Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[platform/kernel/linux-rpi.git] / arch / s390 / kernel / crash_dump.c
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25
26 static struct memblock_region oldmem_region;
27
28 static struct memblock_type oldmem_type = {
29         .cnt = 1,
30         .max = 1,
31         .total_size = 0,
32         .regions = &oldmem_region,
33 };
34
35 #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid)          \
36         for (i = 0, __next_mem_range(&i, nid, &memblock.physmem,        \
37                                      &oldmem_type, p_start,             \
38                                      p_end, p_nid);                     \
39              i != (u64)ULLONG_MAX;                                      \
40              __next_mem_range(&i, nid, &memblock.physmem,               \
41                               &oldmem_type,                             \
42                               p_start, p_end, p_nid))
43
44 struct dump_save_areas dump_save_areas;
45
46 /*
47  * Allocate and add a save area for a CPU
48  */
49 struct save_area *dump_save_area_create(int cpu)
50 {
51         struct save_area **save_areas, *save_area;
52
53         save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
54         if (!save_area)
55                 return NULL;
56         if (cpu + 1 > dump_save_areas.count) {
57                 dump_save_areas.count = cpu + 1;
58                 save_areas = krealloc(dump_save_areas.areas,
59                                       dump_save_areas.count * sizeof(void *),
60                                       GFP_KERNEL | __GFP_ZERO);
61                 if (!save_areas) {
62                         kfree(save_area);
63                         return NULL;
64                 }
65                 dump_save_areas.areas = save_areas;
66         }
67         dump_save_areas.areas[cpu] = save_area;
68         return save_area;
69 }
70
71 /*
72  * Return physical address for virtual address
73  */
74 static inline void *load_real_addr(void *addr)
75 {
76         unsigned long real_addr;
77
78         asm volatile(
79                    "    lra     %0,0(%1)\n"
80                    "    jz      0f\n"
81                    "    la      %0,0\n"
82                    "0:"
83                    : "=a" (real_addr) : "a" (addr) : "cc");
84         return (void *)real_addr;
85 }
86
87 /*
88  * Copy real to virtual or real memory
89  */
90 static int copy_from_realmem(void *dest, void *src, size_t count)
91 {
92         unsigned long size;
93
94         if (!count)
95                 return 0;
96         if (!is_vmalloc_or_module_addr(dest))
97                 return memcpy_real(dest, src, count);
98         do {
99                 size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
100                 if (memcpy_real(load_real_addr(dest), src, size))
101                         return -EFAULT;
102                 count -= size;
103                 dest += size;
104                 src += size;
105         } while (count);
106         return 0;
107 }
108
109 /*
110  * Pointer to ELF header in new kernel
111  */
112 static void *elfcorehdr_newmem;
113
114 /*
115  * Copy one page from zfcpdump "oldmem"
116  *
117  * For pages below HSA size memory from the HSA is copied. Otherwise
118  * real memory copy is used.
119  */
120 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
121                                          unsigned long src, int userbuf)
122 {
123         int rc;
124
125         if (src < sclp_get_hsa_size()) {
126                 rc = memcpy_hsa(buf, src, csize, userbuf);
127         } else {
128                 if (userbuf)
129                         rc = copy_to_user_real((void __force __user *) buf,
130                                                (void *) src, csize);
131                 else
132                         rc = memcpy_real(buf, (void *) src, csize);
133         }
134         return rc ? rc : csize;
135 }
136
137 /*
138  * Copy one page from kdump "oldmem"
139  *
140  * For the kdump reserved memory this functions performs a swap operation:
141  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
142  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
143  */
144 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
145                                       unsigned long src, int userbuf)
146
147 {
148         int rc;
149
150         if (src < OLDMEM_SIZE)
151                 src += OLDMEM_BASE;
152         else if (src > OLDMEM_BASE &&
153                  src < OLDMEM_BASE + OLDMEM_SIZE)
154                 src -= OLDMEM_BASE;
155         if (userbuf)
156                 rc = copy_to_user_real((void __force __user *) buf,
157                                        (void *) src, csize);
158         else
159                 rc = copy_from_realmem(buf, (void *) src, csize);
160         return (rc == 0) ? rc : csize;
161 }
162
163 /*
164  * Copy one page from "oldmem"
165  */
166 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
167                          unsigned long offset, int userbuf)
168 {
169         unsigned long src;
170
171         if (!csize)
172                 return 0;
173         src = (pfn << PAGE_SHIFT) + offset;
174         if (OLDMEM_BASE)
175                 return copy_oldmem_page_kdump(buf, csize, src, userbuf);
176         else
177                 return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
178 }
179
180 /*
181  * Remap "oldmem" for kdump
182  *
183  * For the kdump reserved memory this functions performs a swap operation:
184  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
185  */
186 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
187                                         unsigned long from, unsigned long pfn,
188                                         unsigned long size, pgprot_t prot)
189 {
190         unsigned long size_old;
191         int rc;
192
193         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
194                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
195                 rc = remap_pfn_range(vma, from,
196                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
197                                      size_old, prot);
198                 if (rc || size == size_old)
199                         return rc;
200                 size -= size_old;
201                 from += size_old;
202                 pfn += size_old >> PAGE_SHIFT;
203         }
204         return remap_pfn_range(vma, from, pfn, size, prot);
205 }
206
207 /*
208  * Remap "oldmem" for zfcpdump
209  *
210  * We only map available memory above HSA size. Memory below HSA size
211  * is read on demand using the copy_oldmem_page() function.
212  */
213 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
214                                            unsigned long from,
215                                            unsigned long pfn,
216                                            unsigned long size, pgprot_t prot)
217 {
218         unsigned long hsa_end = sclp_get_hsa_size();
219         unsigned long size_hsa;
220
221         if (pfn < hsa_end >> PAGE_SHIFT) {
222                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
223                 if (size == size_hsa)
224                         return 0;
225                 size -= size_hsa;
226                 from += size_hsa;
227                 pfn += size_hsa >> PAGE_SHIFT;
228         }
229         return remap_pfn_range(vma, from, pfn, size, prot);
230 }
231
232 /*
233  * Remap "oldmem" for kdump or zfcpdump
234  */
235 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
236                            unsigned long pfn, unsigned long size, pgprot_t prot)
237 {
238         if (OLDMEM_BASE)
239                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
240         else
241                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
242                                                        prot);
243 }
244
245 /*
246  * Copy memory from old kernel
247  */
248 int copy_from_oldmem(void *dest, void *src, size_t count)
249 {
250         unsigned long copied = 0;
251         int rc;
252
253         if (OLDMEM_BASE) {
254                 if ((unsigned long) src < OLDMEM_SIZE) {
255                         copied = min(count, OLDMEM_SIZE - (unsigned long) src);
256                         rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
257                         if (rc)
258                                 return rc;
259                 }
260         } else {
261                 unsigned long hsa_end = sclp_get_hsa_size();
262                 if ((unsigned long) src < hsa_end) {
263                         copied = min(count, hsa_end - (unsigned long) src);
264                         rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
265                         if (rc)
266                                 return rc;
267                 }
268         }
269         return copy_from_realmem(dest + copied, src + copied, count - copied);
270 }
271
272 /*
273  * Alloc memory and panic in case of ENOMEM
274  */
275 static void *kzalloc_panic(int len)
276 {
277         void *rc;
278
279         rc = kzalloc(len, GFP_KERNEL);
280         if (!rc)
281                 panic("s390 kdump kzalloc (%d) failed", len);
282         return rc;
283 }
284
285 /*
286  * Initialize ELF note
287  */
288 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
289                      const char *name)
290 {
291         Elf64_Nhdr *note;
292         u64 len;
293
294         note = (Elf64_Nhdr *)buf;
295         note->n_namesz = strlen(name) + 1;
296         note->n_descsz = d_len;
297         note->n_type = type;
298         len = sizeof(Elf64_Nhdr);
299
300         memcpy(buf + len, name, note->n_namesz);
301         len = roundup(len + note->n_namesz, 4);
302
303         memcpy(buf + len, desc, note->n_descsz);
304         len = roundup(len + note->n_descsz, 4);
305
306         return PTR_ADD(buf, len);
307 }
308
309 /*
310  * Initialize prstatus note
311  */
312 static void *nt_prstatus(void *ptr, struct save_area *sa)
313 {
314         struct elf_prstatus nt_prstatus;
315         static int cpu_nr = 1;
316
317         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
318         memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
319         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
320         memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
321         nt_prstatus.pr_pid = cpu_nr;
322         cpu_nr++;
323
324         return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
325                          "CORE");
326 }
327
328 /*
329  * Initialize fpregset (floating point) note
330  */
331 static void *nt_fpregset(void *ptr, struct save_area *sa)
332 {
333         elf_fpregset_t nt_fpregset;
334
335         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
336         memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
337         memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
338
339         return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
340                        "CORE");
341 }
342
343 /*
344  * Initialize timer note
345  */
346 static void *nt_s390_timer(void *ptr, struct save_area *sa)
347 {
348         return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
349                          KEXEC_CORE_NOTE_NAME);
350 }
351
352 /*
353  * Initialize TOD clock comparator note
354  */
355 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
356 {
357         return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
358                        sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
359 }
360
361 /*
362  * Initialize TOD programmable register note
363  */
364 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
365 {
366         return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
367                        sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
368 }
369
370 /*
371  * Initialize control register note
372  */
373 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
374 {
375         return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
376                        sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
377 }
378
379 /*
380  * Initialize prefix register note
381  */
382 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
383 {
384         return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
385                          sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
386 }
387
388 /*
389  * Fill ELF notes for one CPU with save area registers
390  */
391 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
392 {
393         ptr = nt_prstatus(ptr, sa);
394         ptr = nt_fpregset(ptr, sa);
395         ptr = nt_s390_timer(ptr, sa);
396         ptr = nt_s390_tod_cmp(ptr, sa);
397         ptr = nt_s390_tod_preg(ptr, sa);
398         ptr = nt_s390_ctrs(ptr, sa);
399         ptr = nt_s390_prefix(ptr, sa);
400         return ptr;
401 }
402
403 /*
404  * Initialize prpsinfo note (new kernel)
405  */
406 static void *nt_prpsinfo(void *ptr)
407 {
408         struct elf_prpsinfo prpsinfo;
409
410         memset(&prpsinfo, 0, sizeof(prpsinfo));
411         prpsinfo.pr_sname = 'R';
412         strcpy(prpsinfo.pr_fname, "vmlinux");
413         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
414                        KEXEC_CORE_NOTE_NAME);
415 }
416
417 /*
418  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
419  */
420 static void *get_vmcoreinfo_old(unsigned long *size)
421 {
422         char nt_name[11], *vmcoreinfo;
423         Elf64_Nhdr note;
424         void *addr;
425
426         if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
427                 return NULL;
428         memset(nt_name, 0, sizeof(nt_name));
429         if (copy_from_oldmem(&note, addr, sizeof(note)))
430                 return NULL;
431         if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
432                 return NULL;
433         if (strcmp(nt_name, "VMCOREINFO") != 0)
434                 return NULL;
435         vmcoreinfo = kzalloc_panic(note.n_descsz);
436         if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
437                 return NULL;
438         *size = note.n_descsz;
439         return vmcoreinfo;
440 }
441
442 /*
443  * Initialize vmcoreinfo note (new kernel)
444  */
445 static void *nt_vmcoreinfo(void *ptr)
446 {
447         unsigned long size;
448         void *vmcoreinfo;
449
450         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
451         if (!vmcoreinfo)
452                 vmcoreinfo = get_vmcoreinfo_old(&size);
453         if (!vmcoreinfo)
454                 return ptr;
455         return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
456 }
457
458 /*
459  * Initialize ELF header (new kernel)
460  */
461 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
462 {
463         memset(ehdr, 0, sizeof(*ehdr));
464         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
465         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
466         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
467         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
468         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
469         ehdr->e_type = ET_CORE;
470         ehdr->e_machine = EM_S390;
471         ehdr->e_version = EV_CURRENT;
472         ehdr->e_phoff = sizeof(Elf64_Ehdr);
473         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
474         ehdr->e_phentsize = sizeof(Elf64_Phdr);
475         ehdr->e_phnum = mem_chunk_cnt + 1;
476         return ehdr + 1;
477 }
478
479 /*
480  * Return CPU count for ELF header (new kernel)
481  */
482 static int get_cpu_cnt(void)
483 {
484         int i, cpus = 0;
485
486         for (i = 0; i < dump_save_areas.count; i++) {
487                 if (dump_save_areas.areas[i]->pref_reg == 0)
488                         continue;
489                 cpus++;
490         }
491         return cpus;
492 }
493
494 /*
495  * Return memory chunk count for ELF header (new kernel)
496  */
497 static int get_mem_chunk_cnt(void)
498 {
499         int cnt = 0;
500         u64 idx;
501
502         for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
503                 cnt++;
504         return cnt;
505 }
506
507 /*
508  * Initialize ELF loads (new kernel)
509  */
510 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
511 {
512         phys_addr_t start, end;
513         u64 idx;
514
515         for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
516                 phdr->p_filesz = end - start;
517                 phdr->p_type = PT_LOAD;
518                 phdr->p_offset = start;
519                 phdr->p_vaddr = start;
520                 phdr->p_paddr = start;
521                 phdr->p_memsz = end - start;
522                 phdr->p_flags = PF_R | PF_W | PF_X;
523                 phdr->p_align = PAGE_SIZE;
524                 phdr++;
525         }
526 }
527
528 /*
529  * Initialize notes (new kernel)
530  */
531 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
532 {
533         struct save_area *sa;
534         void *ptr_start = ptr;
535         int i;
536
537         ptr = nt_prpsinfo(ptr);
538
539         for (i = 0; i < dump_save_areas.count; i++) {
540                 sa = dump_save_areas.areas[i];
541                 if (sa->pref_reg == 0)
542                         continue;
543                 ptr = fill_cpu_elf_notes(ptr, sa);
544         }
545         ptr = nt_vmcoreinfo(ptr);
546         memset(phdr, 0, sizeof(*phdr));
547         phdr->p_type = PT_NOTE;
548         phdr->p_offset = notes_offset;
549         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
550         phdr->p_memsz = phdr->p_filesz;
551         return ptr;
552 }
553
554 /*
555  * Create ELF core header (new kernel)
556  */
557 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
558 {
559         Elf64_Phdr *phdr_notes, *phdr_loads;
560         int mem_chunk_cnt;
561         void *ptr, *hdr;
562         u32 alloc_size;
563         u64 hdr_off;
564
565         /* If we are not in kdump or zfcpdump mode return */
566         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
567                 return 0;
568         /* If elfcorehdr= has been passed via cmdline, we use that one */
569         if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
570                 return 0;
571         /* If we cannot get HSA size for zfcpdump return error */
572         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp_get_hsa_size())
573                 return -ENODEV;
574
575         /* For kdump, exclude previous crashkernel memory */
576         if (OLDMEM_BASE) {
577                 oldmem_region.base = OLDMEM_BASE;
578                 oldmem_region.size = OLDMEM_SIZE;
579                 oldmem_type.total_size = OLDMEM_SIZE;
580         }
581
582         mem_chunk_cnt = get_mem_chunk_cnt();
583
584         alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
585                 mem_chunk_cnt * sizeof(Elf64_Phdr);
586         hdr = kzalloc_panic(alloc_size);
587         /* Init elf header */
588         ptr = ehdr_init(hdr, mem_chunk_cnt);
589         /* Init program headers */
590         phdr_notes = ptr;
591         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
592         phdr_loads = ptr;
593         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
594         /* Init notes */
595         hdr_off = PTR_DIFF(ptr, hdr);
596         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
597         /* Init loads */
598         hdr_off = PTR_DIFF(ptr, hdr);
599         loads_init(phdr_loads, hdr_off);
600         *addr = (unsigned long long) hdr;
601         elfcorehdr_newmem = hdr;
602         *size = (unsigned long long) hdr_off;
603         BUG_ON(elfcorehdr_size > alloc_size);
604         return 0;
605 }
606
607 /*
608  * Free ELF core header (new kernel)
609  */
610 void elfcorehdr_free(unsigned long long addr)
611 {
612         if (!elfcorehdr_newmem)
613                 return;
614         kfree((void *)(unsigned long)addr);
615 }
616
617 /*
618  * Read from ELF header
619  */
620 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
621 {
622         void *src = (void *)(unsigned long)*ppos;
623
624         src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
625         memcpy(buf, src, count);
626         *ppos += count;
627         return count;
628 }
629
630 /*
631  * Read from ELF notes data
632  */
633 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
634 {
635         void *src = (void *)(unsigned long)*ppos;
636         int rc;
637
638         if (elfcorehdr_newmem) {
639                 memcpy(buf, src, count);
640         } else {
641                 rc = copy_from_oldmem(buf, src, count);
642                 if (rc)
643                         return rc;
644         }
645         *ppos += count;
646         return count;
647 }