e86bca6f975c51f9ef2c2512c4535a2a36272bc3
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / s390 / kernel / setup.c
1 /*
2  *  arch/s390/kernel/setup.c
3  *
4  *  S390 version
5  *    Copyright (C) IBM Corp. 1999,2012
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "arch/i386/kernel/setup.c"
10  *    Copyright (C) 1995, Linus Torvalds
11  */
12
13 /*
14  * This file handles the architecture-dependent parts of initialization
15  */
16
17 #define KMSG_COMPONENT "setup"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/memblock.h>
25 #include <linux/mm.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/user.h>
30 #include <linux/tty.h>
31 #include <linux/ioport.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/initrd.h>
35 #include <linux/bootmem.h>
36 #include <linux/root_dev.h>
37 #include <linux/console.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/device.h>
40 #include <linux/notifier.h>
41 #include <linux/pfn.h>
42 #include <linux/ctype.h>
43 #include <linux/reboot.h>
44 #include <linux/topology.h>
45 #include <linux/ftrace.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 #include <linux/memory.h>
49 #include <linux/compat.h>
50
51 #include <asm/ipl.h>
52 #include <asm/uaccess.h>
53 #include <asm/facility.h>
54 #include <asm/smp.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cpcmd.h>
57 #include <asm/lowcore.h>
58 #include <asm/irq.h>
59 #include <asm/page.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/ebcdic.h>
63 #include <asm/kvm_virtio.h>
64 #include <asm/diag.h>
65 #include <asm/os_info.h>
66 #include <asm/sclp.h>
67 #include "entry.h"
68
69 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
70                           PSW_MASK_EA | PSW_MASK_BA;
71 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
72                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
73                           PSW_MASK_PSTATE | PSW_ASC_HOME;
74
75 /*
76  * User copy operations.
77  */
78 struct uaccess_ops uaccess;
79 EXPORT_SYMBOL(uaccess);
80
81 /*
82  * Machine setup..
83  */
84 unsigned int console_mode = 0;
85 EXPORT_SYMBOL(console_mode);
86
87 unsigned int console_devno = -1;
88 EXPORT_SYMBOL(console_devno);
89
90 unsigned int console_irq = -1;
91 EXPORT_SYMBOL(console_irq);
92
93 unsigned long elf_hwcap = 0;
94 char elf_platform[ELF_PLATFORM_SIZE];
95
96 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
97
98 int __initdata memory_end_set;
99 unsigned long __initdata memory_end;
100
101 unsigned long VMALLOC_START;
102 EXPORT_SYMBOL(VMALLOC_START);
103
104 unsigned long VMALLOC_END;
105 EXPORT_SYMBOL(VMALLOC_END);
106
107 struct page *vmemmap;
108 EXPORT_SYMBOL(vmemmap);
109
110 /* An array with a pointer to the lowcore of every CPU. */
111 struct _lowcore *lowcore_ptr[NR_CPUS];
112 EXPORT_SYMBOL(lowcore_ptr);
113
114 /*
115  * This is set up by the setup-routine at boot-time
116  * for S390 need to find out, what we have to setup
117  * using address 0x10400 ...
118  */
119
120 #include <asm/setup.h>
121
122 /*
123  * condev= and conmode= setup parameter.
124  */
125
126 static int __init condev_setup(char *str)
127 {
128         int vdev;
129
130         vdev = simple_strtoul(str, &str, 0);
131         if (vdev >= 0 && vdev < 65536) {
132                 console_devno = vdev;
133                 console_irq = -1;
134         }
135         return 1;
136 }
137
138 __setup("condev=", condev_setup);
139
140 static void __init set_preferred_console(void)
141 {
142         if (MACHINE_IS_KVM) {
143                 if (sclp_has_vt220())
144                         add_preferred_console("ttyS", 1, NULL);
145                 else if (sclp_has_linemode())
146                         add_preferred_console("ttyS", 0, NULL);
147                 else
148                         add_preferred_console("hvc", 0, NULL);
149         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
150                 add_preferred_console("ttyS", 0, NULL);
151         else if (CONSOLE_IS_3270)
152                 add_preferred_console("tty3270", 0, NULL);
153 }
154
155 static int __init conmode_setup(char *str)
156 {
157 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
158         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
159                 SET_CONSOLE_SCLP;
160 #endif
161 #if defined(CONFIG_TN3215_CONSOLE)
162         if (strncmp(str, "3215", 5) == 0)
163                 SET_CONSOLE_3215;
164 #endif
165 #if defined(CONFIG_TN3270_CONSOLE)
166         if (strncmp(str, "3270", 5) == 0)
167                 SET_CONSOLE_3270;
168 #endif
169         set_preferred_console();
170         return 1;
171 }
172
173 __setup("conmode=", conmode_setup);
174
175 static void __init conmode_default(void)
176 {
177         char query_buffer[1024];
178         char *ptr;
179
180         if (MACHINE_IS_VM) {
181                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
182                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
183                 ptr = strstr(query_buffer, "SUBCHANNEL =");
184                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
185                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
186                 ptr = strstr(query_buffer, "CONMODE");
187                 /*
188                  * Set the conmode to 3215 so that the device recognition 
189                  * will set the cu_type of the console to 3215. If the
190                  * conmode is 3270 and we don't set it back then both
191                  * 3215 and the 3270 driver will try to access the console
192                  * device (3215 as console and 3270 as normal tty).
193                  */
194                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
195                 if (ptr == NULL) {
196 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
197                         SET_CONSOLE_SCLP;
198 #endif
199                         return;
200                 }
201                 if (strncmp(ptr + 8, "3270", 4) == 0) {
202 #if defined(CONFIG_TN3270_CONSOLE)
203                         SET_CONSOLE_3270;
204 #elif defined(CONFIG_TN3215_CONSOLE)
205                         SET_CONSOLE_3215;
206 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
207                         SET_CONSOLE_SCLP;
208 #endif
209                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
210 #if defined(CONFIG_TN3215_CONSOLE)
211                         SET_CONSOLE_3215;
212 #elif defined(CONFIG_TN3270_CONSOLE)
213                         SET_CONSOLE_3270;
214 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
215                         SET_CONSOLE_SCLP;
216 #endif
217                 }
218         } else {
219 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
220                 SET_CONSOLE_SCLP;
221 #endif
222         }
223 }
224
225 #ifdef CONFIG_ZFCPDUMP
226 static void __init setup_zfcpdump(unsigned int console_devno)
227 {
228         static char str[41];
229
230         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
231                 return;
232         if (OLDMEM_BASE)
233                 return;
234         if (console_devno != -1)
235                 sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
236                         ipl_info.data.fcp.dev_id.devno, console_devno);
237         else
238                 sprintf(str, " cio_ignore=all,!0.0.%04x",
239                         ipl_info.data.fcp.dev_id.devno);
240         strcat(boot_command_line, str);
241         console_loglevel = 2;
242 }
243 #else
244 static inline void setup_zfcpdump(unsigned int console_devno) {}
245 #endif /* CONFIG_ZFCPDUMP */
246
247  /*
248  * Reboot, halt and power_off stubs. They just call _machine_restart,
249  * _machine_halt or _machine_power_off. 
250  */
251
252 void machine_restart(char *command)
253 {
254         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
255                 /*
256                  * Only unblank the console if we are called in enabled
257                  * context or a bust_spinlocks cleared the way for us.
258                  */
259                 console_unblank();
260         _machine_restart(command);
261 }
262
263 void machine_halt(void)
264 {
265         if (!in_interrupt() || oops_in_progress)
266                 /*
267                  * Only unblank the console if we are called in enabled
268                  * context or a bust_spinlocks cleared the way for us.
269                  */
270                 console_unblank();
271         _machine_halt();
272 }
273
274 void machine_power_off(void)
275 {
276         if (!in_interrupt() || oops_in_progress)
277                 /*
278                  * Only unblank the console if we are called in enabled
279                  * context or a bust_spinlocks cleared the way for us.
280                  */
281                 console_unblank();
282         _machine_power_off();
283 }
284
285 /*
286  * Dummy power off function.
287  */
288 void (*pm_power_off)(void) = machine_power_off;
289
290 static int __init early_parse_mem(char *p)
291 {
292         memory_end = memparse(p, &p);
293         memory_end_set = 1;
294         return 0;
295 }
296 early_param("mem", early_parse_mem);
297
298 static int __init parse_vmalloc(char *arg)
299 {
300         if (!arg)
301                 return -EINVAL;
302         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
303         return 0;
304 }
305 early_param("vmalloc", parse_vmalloc);
306
307 unsigned int user_mode = HOME_SPACE_MODE;
308 EXPORT_SYMBOL_GPL(user_mode);
309
310 static int set_amode_primary(void)
311 {
312         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
313         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
314 #ifdef CONFIG_COMPAT
315         psw32_user_bits =
316                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
317 #endif
318
319         if (MACHINE_HAS_MVCOS) {
320                 memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
321                 return 1;
322         } else {
323                 memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
324                 return 0;
325         }
326 }
327
328 /*
329  * Switch kernel/user addressing modes?
330  */
331 static int __init early_parse_switch_amode(char *p)
332 {
333         user_mode = PRIMARY_SPACE_MODE;
334         return 0;
335 }
336 early_param("switch_amode", early_parse_switch_amode);
337
338 static int __init early_parse_user_mode(char *p)
339 {
340         if (p && strcmp(p, "primary") == 0)
341                 user_mode = PRIMARY_SPACE_MODE;
342         else if (!p || strcmp(p, "home") == 0)
343                 user_mode = HOME_SPACE_MODE;
344         else
345                 return 1;
346         return 0;
347 }
348 early_param("user_mode", early_parse_user_mode);
349
350 static void setup_addressing_mode(void)
351 {
352         if (user_mode == PRIMARY_SPACE_MODE) {
353                 if (set_amode_primary())
354                         pr_info("Address spaces switched, "
355                                 "mvcos available\n");
356                 else
357                         pr_info("Address spaces switched, "
358                                 "mvcos not available\n");
359         }
360 }
361
362 void *restart_stack __attribute__((__section__(".data")));
363
364 static void __init setup_lowcore(void)
365 {
366         struct _lowcore *lc;
367
368         /*
369          * Setup lowcore for boot cpu
370          */
371         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
372         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
373         lc->restart_psw.mask = psw_kernel_bits;
374         lc->restart_psw.addr =
375                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
376         lc->external_new_psw.mask = psw_kernel_bits |
377                 PSW_MASK_DAT | PSW_MASK_MCHECK;
378         lc->external_new_psw.addr =
379                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
380         lc->svc_new_psw.mask = psw_kernel_bits |
381                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
382         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
383         lc->program_new_psw.mask = psw_kernel_bits |
384                 PSW_MASK_DAT | PSW_MASK_MCHECK;
385         lc->program_new_psw.addr =
386                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
387         lc->mcck_new_psw.mask = psw_kernel_bits;
388         lc->mcck_new_psw.addr =
389                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
390         lc->io_new_psw.mask = psw_kernel_bits |
391                 PSW_MASK_DAT | PSW_MASK_MCHECK;
392         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
393         lc->clock_comparator = -1ULL;
394         lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
395         lc->async_stack = (unsigned long)
396                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
397         lc->panic_stack = (unsigned long)
398                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
399         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
400         lc->thread_info = (unsigned long) &init_thread_union;
401         lc->machine_flags = S390_lowcore.machine_flags;
402         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
403         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
404                MAX_FACILITY_BIT/8);
405 #ifndef CONFIG_64BIT
406         if (MACHINE_HAS_IEEE) {
407                 lc->extended_save_area_addr = (__u32)
408                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
409                 /* enable extended save area */
410                 __ctl_set_bit(14, 29);
411         }
412 #else
413         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
414 #endif
415         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
416         lc->async_enter_timer = S390_lowcore.async_enter_timer;
417         lc->exit_timer = S390_lowcore.exit_timer;
418         lc->user_timer = S390_lowcore.user_timer;
419         lc->system_timer = S390_lowcore.system_timer;
420         lc->steal_timer = S390_lowcore.steal_timer;
421         lc->last_update_timer = S390_lowcore.last_update_timer;
422         lc->last_update_clock = S390_lowcore.last_update_clock;
423         lc->ftrace_func = S390_lowcore.ftrace_func;
424
425         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
426         restart_stack += ASYNC_SIZE;
427
428         /*
429          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
430          * restart data to the absolute zero lowcore. This is necesary if
431          * PSW restart is done on an offline CPU that has lowcore zero.
432          */
433         lc->restart_stack = (unsigned long) restart_stack;
434         lc->restart_fn = (unsigned long) do_restart;
435         lc->restart_data = 0;
436         lc->restart_source = -1UL;
437
438         /* Setup absolute zero lowcore */
439         memcpy_absolute(&S390_lowcore.restart_stack, &lc->restart_stack,
440                         4 * sizeof(unsigned long));
441         memcpy_absolute(&S390_lowcore.restart_psw, &lc->restart_psw,
442                         sizeof(lc->restart_psw));
443
444         set_prefix((u32)(unsigned long) lc);
445         lowcore_ptr[0] = lc;
446 }
447
448 static struct resource code_resource = {
449         .name  = "Kernel code",
450         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
451 };
452
453 static struct resource data_resource = {
454         .name = "Kernel data",
455         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
456 };
457
458 static struct resource bss_resource = {
459         .name = "Kernel bss",
460         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
461 };
462
463 static struct resource __initdata *standard_resources[] = {
464         &code_resource,
465         &data_resource,
466         &bss_resource,
467 };
468
469 static void __init setup_resources(void)
470 {
471         struct resource *res, *std_res, *sub_res;
472         int i, j;
473
474         code_resource.start = (unsigned long) &_text;
475         code_resource.end = (unsigned long) &_etext - 1;
476         data_resource.start = (unsigned long) &_etext;
477         data_resource.end = (unsigned long) &_edata - 1;
478         bss_resource.start = (unsigned long) &__bss_start;
479         bss_resource.end = (unsigned long) &__bss_stop - 1;
480
481         for (i = 0; i < MEMORY_CHUNKS; i++) {
482                 if (!memory_chunk[i].size)
483                         continue;
484                 if (memory_chunk[i].type == CHUNK_OLDMEM ||
485                     memory_chunk[i].type == CHUNK_CRASHK)
486                         continue;
487                 res = alloc_bootmem_low(sizeof(*res));
488                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
489                 switch (memory_chunk[i].type) {
490                 case CHUNK_READ_WRITE:
491                 case CHUNK_CRASHK:
492                         res->name = "System RAM";
493                         break;
494                 case CHUNK_READ_ONLY:
495                         res->name = "System ROM";
496                         res->flags |= IORESOURCE_READONLY;
497                         break;
498                 default:
499                         res->name = "reserved";
500                 }
501                 res->start = memory_chunk[i].addr;
502                 res->end = res->start + memory_chunk[i].size - 1;
503                 request_resource(&iomem_resource, res);
504
505                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
506                         std_res = standard_resources[j];
507                         if (std_res->start < res->start ||
508                             std_res->start > res->end)
509                                 continue;
510                         if (std_res->end > res->end) {
511                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
512                                 *sub_res = *std_res;
513                                 sub_res->end = res->end;
514                                 std_res->start = res->end + 1;
515                                 request_resource(res, sub_res);
516                         } else {
517                                 request_resource(res, std_res);
518                         }
519                 }
520         }
521 }
522
523 unsigned long real_memory_size;
524 EXPORT_SYMBOL_GPL(real_memory_size);
525
526 static void __init setup_memory_end(void)
527 {
528         unsigned long vmax, vmalloc_size, tmp;
529         int i;
530
531
532 #ifdef CONFIG_ZFCPDUMP
533         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
534                 memory_end = ZFCPDUMP_HSA_SIZE;
535                 memory_end_set = 1;
536         }
537 #endif
538         real_memory_size = 0;
539         memory_end &= PAGE_MASK;
540
541         /*
542          * Make sure all chunks are MAX_ORDER aligned so we don't need the
543          * extra checks that HOLES_IN_ZONE would require.
544          */
545         for (i = 0; i < MEMORY_CHUNKS; i++) {
546                 unsigned long start, end;
547                 struct mem_chunk *chunk;
548                 unsigned long align;
549
550                 chunk = &memory_chunk[i];
551                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
552                 start = (chunk->addr + align - 1) & ~(align - 1);
553                 end = (chunk->addr + chunk->size) & ~(align - 1);
554                 if (start >= end)
555                         memset(chunk, 0, sizeof(*chunk));
556                 else {
557                         chunk->addr = start;
558                         chunk->size = end - start;
559                 }
560                 real_memory_size = max(real_memory_size,
561                                        chunk->addr + chunk->size);
562         }
563
564         /* Choose kernel address space layout: 2, 3, or 4 levels. */
565 #ifdef CONFIG_64BIT
566         vmalloc_size = VMALLOC_END ?: 128UL << 30;
567         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
568         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
569         if (tmp <= (1UL << 42))
570                 vmax = 1UL << 42;       /* 3-level kernel page table */
571         else
572                 vmax = 1UL << 53;       /* 4-level kernel page table */
573 #else
574         vmalloc_size = VMALLOC_END ?: 96UL << 20;
575         vmax = 1UL << 31;               /* 2-level kernel page table */
576 #endif
577         /* vmalloc area is at the end of the kernel address space. */
578         VMALLOC_END = vmax;
579         VMALLOC_START = vmax - vmalloc_size;
580
581         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
582         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
583         tmp = VMALLOC_START - tmp * sizeof(struct page);
584         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
585         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
586         vmemmap = (struct page *) tmp;
587
588         /* Take care that memory_end is set and <= vmemmap */
589         memory_end = min(memory_end ?: real_memory_size, tmp);
590
591         /* Fixup memory chunk array to fit into 0..memory_end */
592         for (i = 0; i < MEMORY_CHUNKS; i++) {
593                 struct mem_chunk *chunk = &memory_chunk[i];
594
595                 if (chunk->addr >= memory_end) {
596                         memset(chunk, 0, sizeof(*chunk));
597                         continue;
598                 }
599                 if (chunk->addr + chunk->size > memory_end)
600                         chunk->size = memory_end - chunk->addr;
601         }
602 }
603
604 static void __init setup_vmcoreinfo(void)
605 {
606 #ifdef CONFIG_KEXEC
607         unsigned long ptr = paddr_vmcoreinfo_note();
608
609         memcpy_absolute(&S390_lowcore.vmcore_info, &ptr, sizeof(ptr));
610 #endif
611 }
612
613 #ifdef CONFIG_CRASH_DUMP
614
615 /*
616  * Find suitable location for crashkernel memory
617  */
618 static unsigned long __init find_crash_base(unsigned long crash_size,
619                                             char **msg)
620 {
621         unsigned long crash_base;
622         struct mem_chunk *chunk;
623         int i;
624
625         if (memory_chunk[0].size < crash_size) {
626                 *msg = "first memory chunk must be at least crashkernel size";
627                 return 0;
628         }
629         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
630                 return OLDMEM_BASE;
631
632         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
633                 chunk = &memory_chunk[i];
634                 if (chunk->size == 0)
635                         continue;
636                 if (chunk->type != CHUNK_READ_WRITE)
637                         continue;
638                 if (chunk->size < crash_size)
639                         continue;
640                 crash_base = (chunk->addr + chunk->size) - crash_size;
641                 if (crash_base < crash_size)
642                         continue;
643                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
644                         continue;
645                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
646                         continue;
647                 return crash_base;
648         }
649         *msg = "no suitable area found";
650         return 0;
651 }
652
653 /*
654  * Check if crash_base and crash_size is valid
655  */
656 static int __init verify_crash_base(unsigned long crash_base,
657                                     unsigned long crash_size,
658                                     char **msg)
659 {
660         struct mem_chunk *chunk;
661         int i;
662
663         /*
664          * Because we do the swap to zero, we must have at least 'crash_size'
665          * bytes free space before crash_base
666          */
667         if (crash_size > crash_base) {
668                 *msg = "crashkernel offset must be greater than size";
669                 return -EINVAL;
670         }
671
672         /* First memory chunk must be at least crash_size */
673         if (memory_chunk[0].size < crash_size) {
674                 *msg = "first memory chunk must be at least crashkernel size";
675                 return -EINVAL;
676         }
677         /* Check if we fit into the respective memory chunk */
678         for (i = 0; i < MEMORY_CHUNKS; i++) {
679                 chunk = &memory_chunk[i];
680                 if (chunk->size == 0)
681                         continue;
682                 if (crash_base < chunk->addr)
683                         continue;
684                 if (crash_base >= chunk->addr + chunk->size)
685                         continue;
686                 /* we have found the memory chunk */
687                 if (crash_base + crash_size > chunk->addr + chunk->size) {
688                         *msg = "selected memory chunk is too small for "
689                                 "crashkernel memory";
690                         return -EINVAL;
691                 }
692                 return 0;
693         }
694         *msg = "invalid memory range specified";
695         return -EINVAL;
696 }
697
698 /*
699  * Reserve kdump memory by creating a memory hole in the mem_chunk array
700  */
701 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
702                                          int type)
703 {
704         create_mem_hole(memory_chunk, addr, size, type);
705 }
706
707 /*
708  * When kdump is enabled, we have to ensure that no memory from
709  * the area [0 - crashkernel memory size] and
710  * [crashk_res.start - crashk_res.end] is set offline.
711  */
712 static int kdump_mem_notifier(struct notifier_block *nb,
713                               unsigned long action, void *data)
714 {
715         struct memory_notify *arg = data;
716
717         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
718                 return NOTIFY_BAD;
719         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
720                 return NOTIFY_OK;
721         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
722                 return NOTIFY_OK;
723         return NOTIFY_BAD;
724 }
725
726 static struct notifier_block kdump_mem_nb = {
727         .notifier_call = kdump_mem_notifier,
728 };
729
730 #endif
731
732 /*
733  * Make sure that oldmem, where the dump is stored, is protected
734  */
735 static void reserve_oldmem(void)
736 {
737 #ifdef CONFIG_CRASH_DUMP
738         if (!OLDMEM_BASE)
739                 return;
740
741         reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
742         reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
743                               CHUNK_OLDMEM);
744         if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
745                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
746         else
747                 saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
748 #endif
749 }
750
751 /*
752  * Reserve memory for kdump kernel to be loaded with kexec
753  */
754 static void __init reserve_crashkernel(void)
755 {
756 #ifdef CONFIG_CRASH_DUMP
757         unsigned long long crash_base, crash_size;
758         char *msg = NULL;
759         int rc;
760
761         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
762                                &crash_base);
763         if (rc || crash_size == 0)
764                 return;
765         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
766         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
767         if (register_memory_notifier(&kdump_mem_nb))
768                 return;
769         if (!crash_base)
770                 crash_base = find_crash_base(crash_size, &msg);
771         if (!crash_base) {
772                 pr_info("crashkernel reservation failed: %s\n", msg);
773                 unregister_memory_notifier(&kdump_mem_nb);
774                 return;
775         }
776         if (verify_crash_base(crash_base, crash_size, &msg)) {
777                 pr_info("crashkernel reservation failed: %s\n", msg);
778                 unregister_memory_notifier(&kdump_mem_nb);
779                 return;
780         }
781         if (!OLDMEM_BASE && MACHINE_IS_VM)
782                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
783         crashk_res.start = crash_base;
784         crashk_res.end = crash_base + crash_size - 1;
785         insert_resource(&iomem_resource, &crashk_res);
786         reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
787         pr_info("Reserving %lluMB of memory at %lluMB "
788                 "for crashkernel (System RAM: %luMB)\n",
789                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
790         os_info_crashkernel_add(crash_base, crash_size);
791 #endif
792 }
793
794 static void __init setup_memory(void)
795 {
796         unsigned long bootmap_size;
797         unsigned long start_pfn, end_pfn;
798         int i;
799
800         /*
801          * partially used pages are not usable - thus
802          * we are rounding upwards:
803          */
804         start_pfn = PFN_UP(__pa(&_end));
805         end_pfn = max_pfn = PFN_DOWN(memory_end);
806
807 #ifdef CONFIG_BLK_DEV_INITRD
808         /*
809          * Move the initrd in case the bitmap of the bootmem allocater
810          * would overwrite it.
811          */
812
813         if (INITRD_START && INITRD_SIZE) {
814                 unsigned long bmap_size;
815                 unsigned long start;
816
817                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
818                 bmap_size = PFN_PHYS(bmap_size);
819
820                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
821                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
822
823 #ifdef CONFIG_CRASH_DUMP
824                         if (OLDMEM_BASE) {
825                                 /* Move initrd behind kdump oldmem */
826                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
827                                     start < OLDMEM_BASE + OLDMEM_SIZE)
828                                         start = OLDMEM_BASE + OLDMEM_SIZE;
829                         }
830 #endif
831                         if (start + INITRD_SIZE > memory_end) {
832                                 pr_err("initrd extends beyond end of "
833                                        "memory (0x%08lx > 0x%08lx) "
834                                        "disabling initrd\n",
835                                        start + INITRD_SIZE, memory_end);
836                                 INITRD_START = INITRD_SIZE = 0;
837                         } else {
838                                 pr_info("Moving initrd (0x%08lx -> "
839                                         "0x%08lx, size: %ld)\n",
840                                         INITRD_START, start, INITRD_SIZE);
841                                 memmove((void *) start, (void *) INITRD_START,
842                                         INITRD_SIZE);
843                                 INITRD_START = start;
844                         }
845                 }
846         }
847 #endif
848
849         /*
850          * Initialize the boot-time allocator
851          */
852         bootmap_size = init_bootmem(start_pfn, end_pfn);
853
854         /*
855          * Register RAM areas with the bootmem allocator.
856          */
857
858         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
859                 unsigned long start_chunk, end_chunk, pfn;
860
861                 if (memory_chunk[i].type != CHUNK_READ_WRITE &&
862                     memory_chunk[i].type != CHUNK_CRASHK)
863                         continue;
864                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
865                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
866                 end_chunk = min(end_chunk, end_pfn);
867                 if (start_chunk >= end_chunk)
868                         continue;
869                 memblock_add_node(PFN_PHYS(start_chunk),
870                                   PFN_PHYS(end_chunk - start_chunk), 0);
871                 pfn = max(start_chunk, start_pfn);
872                 for (; pfn < end_chunk; pfn++)
873                         page_set_storage_key(PFN_PHYS(pfn),
874                                              PAGE_DEFAULT_KEY, 0);
875         }
876
877         psw_set_key(PAGE_DEFAULT_KEY);
878
879         free_bootmem_with_active_regions(0, max_pfn);
880
881         /*
882          * Reserve memory used for lowcore/command line/kernel image.
883          */
884         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
885         reserve_bootmem((unsigned long)_stext,
886                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
887                         BOOTMEM_DEFAULT);
888         /*
889          * Reserve the bootmem bitmap itself as well. We do this in two
890          * steps (first step was init_bootmem()) because this catches
891          * the (very unlikely) case of us accidentally initializing the
892          * bootmem allocator with an invalid RAM area.
893          */
894         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
895                         BOOTMEM_DEFAULT);
896
897 #ifdef CONFIG_CRASH_DUMP
898         if (crashk_res.start)
899                 reserve_bootmem(crashk_res.start,
900                                 crashk_res.end - crashk_res.start + 1,
901                                 BOOTMEM_DEFAULT);
902         if (is_kdump_kernel())
903                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
904                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
905 #endif
906 #ifdef CONFIG_BLK_DEV_INITRD
907         if (INITRD_START && INITRD_SIZE) {
908                 if (INITRD_START + INITRD_SIZE <= memory_end) {
909                         reserve_bootmem(INITRD_START, INITRD_SIZE,
910                                         BOOTMEM_DEFAULT);
911                         initrd_start = INITRD_START;
912                         initrd_end = initrd_start + INITRD_SIZE;
913                 } else {
914                         pr_err("initrd extends beyond end of "
915                                "memory (0x%08lx > 0x%08lx) "
916                                "disabling initrd\n",
917                                initrd_start + INITRD_SIZE, memory_end);
918                         initrd_start = initrd_end = 0;
919                 }
920         }
921 #endif
922 }
923
924 /*
925  * Setup hardware capabilities.
926  */
927 static void __init setup_hwcaps(void)
928 {
929         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
930         struct cpuid cpu_id;
931         int i;
932
933         /*
934          * The store facility list bits numbers as found in the principles
935          * of operation are numbered with bit 1UL<<31 as number 0 to
936          * bit 1UL<<0 as number 31.
937          *   Bit 0: instructions named N3, "backported" to esa-mode
938          *   Bit 2: z/Architecture mode is active
939          *   Bit 7: the store-facility-list-extended facility is installed
940          *   Bit 17: the message-security assist is installed
941          *   Bit 19: the long-displacement facility is installed
942          *   Bit 21: the extended-immediate facility is installed
943          *   Bit 22: extended-translation facility 3 is installed
944          *   Bit 30: extended-translation facility 3 enhancement facility
945          * These get translated to:
946          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
947          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
948          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
949          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
950          */
951         for (i = 0; i < 6; i++)
952                 if (test_facility(stfl_bits[i]))
953                         elf_hwcap |= 1UL << i;
954
955         if (test_facility(22) && test_facility(30))
956                 elf_hwcap |= HWCAP_S390_ETF3EH;
957
958         /*
959          * Check for additional facilities with store-facility-list-extended.
960          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
961          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
962          * as stored by stfl, bits 32-xxx contain additional facilities.
963          * How many facility words are stored depends on the number of
964          * doublewords passed to the instruction. The additional facilities
965          * are:
966          *   Bit 42: decimal floating point facility is installed
967          *   Bit 44: perform floating point operation facility is installed
968          * translated to:
969          *   HWCAP_S390_DFP bit 6 (42 && 44).
970          */
971         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
972                 elf_hwcap |= HWCAP_S390_DFP;
973
974         /*
975          * Huge page support HWCAP_S390_HPAGE is bit 7.
976          */
977         if (MACHINE_HAS_HPAGE)
978                 elf_hwcap |= HWCAP_S390_HPAGE;
979
980         /*
981          * 64-bit register support for 31-bit processes
982          * HWCAP_S390_HIGH_GPRS is bit 9.
983          */
984         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
985
986         get_cpu_id(&cpu_id);
987         switch (cpu_id.machine) {
988         case 0x9672:
989 #if !defined(CONFIG_64BIT)
990         default:        /* Use "g5" as default for 31 bit kernels. */
991 #endif
992                 strcpy(elf_platform, "g5");
993                 break;
994         case 0x2064:
995         case 0x2066:
996 #if defined(CONFIG_64BIT)
997         default:        /* Use "z900" as default for 64 bit kernels. */
998 #endif
999                 strcpy(elf_platform, "z900");
1000                 break;
1001         case 0x2084:
1002         case 0x2086:
1003                 strcpy(elf_platform, "z990");
1004                 break;
1005         case 0x2094:
1006         case 0x2096:
1007                 strcpy(elf_platform, "z9-109");
1008                 break;
1009         case 0x2097:
1010         case 0x2098:
1011                 strcpy(elf_platform, "z10");
1012                 break;
1013         case 0x2817:
1014         case 0x2818:
1015                 strcpy(elf_platform, "z196");
1016                 break;
1017         }
1018 }
1019
1020 /*
1021  * Setup function called from init/main.c just after the banner
1022  * was printed.
1023  */
1024
1025 void __init setup_arch(char **cmdline_p)
1026 {
1027         /*
1028          * print what head.S has found out about the machine
1029          */
1030 #ifndef CONFIG_64BIT
1031         if (MACHINE_IS_VM)
1032                 pr_info("Linux is running as a z/VM "
1033                         "guest operating system in 31-bit mode\n");
1034         else if (MACHINE_IS_LPAR)
1035                 pr_info("Linux is running natively in 31-bit mode\n");
1036         if (MACHINE_HAS_IEEE)
1037                 pr_info("The hardware system has IEEE compatible "
1038                         "floating point units\n");
1039         else
1040                 pr_info("The hardware system has no IEEE compatible "
1041                         "floating point units\n");
1042 #else /* CONFIG_64BIT */
1043         if (MACHINE_IS_VM)
1044                 pr_info("Linux is running as a z/VM "
1045                         "guest operating system in 64-bit mode\n");
1046         else if (MACHINE_IS_KVM)
1047                 pr_info("Linux is running under KVM in 64-bit mode\n");
1048         else if (MACHINE_IS_LPAR)
1049                 pr_info("Linux is running natively in 64-bit mode\n");
1050 #endif /* CONFIG_64BIT */
1051
1052         /* Have one command line that is parsed and saved in /proc/cmdline */
1053         /* boot_command_line has been already set up in early.c */
1054         *cmdline_p = boot_command_line;
1055
1056         ROOT_DEV = Root_RAM0;
1057
1058         init_mm.start_code = PAGE_OFFSET;
1059         init_mm.end_code = (unsigned long) &_etext;
1060         init_mm.end_data = (unsigned long) &_edata;
1061         init_mm.brk = (unsigned long) &_end;
1062
1063         if (MACHINE_HAS_MVCOS)
1064                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1065         else
1066                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1067
1068         parse_early_param();
1069
1070         os_info_init();
1071         setup_ipl();
1072         setup_memory_end();
1073         setup_addressing_mode();
1074         reserve_oldmem();
1075         reserve_crashkernel();
1076         setup_memory();
1077         setup_resources();
1078         setup_vmcoreinfo();
1079         setup_lowcore();
1080
1081         cpu_init();
1082         s390_init_cpu_topology();
1083
1084         /*
1085          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1086          */
1087         setup_hwcaps();
1088
1089         /*
1090          * Create kernel page tables and switch to virtual addressing.
1091          */
1092         paging_init();
1093
1094         /* Setup default console */
1095         conmode_default();
1096         set_preferred_console();
1097
1098         /* Setup zfcpdump support */
1099         setup_zfcpdump(console_devno);
1100 }