tty/serial/sirf: fix MODULE_DEVICE_TABLE
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68                           PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71                           PSW_MASK_PSTATE | PSW_ASC_HOME;
72
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107
108 #ifdef CONFIG_64BIT
109 unsigned long MODULES_VADDR;
110 unsigned long MODULES_END;
111 #endif
112
113 /* An array with a pointer to the lowcore of every CPU. */
114 struct _lowcore *lowcore_ptr[NR_CPUS];
115 EXPORT_SYMBOL(lowcore_ptr);
116
117 /*
118  * This is set up by the setup-routine at boot-time
119  * for S390 need to find out, what we have to setup
120  * using address 0x10400 ...
121  */
122
123 #include <asm/setup.h>
124
125 /*
126  * condev= and conmode= setup parameter.
127  */
128
129 static int __init condev_setup(char *str)
130 {
131         int vdev;
132
133         vdev = simple_strtoul(str, &str, 0);
134         if (vdev >= 0 && vdev < 65536) {
135                 console_devno = vdev;
136                 console_irq = -1;
137         }
138         return 1;
139 }
140
141 __setup("condev=", condev_setup);
142
143 static void __init set_preferred_console(void)
144 {
145         if (MACHINE_IS_KVM) {
146                 if (sclp_has_vt220())
147                         add_preferred_console("ttyS", 1, NULL);
148                 else if (sclp_has_linemode())
149                         add_preferred_console("ttyS", 0, NULL);
150                 else
151                         add_preferred_console("hvc", 0, NULL);
152         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
153                 add_preferred_console("ttyS", 0, NULL);
154         else if (CONSOLE_IS_3270)
155                 add_preferred_console("tty3270", 0, NULL);
156 }
157
158 static int __init conmode_setup(char *str)
159 {
160 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
161         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
162                 SET_CONSOLE_SCLP;
163 #endif
164 #if defined(CONFIG_TN3215_CONSOLE)
165         if (strncmp(str, "3215", 5) == 0)
166                 SET_CONSOLE_3215;
167 #endif
168 #if defined(CONFIG_TN3270_CONSOLE)
169         if (strncmp(str, "3270", 5) == 0)
170                 SET_CONSOLE_3270;
171 #endif
172         set_preferred_console();
173         return 1;
174 }
175
176 __setup("conmode=", conmode_setup);
177
178 static void __init conmode_default(void)
179 {
180         char query_buffer[1024];
181         char *ptr;
182
183         if (MACHINE_IS_VM) {
184                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
185                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
186                 ptr = strstr(query_buffer, "SUBCHANNEL =");
187                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
188                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
189                 ptr = strstr(query_buffer, "CONMODE");
190                 /*
191                  * Set the conmode to 3215 so that the device recognition 
192                  * will set the cu_type of the console to 3215. If the
193                  * conmode is 3270 and we don't set it back then both
194                  * 3215 and the 3270 driver will try to access the console
195                  * device (3215 as console and 3270 as normal tty).
196                  */
197                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
198                 if (ptr == NULL) {
199 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
200                         SET_CONSOLE_SCLP;
201 #endif
202                         return;
203                 }
204                 if (strncmp(ptr + 8, "3270", 4) == 0) {
205 #if defined(CONFIG_TN3270_CONSOLE)
206                         SET_CONSOLE_3270;
207 #elif defined(CONFIG_TN3215_CONSOLE)
208                         SET_CONSOLE_3215;
209 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210                         SET_CONSOLE_SCLP;
211 #endif
212                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
213 #if defined(CONFIG_TN3215_CONSOLE)
214                         SET_CONSOLE_3215;
215 #elif defined(CONFIG_TN3270_CONSOLE)
216                         SET_CONSOLE_3270;
217 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218                         SET_CONSOLE_SCLP;
219 #endif
220                 }
221         } else {
222 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
223                 SET_CONSOLE_SCLP;
224 #endif
225         }
226 }
227
228 #ifdef CONFIG_ZFCPDUMP
229 static void __init setup_zfcpdump(unsigned int console_devno)
230 {
231         static char str[41];
232
233         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
234                 return;
235         if (OLDMEM_BASE)
236                 return;
237         if (console_devno != -1)
238                 sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
239                         ipl_info.data.fcp.dev_id.devno, console_devno);
240         else
241                 sprintf(str, " cio_ignore=all,!0.0.%04x",
242                         ipl_info.data.fcp.dev_id.devno);
243         strcat(boot_command_line, str);
244         console_loglevel = 2;
245 }
246 #else
247 static inline void setup_zfcpdump(unsigned int console_devno) {}
248 #endif /* CONFIG_ZFCPDUMP */
249
250  /*
251  * Reboot, halt and power_off stubs. They just call _machine_restart,
252  * _machine_halt or _machine_power_off. 
253  */
254
255 void machine_restart(char *command)
256 {
257         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
258                 /*
259                  * Only unblank the console if we are called in enabled
260                  * context or a bust_spinlocks cleared the way for us.
261                  */
262                 console_unblank();
263         _machine_restart(command);
264 }
265
266 void machine_halt(void)
267 {
268         if (!in_interrupt() || oops_in_progress)
269                 /*
270                  * Only unblank the console if we are called in enabled
271                  * context or a bust_spinlocks cleared the way for us.
272                  */
273                 console_unblank();
274         _machine_halt();
275 }
276
277 void machine_power_off(void)
278 {
279         if (!in_interrupt() || oops_in_progress)
280                 /*
281                  * Only unblank the console if we are called in enabled
282                  * context or a bust_spinlocks cleared the way for us.
283                  */
284                 console_unblank();
285         _machine_power_off();
286 }
287
288 /*
289  * Dummy power off function.
290  */
291 void (*pm_power_off)(void) = machine_power_off;
292 EXPORT_SYMBOL_GPL(pm_power_off);
293
294 static int __init early_parse_mem(char *p)
295 {
296         memory_end = memparse(p, &p);
297         memory_end_set = 1;
298         return 0;
299 }
300 early_param("mem", early_parse_mem);
301
302 static int __init parse_vmalloc(char *arg)
303 {
304         if (!arg)
305                 return -EINVAL;
306         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
307         return 0;
308 }
309 early_param("vmalloc", parse_vmalloc);
310
311 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
312 EXPORT_SYMBOL_GPL(s390_user_mode);
313
314 static void __init set_user_mode_primary(void)
315 {
316         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
317         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
318 #ifdef CONFIG_COMPAT
319         psw32_user_bits =
320                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
321 #endif
322         uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
323 }
324
325 static int __init early_parse_user_mode(char *p)
326 {
327         if (p && strcmp(p, "primary") == 0)
328                 s390_user_mode = PRIMARY_SPACE_MODE;
329         else if (!p || strcmp(p, "home") == 0)
330                 s390_user_mode = HOME_SPACE_MODE;
331         else
332                 return 1;
333         return 0;
334 }
335 early_param("user_mode", early_parse_user_mode);
336
337 static void __init setup_addressing_mode(void)
338 {
339         if (s390_user_mode != PRIMARY_SPACE_MODE)
340                 return;
341         set_user_mode_primary();
342         if (MACHINE_HAS_MVCOS)
343                 pr_info("Address spaces switched, mvcos available\n");
344         else
345                 pr_info("Address spaces switched, mvcos not available\n");
346 }
347
348 void *restart_stack __attribute__((__section__(".data")));
349
350 static void __init setup_lowcore(void)
351 {
352         struct _lowcore *lc;
353
354         /*
355          * Setup lowcore for boot cpu
356          */
357         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
358         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
359         lc->restart_psw.mask = psw_kernel_bits;
360         lc->restart_psw.addr =
361                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
362         lc->external_new_psw.mask = psw_kernel_bits |
363                 PSW_MASK_DAT | PSW_MASK_MCHECK;
364         lc->external_new_psw.addr =
365                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
366         lc->svc_new_psw.mask = psw_kernel_bits |
367                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
368         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
369         lc->program_new_psw.mask = psw_kernel_bits |
370                 PSW_MASK_DAT | PSW_MASK_MCHECK;
371         lc->program_new_psw.addr =
372                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
373         lc->mcck_new_psw.mask = psw_kernel_bits;
374         lc->mcck_new_psw.addr =
375                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
376         lc->io_new_psw.mask = psw_kernel_bits |
377                 PSW_MASK_DAT | PSW_MASK_MCHECK;
378         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
379         lc->clock_comparator = -1ULL;
380         lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
381         lc->async_stack = (unsigned long)
382                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
383         lc->panic_stack = (unsigned long)
384                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
385         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
386         lc->thread_info = (unsigned long) &init_thread_union;
387         lc->machine_flags = S390_lowcore.machine_flags;
388         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
389         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
390                MAX_FACILITY_BIT/8);
391 #ifndef CONFIG_64BIT
392         if (MACHINE_HAS_IEEE) {
393                 lc->extended_save_area_addr = (__u32)
394                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
395                 /* enable extended save area */
396                 __ctl_set_bit(14, 29);
397         }
398 #else
399         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
400 #endif
401         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
402         lc->async_enter_timer = S390_lowcore.async_enter_timer;
403         lc->exit_timer = S390_lowcore.exit_timer;
404         lc->user_timer = S390_lowcore.user_timer;
405         lc->system_timer = S390_lowcore.system_timer;
406         lc->steal_timer = S390_lowcore.steal_timer;
407         lc->last_update_timer = S390_lowcore.last_update_timer;
408         lc->last_update_clock = S390_lowcore.last_update_clock;
409         lc->ftrace_func = S390_lowcore.ftrace_func;
410
411         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
412         restart_stack += ASYNC_SIZE;
413
414         /*
415          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
416          * restart data to the absolute zero lowcore. This is necesary if
417          * PSW restart is done on an offline CPU that has lowcore zero.
418          */
419         lc->restart_stack = (unsigned long) restart_stack;
420         lc->restart_fn = (unsigned long) do_restart;
421         lc->restart_data = 0;
422         lc->restart_source = -1UL;
423
424         /* Setup absolute zero lowcore */
425         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
426         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
427         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
428         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
429         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
430
431         set_prefix((u32)(unsigned long) lc);
432         lowcore_ptr[0] = lc;
433 }
434
435 static struct resource code_resource = {
436         .name  = "Kernel code",
437         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
438 };
439
440 static struct resource data_resource = {
441         .name = "Kernel data",
442         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
443 };
444
445 static struct resource bss_resource = {
446         .name = "Kernel bss",
447         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
448 };
449
450 static struct resource __initdata *standard_resources[] = {
451         &code_resource,
452         &data_resource,
453         &bss_resource,
454 };
455
456 static void __init setup_resources(void)
457 {
458         struct resource *res, *std_res, *sub_res;
459         int i, j;
460
461         code_resource.start = (unsigned long) &_text;
462         code_resource.end = (unsigned long) &_etext - 1;
463         data_resource.start = (unsigned long) &_etext;
464         data_resource.end = (unsigned long) &_edata - 1;
465         bss_resource.start = (unsigned long) &__bss_start;
466         bss_resource.end = (unsigned long) &__bss_stop - 1;
467
468         for (i = 0; i < MEMORY_CHUNKS; i++) {
469                 if (!memory_chunk[i].size)
470                         continue;
471                 if (memory_chunk[i].type == CHUNK_OLDMEM ||
472                     memory_chunk[i].type == CHUNK_CRASHK)
473                         continue;
474                 res = alloc_bootmem_low(sizeof(*res));
475                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
476                 switch (memory_chunk[i].type) {
477                 case CHUNK_READ_WRITE:
478                 case CHUNK_CRASHK:
479                         res->name = "System RAM";
480                         break;
481                 case CHUNK_READ_ONLY:
482                         res->name = "System ROM";
483                         res->flags |= IORESOURCE_READONLY;
484                         break;
485                 default:
486                         res->name = "reserved";
487                 }
488                 res->start = memory_chunk[i].addr;
489                 res->end = res->start + memory_chunk[i].size - 1;
490                 request_resource(&iomem_resource, res);
491
492                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
493                         std_res = standard_resources[j];
494                         if (std_res->start < res->start ||
495                             std_res->start > res->end)
496                                 continue;
497                         if (std_res->end > res->end) {
498                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
499                                 *sub_res = *std_res;
500                                 sub_res->end = res->end;
501                                 std_res->start = res->end + 1;
502                                 request_resource(res, sub_res);
503                         } else {
504                                 request_resource(res, std_res);
505                         }
506                 }
507         }
508 }
509
510 unsigned long real_memory_size;
511 EXPORT_SYMBOL_GPL(real_memory_size);
512
513 static void __init setup_memory_end(void)
514 {
515         unsigned long vmax, vmalloc_size, tmp;
516         int i;
517
518
519 #ifdef CONFIG_ZFCPDUMP
520         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
521                 memory_end = ZFCPDUMP_HSA_SIZE;
522                 memory_end_set = 1;
523         }
524 #endif
525         real_memory_size = 0;
526         memory_end &= PAGE_MASK;
527
528         /*
529          * Make sure all chunks are MAX_ORDER aligned so we don't need the
530          * extra checks that HOLES_IN_ZONE would require.
531          */
532         for (i = 0; i < MEMORY_CHUNKS; i++) {
533                 unsigned long start, end;
534                 struct mem_chunk *chunk;
535                 unsigned long align;
536
537                 chunk = &memory_chunk[i];
538                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
539                 start = (chunk->addr + align - 1) & ~(align - 1);
540                 end = (chunk->addr + chunk->size) & ~(align - 1);
541                 if (start >= end)
542                         memset(chunk, 0, sizeof(*chunk));
543                 else {
544                         chunk->addr = start;
545                         chunk->size = end - start;
546                 }
547                 real_memory_size = max(real_memory_size,
548                                        chunk->addr + chunk->size);
549         }
550
551         /* Choose kernel address space layout: 2, 3, or 4 levels. */
552 #ifdef CONFIG_64BIT
553         vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
554         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
555         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
556         if (tmp <= (1UL << 42))
557                 vmax = 1UL << 42;       /* 3-level kernel page table */
558         else
559                 vmax = 1UL << 53;       /* 4-level kernel page table */
560         /* module area is at the end of the kernel address space. */
561         MODULES_END = vmax;
562         MODULES_VADDR = MODULES_END - MODULES_LEN;
563         VMALLOC_END = MODULES_VADDR;
564 #else
565         vmalloc_size = VMALLOC_END ?: 96UL << 20;
566         vmax = 1UL << 31;               /* 2-level kernel page table */
567         /* vmalloc area is at the end of the kernel address space. */
568         VMALLOC_END = vmax;
569 #endif
570         VMALLOC_START = vmax - vmalloc_size;
571
572         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
573         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
574         /* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
575         tmp = SECTION_ALIGN_UP(tmp);
576         tmp = VMALLOC_START - tmp * sizeof(struct page);
577         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
578         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
579         vmemmap = (struct page *) tmp;
580
581         /* Take care that memory_end is set and <= vmemmap */
582         memory_end = min(memory_end ?: real_memory_size, tmp);
583
584         /* Fixup memory chunk array to fit into 0..memory_end */
585         for (i = 0; i < MEMORY_CHUNKS; i++) {
586                 struct mem_chunk *chunk = &memory_chunk[i];
587
588                 if (chunk->addr >= memory_end) {
589                         memset(chunk, 0, sizeof(*chunk));
590                         continue;
591                 }
592                 if (chunk->addr + chunk->size > memory_end)
593                         chunk->size = memory_end - chunk->addr;
594         }
595 }
596
597 static void __init setup_vmcoreinfo(void)
598 {
599         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
600 }
601
602 #ifdef CONFIG_CRASH_DUMP
603
604 /*
605  * Find suitable location for crashkernel memory
606  */
607 static unsigned long __init find_crash_base(unsigned long crash_size,
608                                             char **msg)
609 {
610         unsigned long crash_base;
611         struct mem_chunk *chunk;
612         int i;
613
614         if (memory_chunk[0].size < crash_size) {
615                 *msg = "first memory chunk must be at least crashkernel size";
616                 return 0;
617         }
618         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
619                 return OLDMEM_BASE;
620
621         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
622                 chunk = &memory_chunk[i];
623                 if (chunk->size == 0)
624                         continue;
625                 if (chunk->type != CHUNK_READ_WRITE)
626                         continue;
627                 if (chunk->size < crash_size)
628                         continue;
629                 crash_base = (chunk->addr + chunk->size) - crash_size;
630                 if (crash_base < crash_size)
631                         continue;
632                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
633                         continue;
634                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
635                         continue;
636                 return crash_base;
637         }
638         *msg = "no suitable area found";
639         return 0;
640 }
641
642 /*
643  * Check if crash_base and crash_size is valid
644  */
645 static int __init verify_crash_base(unsigned long crash_base,
646                                     unsigned long crash_size,
647                                     char **msg)
648 {
649         struct mem_chunk *chunk;
650         int i;
651
652         /*
653          * Because we do the swap to zero, we must have at least 'crash_size'
654          * bytes free space before crash_base
655          */
656         if (crash_size > crash_base) {
657                 *msg = "crashkernel offset must be greater than size";
658                 return -EINVAL;
659         }
660
661         /* First memory chunk must be at least crash_size */
662         if (memory_chunk[0].size < crash_size) {
663                 *msg = "first memory chunk must be at least crashkernel size";
664                 return -EINVAL;
665         }
666         /* Check if we fit into the respective memory chunk */
667         for (i = 0; i < MEMORY_CHUNKS; i++) {
668                 chunk = &memory_chunk[i];
669                 if (chunk->size == 0)
670                         continue;
671                 if (crash_base < chunk->addr)
672                         continue;
673                 if (crash_base >= chunk->addr + chunk->size)
674                         continue;
675                 /* we have found the memory chunk */
676                 if (crash_base + crash_size > chunk->addr + chunk->size) {
677                         *msg = "selected memory chunk is too small for "
678                                 "crashkernel memory";
679                         return -EINVAL;
680                 }
681                 return 0;
682         }
683         *msg = "invalid memory range specified";
684         return -EINVAL;
685 }
686
687 /*
688  * Reserve kdump memory by creating a memory hole in the mem_chunk array
689  */
690 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
691                                          int type)
692 {
693         create_mem_hole(memory_chunk, addr, size, type);
694 }
695
696 /*
697  * When kdump is enabled, we have to ensure that no memory from
698  * the area [0 - crashkernel memory size] and
699  * [crashk_res.start - crashk_res.end] is set offline.
700  */
701 static int kdump_mem_notifier(struct notifier_block *nb,
702                               unsigned long action, void *data)
703 {
704         struct memory_notify *arg = data;
705
706         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
707                 return NOTIFY_BAD;
708         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
709                 return NOTIFY_OK;
710         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
711                 return NOTIFY_OK;
712         return NOTIFY_BAD;
713 }
714
715 static struct notifier_block kdump_mem_nb = {
716         .notifier_call = kdump_mem_notifier,
717 };
718
719 #endif
720
721 /*
722  * Make sure that oldmem, where the dump is stored, is protected
723  */
724 static void reserve_oldmem(void)
725 {
726 #ifdef CONFIG_CRASH_DUMP
727         if (!OLDMEM_BASE)
728                 return;
729
730         reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
731         reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
732                               CHUNK_OLDMEM);
733         if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
734                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
735         else
736                 saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
737 #endif
738 }
739
740 /*
741  * Reserve memory for kdump kernel to be loaded with kexec
742  */
743 static void __init reserve_crashkernel(void)
744 {
745 #ifdef CONFIG_CRASH_DUMP
746         unsigned long long crash_base, crash_size;
747         char *msg = NULL;
748         int rc;
749
750         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
751                                &crash_base);
752         if (rc || crash_size == 0)
753                 return;
754         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
755         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
756         if (register_memory_notifier(&kdump_mem_nb))
757                 return;
758         if (!crash_base)
759                 crash_base = find_crash_base(crash_size, &msg);
760         if (!crash_base) {
761                 pr_info("crashkernel reservation failed: %s\n", msg);
762                 unregister_memory_notifier(&kdump_mem_nb);
763                 return;
764         }
765         if (verify_crash_base(crash_base, crash_size, &msg)) {
766                 pr_info("crashkernel reservation failed: %s\n", msg);
767                 unregister_memory_notifier(&kdump_mem_nb);
768                 return;
769         }
770         if (!OLDMEM_BASE && MACHINE_IS_VM)
771                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
772         crashk_res.start = crash_base;
773         crashk_res.end = crash_base + crash_size - 1;
774         insert_resource(&iomem_resource, &crashk_res);
775         reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
776         pr_info("Reserving %lluMB of memory at %lluMB "
777                 "for crashkernel (System RAM: %luMB)\n",
778                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
779         os_info_crashkernel_add(crash_base, crash_size);
780 #endif
781 }
782
783 static void __init setup_memory(void)
784 {
785         unsigned long bootmap_size;
786         unsigned long start_pfn, end_pfn;
787         int i;
788
789         /*
790          * partially used pages are not usable - thus
791          * we are rounding upwards:
792          */
793         start_pfn = PFN_UP(__pa(&_end));
794         end_pfn = max_pfn = PFN_DOWN(memory_end);
795
796 #ifdef CONFIG_BLK_DEV_INITRD
797         /*
798          * Move the initrd in case the bitmap of the bootmem allocater
799          * would overwrite it.
800          */
801
802         if (INITRD_START && INITRD_SIZE) {
803                 unsigned long bmap_size;
804                 unsigned long start;
805
806                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
807                 bmap_size = PFN_PHYS(bmap_size);
808
809                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
810                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
811
812 #ifdef CONFIG_CRASH_DUMP
813                         if (OLDMEM_BASE) {
814                                 /* Move initrd behind kdump oldmem */
815                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
816                                     start < OLDMEM_BASE + OLDMEM_SIZE)
817                                         start = OLDMEM_BASE + OLDMEM_SIZE;
818                         }
819 #endif
820                         if (start + INITRD_SIZE > memory_end) {
821                                 pr_err("initrd extends beyond end of "
822                                        "memory (0x%08lx > 0x%08lx) "
823                                        "disabling initrd\n",
824                                        start + INITRD_SIZE, memory_end);
825                                 INITRD_START = INITRD_SIZE = 0;
826                         } else {
827                                 pr_info("Moving initrd (0x%08lx -> "
828                                         "0x%08lx, size: %ld)\n",
829                                         INITRD_START, start, INITRD_SIZE);
830                                 memmove((void *) start, (void *) INITRD_START,
831                                         INITRD_SIZE);
832                                 INITRD_START = start;
833                         }
834                 }
835         }
836 #endif
837
838         /*
839          * Initialize the boot-time allocator
840          */
841         bootmap_size = init_bootmem(start_pfn, end_pfn);
842
843         /*
844          * Register RAM areas with the bootmem allocator.
845          */
846
847         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
848                 unsigned long start_chunk, end_chunk, pfn;
849
850                 if (memory_chunk[i].type != CHUNK_READ_WRITE &&
851                     memory_chunk[i].type != CHUNK_CRASHK)
852                         continue;
853                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
854                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
855                 end_chunk = min(end_chunk, end_pfn);
856                 if (start_chunk >= end_chunk)
857                         continue;
858                 memblock_add_node(PFN_PHYS(start_chunk),
859                                   PFN_PHYS(end_chunk - start_chunk), 0);
860                 pfn = max(start_chunk, start_pfn);
861                 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
862         }
863
864         psw_set_key(PAGE_DEFAULT_KEY);
865
866         free_bootmem_with_active_regions(0, max_pfn);
867
868         /*
869          * Reserve memory used for lowcore/command line/kernel image.
870          */
871         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
872         reserve_bootmem((unsigned long)_stext,
873                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
874                         BOOTMEM_DEFAULT);
875         /*
876          * Reserve the bootmem bitmap itself as well. We do this in two
877          * steps (first step was init_bootmem()) because this catches
878          * the (very unlikely) case of us accidentally initializing the
879          * bootmem allocator with an invalid RAM area.
880          */
881         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
882                         BOOTMEM_DEFAULT);
883
884 #ifdef CONFIG_CRASH_DUMP
885         if (crashk_res.start)
886                 reserve_bootmem(crashk_res.start,
887                                 crashk_res.end - crashk_res.start + 1,
888                                 BOOTMEM_DEFAULT);
889         if (is_kdump_kernel())
890                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
891                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
892 #endif
893 #ifdef CONFIG_BLK_DEV_INITRD
894         if (INITRD_START && INITRD_SIZE) {
895                 if (INITRD_START + INITRD_SIZE <= memory_end) {
896                         reserve_bootmem(INITRD_START, INITRD_SIZE,
897                                         BOOTMEM_DEFAULT);
898                         initrd_start = INITRD_START;
899                         initrd_end = initrd_start + INITRD_SIZE;
900                 } else {
901                         pr_err("initrd extends beyond end of "
902                                "memory (0x%08lx > 0x%08lx) "
903                                "disabling initrd\n",
904                                initrd_start + INITRD_SIZE, memory_end);
905                         initrd_start = initrd_end = 0;
906                 }
907         }
908 #endif
909 }
910
911 /*
912  * Setup hardware capabilities.
913  */
914 static void __init setup_hwcaps(void)
915 {
916         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
917         struct cpuid cpu_id;
918         int i;
919
920         /*
921          * The store facility list bits numbers as found in the principles
922          * of operation are numbered with bit 1UL<<31 as number 0 to
923          * bit 1UL<<0 as number 31.
924          *   Bit 0: instructions named N3, "backported" to esa-mode
925          *   Bit 2: z/Architecture mode is active
926          *   Bit 7: the store-facility-list-extended facility is installed
927          *   Bit 17: the message-security assist is installed
928          *   Bit 19: the long-displacement facility is installed
929          *   Bit 21: the extended-immediate facility is installed
930          *   Bit 22: extended-translation facility 3 is installed
931          *   Bit 30: extended-translation facility 3 enhancement facility
932          * These get translated to:
933          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
934          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
935          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
936          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
937          */
938         for (i = 0; i < 6; i++)
939                 if (test_facility(stfl_bits[i]))
940                         elf_hwcap |= 1UL << i;
941
942         if (test_facility(22) && test_facility(30))
943                 elf_hwcap |= HWCAP_S390_ETF3EH;
944
945         /*
946          * Check for additional facilities with store-facility-list-extended.
947          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
948          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
949          * as stored by stfl, bits 32-xxx contain additional facilities.
950          * How many facility words are stored depends on the number of
951          * doublewords passed to the instruction. The additional facilities
952          * are:
953          *   Bit 42: decimal floating point facility is installed
954          *   Bit 44: perform floating point operation facility is installed
955          * translated to:
956          *   HWCAP_S390_DFP bit 6 (42 && 44).
957          */
958         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
959                 elf_hwcap |= HWCAP_S390_DFP;
960
961         /*
962          * Huge page support HWCAP_S390_HPAGE is bit 7.
963          */
964         if (MACHINE_HAS_HPAGE)
965                 elf_hwcap |= HWCAP_S390_HPAGE;
966
967 #if defined(CONFIG_64BIT)
968         /*
969          * 64-bit register support for 31-bit processes
970          * HWCAP_S390_HIGH_GPRS is bit 9.
971          */
972         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
973
974         /*
975          * Transactional execution support HWCAP_S390_TE is bit 10.
976          */
977         if (test_facility(50) && test_facility(73))
978                 elf_hwcap |= HWCAP_S390_TE;
979 #endif
980
981         get_cpu_id(&cpu_id);
982         switch (cpu_id.machine) {
983         case 0x9672:
984 #if !defined(CONFIG_64BIT)
985         default:        /* Use "g5" as default for 31 bit kernels. */
986 #endif
987                 strcpy(elf_platform, "g5");
988                 break;
989         case 0x2064:
990         case 0x2066:
991 #if defined(CONFIG_64BIT)
992         default:        /* Use "z900" as default for 64 bit kernels. */
993 #endif
994                 strcpy(elf_platform, "z900");
995                 break;
996         case 0x2084:
997         case 0x2086:
998                 strcpy(elf_platform, "z990");
999                 break;
1000         case 0x2094:
1001         case 0x2096:
1002                 strcpy(elf_platform, "z9-109");
1003                 break;
1004         case 0x2097:
1005         case 0x2098:
1006                 strcpy(elf_platform, "z10");
1007                 break;
1008         case 0x2817:
1009         case 0x2818:
1010                 strcpy(elf_platform, "z196");
1011                 break;
1012         case 0x2827:
1013                 strcpy(elf_platform, "zEC12");
1014                 break;
1015         }
1016 }
1017
1018 /*
1019  * Setup function called from init/main.c just after the banner
1020  * was printed.
1021  */
1022
1023 void __init setup_arch(char **cmdline_p)
1024 {
1025         /*
1026          * print what head.S has found out about the machine
1027          */
1028 #ifndef CONFIG_64BIT
1029         if (MACHINE_IS_VM)
1030                 pr_info("Linux is running as a z/VM "
1031                         "guest operating system in 31-bit mode\n");
1032         else if (MACHINE_IS_LPAR)
1033                 pr_info("Linux is running natively in 31-bit mode\n");
1034         if (MACHINE_HAS_IEEE)
1035                 pr_info("The hardware system has IEEE compatible "
1036                         "floating point units\n");
1037         else
1038                 pr_info("The hardware system has no IEEE compatible "
1039                         "floating point units\n");
1040 #else /* CONFIG_64BIT */
1041         if (MACHINE_IS_VM)
1042                 pr_info("Linux is running as a z/VM "
1043                         "guest operating system in 64-bit mode\n");
1044         else if (MACHINE_IS_KVM)
1045                 pr_info("Linux is running under KVM in 64-bit mode\n");
1046         else if (MACHINE_IS_LPAR)
1047                 pr_info("Linux is running natively in 64-bit mode\n");
1048 #endif /* CONFIG_64BIT */
1049
1050         /* Have one command line that is parsed and saved in /proc/cmdline */
1051         /* boot_command_line has been already set up in early.c */
1052         *cmdline_p = boot_command_line;
1053
1054         ROOT_DEV = Root_RAM0;
1055
1056         init_mm.start_code = PAGE_OFFSET;
1057         init_mm.end_code = (unsigned long) &_etext;
1058         init_mm.end_data = (unsigned long) &_edata;
1059         init_mm.brk = (unsigned long) &_end;
1060
1061         if (MACHINE_HAS_MVCOS)
1062                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1063         else
1064                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1065
1066         parse_early_param();
1067
1068         os_info_init();
1069         setup_ipl();
1070         setup_memory_end();
1071         setup_addressing_mode();
1072         reserve_oldmem();
1073         reserve_crashkernel();
1074         setup_memory();
1075         setup_resources();
1076         setup_vmcoreinfo();
1077         setup_lowcore();
1078
1079         cpu_init();
1080         s390_init_cpu_topology();
1081
1082         /*
1083          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1084          */
1085         setup_hwcaps();
1086
1087         /*
1088          * Create kernel page tables and switch to virtual addressing.
1089          */
1090         paging_init();
1091
1092         /* Setup default console */
1093         conmode_default();
1094         set_preferred_console();
1095
1096         /* Setup zfcpdump support */
1097         setup_zfcpdump(console_devno);
1098 }