1 // SPDX-License-Identifier: GPL-2.0
3 * SMP related functions
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
45 #include <asm/setup.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
63 ec_call_function_single,
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
77 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
78 unsigned long ec_mask; /* bit mask for ec_xxx functions */
79 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
80 signed char state; /* physical cpu state */
81 signed char polarization; /* physical polarization */
82 u16 address; /* physical cpu address */
85 static u8 boot_core_type;
86 static struct pcpu pcpu_devices[NR_CPUS];
88 unsigned int smp_cpu_mt_shift;
89 EXPORT_SYMBOL(smp_cpu_mt_shift);
91 unsigned int smp_cpu_mtid;
92 EXPORT_SYMBOL(smp_cpu_mtid);
94 #ifdef CONFIG_CRASH_DUMP
95 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
98 static unsigned int smp_max_threads __initdata = -1U;
100 static int __init early_nosmt(char *s)
105 early_param("nosmt", early_nosmt);
107 static int __init early_smt(char *s)
109 get_option(&s, &smp_max_threads);
112 early_param("smt", early_smt);
115 * The smp_cpu_state_mutex must be held when changing the state or polarization
116 * member of a pcpu data structure within the pcpu_devices arreay.
118 DEFINE_MUTEX(smp_cpu_state_mutex);
121 * Signal processor helper functions.
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
128 cc = __pcpu_sigp(addr, order, parm, NULL);
129 if (cc != SIGP_CC_BUSY)
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
139 for (retry = 0; ; retry++) {
140 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 if (cc != SIGP_CC_BUSY)
149 static inline int pcpu_stopped(struct pcpu *pcpu)
153 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 0, &status) != SIGP_CC_STATUS_STORED)
156 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
159 static inline int pcpu_running(struct pcpu *pcpu)
161 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 0, NULL) != SIGP_CC_STATUS_STORED)
164 /* Status stored condition code is equivalent to cpu not running. */
169 * Find struct pcpu by cpu address.
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
175 for_each_cpu(cpu, mask)
176 if (pcpu_devices[cpu].address == address)
177 return pcpu_devices + cpu;
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
185 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
187 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 pcpu->ec_clk = get_tod_clock_fast();
189 pcpu_sigp_retry(pcpu, order, 0);
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
194 unsigned long async_stack, nodat_stack, mcck_stack;
197 if (pcpu != &pcpu_devices[0]) {
198 pcpu->lowcore = (struct lowcore *)
199 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201 if (!pcpu->lowcore || !nodat_stack)
204 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
206 async_stack = stack_alloc();
207 mcck_stack = stack_alloc();
208 if (!async_stack || !mcck_stack)
211 memcpy(lc, &S390_lowcore, 512);
212 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
213 lc->async_stack = async_stack + STACK_INIT_OFFSET;
214 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
215 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
217 lc->spinlock_lockval = arch_spin_lockval(cpu);
218 lc->spinlock_index = 0;
219 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
220 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
221 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
222 if (nmi_alloc_per_cpu(lc))
224 lowcore_ptr[cpu] = lc;
225 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
229 stack_free(mcck_stack);
230 stack_free(async_stack);
232 if (pcpu != &pcpu_devices[0]) {
233 free_pages(nodat_stack, THREAD_SIZE_ORDER);
234 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
241 unsigned long async_stack, nodat_stack, mcck_stack, lowcore;
243 nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
244 async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
245 mcck_stack = pcpu->lowcore->mcck_stack - STACK_INIT_OFFSET;
246 lowcore = (unsigned long) pcpu->lowcore;
248 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
249 lowcore_ptr[pcpu - pcpu_devices] = NULL;
250 nmi_free_per_cpu(pcpu->lowcore);
251 stack_free(async_stack);
252 stack_free(mcck_stack);
253 if (pcpu == &pcpu_devices[0])
255 free_pages(nodat_stack, THREAD_SIZE_ORDER);
256 free_pages(lowcore, LC_ORDER);
259 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
261 struct lowcore *lc = pcpu->lowcore;
263 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
264 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
266 lc->spinlock_lockval = arch_spin_lockval(cpu);
267 lc->spinlock_index = 0;
268 lc->percpu_offset = __per_cpu_offset[cpu];
269 lc->kernel_asce = S390_lowcore.kernel_asce;
270 lc->user_asce = s390_invalid_asce;
271 lc->machine_flags = S390_lowcore.machine_flags;
272 lc->user_timer = lc->system_timer =
273 lc->steal_timer = lc->avg_steal_timer = 0;
274 __ctl_store(lc->cregs_save_area, 0, 15);
275 lc->cregs_save_area[1] = lc->kernel_asce;
276 lc->cregs_save_area[7] = lc->user_asce;
277 save_access_regs((unsigned int *) lc->access_regs_save_area);
278 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
279 sizeof(lc->stfle_fac_list));
280 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
281 sizeof(lc->alt_stfle_fac_list));
282 arch_spin_lock_setup(cpu);
285 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
287 struct lowcore *lc = pcpu->lowcore;
289 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
290 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
291 lc->current_task = (unsigned long) tsk;
293 lc->current_pid = tsk->pid;
294 lc->user_timer = tsk->thread.user_timer;
295 lc->guest_timer = tsk->thread.guest_timer;
296 lc->system_timer = tsk->thread.system_timer;
297 lc->hardirq_timer = tsk->thread.hardirq_timer;
298 lc->softirq_timer = tsk->thread.softirq_timer;
302 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
304 struct lowcore *lc = pcpu->lowcore;
306 lc->restart_stack = lc->nodat_stack;
307 lc->restart_fn = (unsigned long) func;
308 lc->restart_data = (unsigned long) data;
309 lc->restart_source = -1UL;
310 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
314 * Call function via PSW restart on pcpu and stop the current cpu.
316 static void __pcpu_delegate(void (*func)(void*), void *data)
318 func(data); /* should not return */
321 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
322 void (*func)(void *),
323 void *data, unsigned long stack)
325 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326 unsigned long source_cpu = stap();
328 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
329 if (pcpu->address == source_cpu)
330 CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
331 /* Stop target cpu (if func returns this stops the current cpu). */
332 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 /* Restart func on the target cpu and stop the current cpu. */
334 mem_assign_absolute(lc->restart_stack, stack);
335 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336 mem_assign_absolute(lc->restart_data, (unsigned long) data);
337 mem_assign_absolute(lc->restart_source, source_cpu);
340 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
341 " brc 2,0b # busy, try again\n"
342 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
343 " brc 2,1b # busy, try again\n"
344 : : "d" (pcpu->address), "d" (source_cpu),
345 "K" (SIGP_RESTART), "K" (SIGP_STOP)
351 * Enable additional logical cpus for multi-threading.
353 static int pcpu_set_smt(unsigned int mtid)
357 if (smp_cpu_mtid == mtid)
359 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
362 smp_cpu_mt_shift = 0;
363 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
365 pcpu_devices[0].address = stap();
371 * Call function on an online CPU.
373 void smp_call_online_cpu(void (*func)(void *), void *data)
377 /* Use the current cpu if it is online. */
378 pcpu = pcpu_find_address(cpu_online_mask, stap());
380 /* Use the first online cpu. */
381 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
386 * Call function on the ipl CPU.
388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
390 struct lowcore *lc = pcpu_devices->lowcore;
392 if (pcpu_devices[0].address == stap())
395 pcpu_delegate(&pcpu_devices[0], func, data,
399 int smp_find_processor_id(u16 address)
403 for_each_present_cpu(cpu)
404 if (pcpu_devices[cpu].address == address)
409 void schedule_mcck_handler(void)
411 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
414 bool notrace arch_vcpu_is_preempted(int cpu)
416 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
418 if (pcpu_running(pcpu_devices + cpu))
422 EXPORT_SYMBOL(arch_vcpu_is_preempted);
424 void notrace smp_yield_cpu(int cpu)
426 if (!MACHINE_HAS_DIAG9C)
428 diag_stat_inc_norecursion(DIAG_STAT_X09C);
429 asm volatile("diag %0,0,0x9c"
430 : : "d" (pcpu_devices[cpu].address));
432 EXPORT_SYMBOL_GPL(smp_yield_cpu);
435 * Send cpus emergency shutdown signal. This gives the cpus the
436 * opportunity to complete outstanding interrupts.
438 void notrace smp_emergency_stop(void)
440 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
441 static cpumask_t cpumask;
445 arch_spin_lock(&lock);
446 cpumask_copy(&cpumask, cpu_online_mask);
447 cpumask_clear_cpu(smp_processor_id(), &cpumask);
449 end = get_tod_clock() + (1000000UL << 12);
450 for_each_cpu(cpu, &cpumask) {
451 struct pcpu *pcpu = pcpu_devices + cpu;
452 set_bit(ec_stop_cpu, &pcpu->ec_mask);
453 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
454 0, NULL) == SIGP_CC_BUSY &&
455 get_tod_clock() < end)
458 while (get_tod_clock() < end) {
459 for_each_cpu(cpu, &cpumask)
460 if (pcpu_stopped(pcpu_devices + cpu))
461 cpumask_clear_cpu(cpu, &cpumask);
462 if (cpumask_empty(&cpumask))
466 arch_spin_unlock(&lock);
468 NOKPROBE_SYMBOL(smp_emergency_stop);
471 * Stop all cpus but the current one.
473 void smp_send_stop(void)
477 /* Disable all interrupts/machine checks */
478 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
479 trace_hardirqs_off();
481 debug_set_critical();
483 if (oops_in_progress)
484 smp_emergency_stop();
486 /* stop all processors */
487 for_each_online_cpu(cpu) {
488 if (cpu == smp_processor_id())
490 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
491 while (!pcpu_stopped(pcpu_devices + cpu))
497 * This is the main routine where commands issued by other
500 static void smp_handle_ext_call(void)
504 /* handle bit signal external calls */
505 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
506 if (test_bit(ec_stop_cpu, &bits))
508 if (test_bit(ec_schedule, &bits))
510 if (test_bit(ec_call_function_single, &bits))
511 generic_smp_call_function_single_interrupt();
512 if (test_bit(ec_mcck_pending, &bits))
513 __s390_handle_mcck();
514 if (test_bit(ec_irq_work, &bits))
518 static void do_ext_call_interrupt(struct ext_code ext_code,
519 unsigned int param32, unsigned long param64)
521 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
522 smp_handle_ext_call();
525 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
529 for_each_cpu(cpu, mask)
530 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 void arch_send_call_function_single_ipi(int cpu)
535 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
539 * this function sends a 'reschedule' IPI to another CPU.
540 * it goes straight through and wastes no time serializing
541 * anything. Worst case is that we lose a reschedule ...
543 void smp_send_reschedule(int cpu)
545 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
548 #ifdef CONFIG_IRQ_WORK
549 void arch_irq_work_raise(void)
551 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
556 * parameter area for the set/clear control bit callbacks
558 struct ec_creg_mask_parms {
560 unsigned long andval;
565 * callback for setting/clearing control bits
567 static void smp_ctl_bit_callback(void *info)
569 struct ec_creg_mask_parms *pp = info;
570 unsigned long cregs[16];
572 __ctl_store(cregs, 0, 15);
573 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
574 __ctl_load(cregs, 0, 15);
578 * Set a bit in a control register of all cpus
580 void smp_ctl_set_bit(int cr, int bit)
582 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
584 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
586 EXPORT_SYMBOL(smp_ctl_set_bit);
589 * Clear a bit in a control register of all cpus
591 void smp_ctl_clear_bit(int cr, int bit)
593 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
595 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
597 EXPORT_SYMBOL(smp_ctl_clear_bit);
599 #ifdef CONFIG_CRASH_DUMP
601 int smp_store_status(int cpu)
603 struct pcpu *pcpu = pcpu_devices + cpu;
606 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
607 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
608 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
610 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
612 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
614 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
615 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
616 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
622 * Collect CPU state of the previous, crashed system.
623 * There are four cases:
624 * 1) standard zfcp/nvme dump
625 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
626 * The state for all CPUs except the boot CPU needs to be collected
627 * with sigp stop-and-store-status. The boot CPU state is located in
628 * the absolute lowcore of the memory stored in the HSA. The zcore code
629 * will copy the boot CPU state from the HSA.
630 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
631 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
632 * The state for all CPUs except the boot CPU needs to be collected
633 * with sigp stop-and-store-status. The firmware or the boot-loader
634 * stored the registers of the boot CPU in the absolute lowcore in the
635 * memory of the old system.
636 * 3) kdump and the old kernel did not store the CPU state,
637 * or stand-alone kdump for DASD
638 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
639 * The state for all CPUs except the boot CPU needs to be collected
640 * with sigp stop-and-store-status. The kexec code or the boot-loader
641 * stored the registers of the boot CPU in the memory of the old system.
642 * 4) kdump and the old kernel stored the CPU state
643 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
644 * This case does not exist for s390 anymore, setup_arch explicitly
645 * deactivates the elfcorehdr= kernel parameter
647 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
648 bool is_boot_cpu, unsigned long page)
650 __vector128 *vxrs = (__vector128 *) page;
653 vxrs = boot_cpu_vector_save_area;
655 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
656 save_area_add_vxrs(sa, vxrs);
659 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
660 bool is_boot_cpu, unsigned long page)
662 void *regs = (void *) page;
665 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
667 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
668 save_area_add_regs(sa, regs);
671 void __init smp_save_dump_cpus(void)
673 int addr, boot_cpu_addr, max_cpu_addr;
674 struct save_area *sa;
678 if (!(OLDMEM_BASE || is_ipl_type_dump()))
679 /* No previous system present, normal boot. */
681 /* Allocate a page as dumping area for the store status sigps */
682 page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
684 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
685 PAGE_SIZE, 1UL << 31);
687 /* Set multi-threading state to the previous system. */
688 pcpu_set_smt(sclp.mtid_prev);
689 boot_cpu_addr = stap();
690 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
691 for (addr = 0; addr <= max_cpu_addr; addr++) {
692 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
693 SIGP_CC_NOT_OPERATIONAL)
695 is_boot_cpu = (addr == boot_cpu_addr);
696 /* Allocate save area */
697 sa = save_area_alloc(is_boot_cpu);
699 panic("could not allocate memory for save area\n");
701 /* Get the vector registers */
702 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
704 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
705 * of the boot CPU are stored in the HSA. To retrieve
706 * these registers an SCLP request is required which is
707 * done by drivers/s390/char/zcore.c:init_cpu_info()
709 if (!is_boot_cpu || OLDMEM_BASE)
710 /* Get the CPU registers */
711 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
713 memblock_free(page, PAGE_SIZE);
714 diag_dma_ops.diag308_reset();
717 #endif /* CONFIG_CRASH_DUMP */
719 void smp_cpu_set_polarization(int cpu, int val)
721 pcpu_devices[cpu].polarization = val;
724 int smp_cpu_get_polarization(int cpu)
726 return pcpu_devices[cpu].polarization;
729 int smp_cpu_get_cpu_address(int cpu)
731 return pcpu_devices[cpu].address;
734 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
736 static int use_sigp_detection;
739 if (use_sigp_detection || sclp_get_core_info(info, early)) {
740 use_sigp_detection = 1;
742 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
743 address += (1U << smp_cpu_mt_shift)) {
744 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
745 SIGP_CC_NOT_OPERATIONAL)
747 info->core[info->configured].core_id =
748 address >> smp_cpu_mt_shift;
751 info->combined = info->configured;
755 static int smp_add_present_cpu(int cpu);
757 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
758 bool configured, bool early)
765 if (sclp.has_core_type && core->type != boot_core_type)
767 cpu = cpumask_first(avail);
768 address = core->core_id << smp_cpu_mt_shift;
769 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
770 if (pcpu_find_address(cpu_present_mask, address + i))
772 pcpu = pcpu_devices + cpu;
773 pcpu->address = address + i;
775 pcpu->state = CPU_STATE_CONFIGURED;
777 pcpu->state = CPU_STATE_STANDBY;
778 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
779 set_cpu_present(cpu, true);
780 if (!early && smp_add_present_cpu(cpu) != 0)
781 set_cpu_present(cpu, false);
784 cpumask_clear_cpu(cpu, avail);
785 cpu = cpumask_next(cpu, avail);
790 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
792 struct sclp_core_entry *core;
793 static cpumask_t avail;
799 mutex_lock(&smp_cpu_state_mutex);
801 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
803 * Add IPL core first (which got logical CPU number 0) to make sure
804 * that all SMT threads get subsequent logical CPU numbers.
807 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
808 for (i = 0; i < info->configured; i++) {
809 core = &info->core[i];
810 if (core->core_id == core_id) {
811 nr += smp_add_core(core, &avail, true, early);
816 for (i = 0; i < info->combined; i++) {
817 configured = i < info->configured;
818 nr += smp_add_core(&info->core[i], &avail, configured, early);
820 mutex_unlock(&smp_cpu_state_mutex);
825 void __init smp_detect_cpus(void)
827 unsigned int cpu, mtid, c_cpus, s_cpus;
828 struct sclp_core_info *info;
831 /* Get CPU information */
832 info = memblock_alloc(sizeof(*info), 8);
834 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
835 __func__, sizeof(*info), 8);
836 smp_get_core_info(info, 1);
837 /* Find boot CPU type */
838 if (sclp.has_core_type) {
840 for (cpu = 0; cpu < info->combined; cpu++)
841 if (info->core[cpu].core_id == address) {
842 /* The boot cpu dictates the cpu type. */
843 boot_core_type = info->core[cpu].type;
846 if (cpu >= info->combined)
847 panic("Could not find boot CPU type");
850 /* Set multi-threading state for the current system */
851 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
852 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
855 /* Print number of CPUs */
857 for (cpu = 0; cpu < info->combined; cpu++) {
858 if (sclp.has_core_type &&
859 info->core[cpu].type != boot_core_type)
861 if (cpu < info->configured)
862 c_cpus += smp_cpu_mtid + 1;
864 s_cpus += smp_cpu_mtid + 1;
866 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
868 /* Add CPUs present at boot */
869 __smp_rescan_cpus(info, true);
870 memblock_free_early((unsigned long)info, sizeof(*info));
873 static void smp_init_secondary(void)
875 int cpu = raw_smp_processor_id();
877 S390_lowcore.last_update_clock = get_tod_clock();
878 restore_access_regs(S390_lowcore.access_regs_save_area);
880 rcu_cpu_starting(cpu);
886 notify_cpu_starting(cpu);
887 if (topology_cpu_dedicated(cpu))
888 set_cpu_flag(CIF_DEDICATED_CPU);
890 clear_cpu_flag(CIF_DEDICATED_CPU);
891 set_cpu_online(cpu, true);
893 inc_irq_stat(CPU_RST);
895 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
899 * Activate a secondary processor.
901 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
903 S390_lowcore.restart_stack = (unsigned long) restart_stack;
904 S390_lowcore.restart_fn = (unsigned long) do_restart;
905 S390_lowcore.restart_data = 0;
906 S390_lowcore.restart_source = -1UL;
907 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
908 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
909 CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
912 /* Upping and downing of CPUs */
913 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
915 struct pcpu *pcpu = pcpu_devices + cpu;
918 if (pcpu->state != CPU_STATE_CONFIGURED)
920 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
921 SIGP_CC_ORDER_CODE_ACCEPTED)
924 rc = pcpu_alloc_lowcore(pcpu, cpu);
927 pcpu_prepare_secondary(pcpu, cpu);
928 pcpu_attach_task(pcpu, tidle);
929 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
930 /* Wait until cpu puts itself in the online & active maps */
931 while (!cpu_online(cpu))
936 static unsigned int setup_possible_cpus __initdata;
938 static int __init _setup_possible_cpus(char *s)
940 get_option(&s, &setup_possible_cpus);
943 early_param("possible_cpus", _setup_possible_cpus);
945 int __cpu_disable(void)
947 unsigned long cregs[16];
949 /* Handle possible pending IPIs */
950 smp_handle_ext_call();
951 set_cpu_online(smp_processor_id(), false);
953 /* Disable pseudo page faults on this cpu. */
955 /* Disable interrupt sources via control register. */
956 __ctl_store(cregs, 0, 15);
957 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
958 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
959 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
960 __ctl_load(cregs, 0, 15);
961 clear_cpu_flag(CIF_NOHZ_DELAY);
965 void __cpu_die(unsigned int cpu)
969 /* Wait until target cpu is down */
970 pcpu = pcpu_devices + cpu;
971 while (!pcpu_stopped(pcpu))
973 pcpu_free_lowcore(pcpu);
974 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
975 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
978 void __noreturn cpu_die(void)
982 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
986 void __init smp_fill_possible_mask(void)
988 unsigned int possible, sclp_max, cpu;
990 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
991 sclp_max = min(smp_max_threads, sclp_max);
992 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
993 possible = setup_possible_cpus ?: nr_cpu_ids;
994 possible = min(possible, sclp_max);
995 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
996 set_cpu_possible(cpu, true);
999 void __init smp_prepare_cpus(unsigned int max_cpus)
1001 /* request the 0x1201 emergency signal external interrupt */
1002 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1003 panic("Couldn't request external interrupt 0x1201");
1004 /* request the 0x1202 external call external interrupt */
1005 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1006 panic("Couldn't request external interrupt 0x1202");
1009 void __init smp_prepare_boot_cpu(void)
1011 struct pcpu *pcpu = pcpu_devices;
1013 WARN_ON(!cpu_present(0) || !cpu_online(0));
1014 pcpu->state = CPU_STATE_CONFIGURED;
1015 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1016 S390_lowcore.percpu_offset = __per_cpu_offset[0];
1017 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1020 void __init smp_setup_processor_id(void)
1022 pcpu_devices[0].address = stap();
1023 S390_lowcore.cpu_nr = 0;
1024 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1025 S390_lowcore.spinlock_index = 0;
1029 * the frequency of the profiling timer can be changed
1030 * by writing a multiplier value into /proc/profile.
1032 * usually you want to run this on all CPUs ;)
1034 int setup_profiling_timer(unsigned int multiplier)
1039 static ssize_t cpu_configure_show(struct device *dev,
1040 struct device_attribute *attr, char *buf)
1044 mutex_lock(&smp_cpu_state_mutex);
1045 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1046 mutex_unlock(&smp_cpu_state_mutex);
1050 static ssize_t cpu_configure_store(struct device *dev,
1051 struct device_attribute *attr,
1052 const char *buf, size_t count)
1055 int cpu, val, rc, i;
1058 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1060 if (val != 0 && val != 1)
1063 mutex_lock(&smp_cpu_state_mutex);
1065 /* disallow configuration changes of online cpus and cpu 0 */
1067 cpu = smp_get_base_cpu(cpu);
1070 for (i = 0; i <= smp_cpu_mtid; i++)
1071 if (cpu_online(cpu + i))
1073 pcpu = pcpu_devices + cpu;
1077 if (pcpu->state != CPU_STATE_CONFIGURED)
1079 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1082 for (i = 0; i <= smp_cpu_mtid; i++) {
1083 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1085 pcpu[i].state = CPU_STATE_STANDBY;
1086 smp_cpu_set_polarization(cpu + i,
1087 POLARIZATION_UNKNOWN);
1089 topology_expect_change();
1092 if (pcpu->state != CPU_STATE_STANDBY)
1094 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1097 for (i = 0; i <= smp_cpu_mtid; i++) {
1098 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1100 pcpu[i].state = CPU_STATE_CONFIGURED;
1101 smp_cpu_set_polarization(cpu + i,
1102 POLARIZATION_UNKNOWN);
1104 topology_expect_change();
1110 mutex_unlock(&smp_cpu_state_mutex);
1112 return rc ? rc : count;
1114 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1116 static ssize_t show_cpu_address(struct device *dev,
1117 struct device_attribute *attr, char *buf)
1119 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1121 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1123 static struct attribute *cpu_common_attrs[] = {
1124 &dev_attr_configure.attr,
1125 &dev_attr_address.attr,
1129 static struct attribute_group cpu_common_attr_group = {
1130 .attrs = cpu_common_attrs,
1133 static struct attribute *cpu_online_attrs[] = {
1134 &dev_attr_idle_count.attr,
1135 &dev_attr_idle_time_us.attr,
1139 static struct attribute_group cpu_online_attr_group = {
1140 .attrs = cpu_online_attrs,
1143 static int smp_cpu_online(unsigned int cpu)
1145 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1147 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1150 static int smp_cpu_pre_down(unsigned int cpu)
1152 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1154 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1158 static int smp_add_present_cpu(int cpu)
1164 c = kzalloc(sizeof(*c), GFP_KERNEL);
1167 per_cpu(cpu_device, cpu) = c;
1169 c->hotpluggable = 1;
1170 rc = register_cpu(c, cpu);
1173 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1176 rc = topology_cpu_init(c);
1182 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1189 int __ref smp_rescan_cpus(void)
1191 struct sclp_core_info *info;
1194 info = kzalloc(sizeof(*info), GFP_KERNEL);
1197 smp_get_core_info(info, 0);
1198 nr = __smp_rescan_cpus(info, false);
1201 topology_schedule_update();
1205 static ssize_t __ref rescan_store(struct device *dev,
1206 struct device_attribute *attr,
1212 rc = lock_device_hotplug_sysfs();
1215 rc = smp_rescan_cpus();
1216 unlock_device_hotplug();
1217 return rc ? rc : count;
1219 static DEVICE_ATTR_WO(rescan);
1221 static int __init s390_smp_init(void)
1225 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1228 for_each_present_cpu(cpu) {
1229 rc = smp_add_present_cpu(cpu);
1234 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1235 smp_cpu_online, smp_cpu_pre_down);
1236 rc = rc <= 0 ? rc : 0;
1240 subsys_initcall(s390_smp_init);