                 break;
1108         }
1109 out:
1110         mutex_unlock(&smp_cpu_state_mutex);
1111         put_online_cpus();
1112         return rc ? rc : count;
1113 }
1114 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1115
1116 static ssize_t show_cpu_address(struct device *dev,
1117                                 struct device_attribute *attr, char *buf)
1118 {
1119         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1120 }
1121 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1122
1123 static struct attribute *cpu_common_attrs[] = {
1124         &dev_attr_configure.attr,
1125         &dev_attr_address.attr,
1126         NULL,
1127 };
1128
1129 static struct attribute_group cpu_common_attr_group = {
1130         .attrs = cpu_common_attrs,
1131 };
1132
1133 static struct attribute *cpu_online_attrs[] = {
1134         &dev_attr_idle_count.attr,
1135         &dev_attr_idle_time_us.attr,
1136         NULL,
1137 };
1138
1139 static struct attribute_group cpu_online_attr_group = {
1140         .attrs = cpu_online_attrs,
1141 };
1142
1143 static int smp_cpu_online(unsigned int cpu)
1144 {
1145         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1146
1147         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1148 }
1149
1150 static int smp_cpu_pre_down(unsigned int cpu)
1151 {
1152         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1153
1154         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1155         return 0;
1156 }
1157
1158 static int smp_add_present_cpu(int cpu)
1159 {
1160         struct device *s;
1161         struct cpu *c;
1162         int rc;
1163
1164         c = kzalloc(sizeof(*c), GFP_KERNEL);
1165         if (!c)
1166                 return -ENOMEM;
1167         per_cpu(cpu_device, cpu) = c;
1168         s = &c->dev;
1169         c->hotpluggable = 1;
1170         rc = register_cpu(c, cpu);
1171         if (rc)
1172                 goto out;
1173         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1174         if (rc)
1175                 goto out_cpu;
1176         rc = topology_cpu_init(c);
1177         if (rc)
1178                 goto out_topology;
1179         return 0;
1180
1181 out_topology:
1182         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1183 out_cpu:
1184         unregister_cpu(c);
1185 out:
1186         return rc;
1187 }
1188
1189 int __ref smp_rescan_cpus(void)
1190 {
1191         struct sclp_core_info *info;
1192         int nr;
1193
1194         info = kzalloc(sizeof(*info), GFP_KERNEL);
1195         if (!info)
1196                 return -ENOMEM;
1197         smp_get_core_info(info, 0);
1198         nr = __smp_rescan_cpus(info, false);
1199         kfree(info);
1200         if (nr)
1201                 topology_schedule_update();
1202         return 0;
1203 }
1204
1205 static ssize_t __ref rescan_store(struct device *dev,
1206                                   struct device_attribute *attr,
1207                                   const char *buf,
1208                                   size_t count)
1209 {
1210         int rc;
1211
1212         rc = lock_device_hotplug_sysfs();
1213         if (rc)
1214                 return rc;
1215         rc = smp_rescan_cpus();
1216         unlock_device_hotplug();
1217         return rc ? rc : count;
1218 }
1219 static DEVICE_ATTR_WO(rescan);
1220
1221 static int __init s390_smp_init(void)
1222 {
1223         int cpu, rc = 0;
1224
1225         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1226         if (rc)
1227                 return rc;
1228         for_each_present_cpu(cpu) {
1229                 rc = smp_add_present_cpu(cpu);
1230                 if (rc)
1231                         goto out;
1232         }
1233
1234         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1235                                smp_cpu_online, smp_cpu_pre_down);
1236         rc = rc <= 0 ? rc : 0;
1237 out:
1238         return rc;
1239 }
1240 subsys_initcall(s390_smp_init);