3 * Copyright IBM Corp. 1999
4 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
6 * Derived from "include/asm-i386/bitops.h"
7 * Copyright (C) 1992, Linus Torvalds
11 #ifndef _S390_BITOPS_H
12 #define _S390_BITOPS_H
14 #ifndef _LINUX_BITOPS_H
15 #error only <linux/bitops.h> can be included directly
18 #include <linux/compiler.h>
21 * 32 bit bitops format:
22 * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
23 * bit 32 is the LSB of *(addr+4). That combined with the
24 * big endian byte order on S390 give the following bit
26 * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
27 * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
28 * after that follows the next long with bit numbers
29 * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
31 * The reason for this bit ordering is the fact that
32 * in the architecture independent code bits operations
33 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
34 * with operation of the form "set_bit(bitnr, flags)".
36 * 64 bit bitops format:
37 * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
38 * bit 64 is the LSB of *(addr+8). That combined with the
39 * big endian byte order on S390 give the following bit
41 * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
42 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
43 * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
44 * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
45 * after that follows the next long with bit numbers
46 * 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
47 * 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
48 * 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
49 * 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
50 * The reason for this bit ordering is the fact that
51 * in the architecture independent code bits operations
52 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
53 * with operation of the form "set_bit(bitnr, flags)".
56 /* bitmap tables from arch/s390/kernel/bitmap.c */
57 extern const char _oi_bitmap[];
58 extern const char _ni_bitmap[];
59 extern const char _zb_findmap[];
60 extern const char _sb_findmap[];
64 #define __BITOPS_OR "or"
65 #define __BITOPS_AND "nr"
66 #define __BITOPS_XOR "xr"
68 #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
72 __op_string " %1,%3\n" \
75 : "=&d" (__old), "=&d" (__new), \
76 "=Q" (*(unsigned long *) __addr) \
77 : "d" (__val), "Q" (*(unsigned long *) __addr) \
80 #else /* CONFIG_64BIT */
82 #define __BITOPS_OR "ogr"
83 #define __BITOPS_AND "ngr"
84 #define __BITOPS_XOR "xgr"
86 #define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
90 __op_string " %1,%3\n" \
93 : "=&d" (__old), "=&d" (__new), \
94 "=Q" (*(unsigned long *) __addr) \
95 : "d" (__val), "Q" (*(unsigned long *) __addr) \
98 #endif /* CONFIG_64BIT */
100 #define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
104 * SMP safe set_bit routine based on compare and swap (CS)
106 static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
108 unsigned long addr, old, new, mask;
110 addr = (unsigned long) ptr;
111 /* calculate address for CS */
112 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
114 mask = 1UL << (nr & (BITS_PER_LONG - 1));
115 /* Do the atomic update. */
116 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
120 * SMP safe clear_bit routine based on compare and swap (CS)
122 static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
124 unsigned long addr, old, new, mask;
126 addr = (unsigned long) ptr;
127 /* calculate address for CS */
128 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
130 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
131 /* Do the atomic update. */
132 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
136 * SMP safe change_bit routine based on compare and swap (CS)
138 static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
140 unsigned long addr, old, new, mask;
142 addr = (unsigned long) ptr;
143 /* calculate address for CS */
144 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
146 mask = 1UL << (nr & (BITS_PER_LONG - 1));
147 /* Do the atomic update. */
148 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
152 * SMP safe test_and_set_bit routine based on compare and swap (CS)
155 test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
157 unsigned long addr, old, new, mask;
159 addr = (unsigned long) ptr;
160 /* calculate address for CS */
161 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
162 /* make OR/test mask */
163 mask = 1UL << (nr & (BITS_PER_LONG - 1));
164 /* Do the atomic update. */
165 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
167 return (old & mask) != 0;
171 * SMP safe test_and_clear_bit routine based on compare and swap (CS)
174 test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
176 unsigned long addr, old, new, mask;
178 addr = (unsigned long) ptr;
179 /* calculate address for CS */
180 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
181 /* make AND/test mask */
182 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
183 /* Do the atomic update. */
184 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
186 return (old ^ new) != 0;
190 * SMP safe test_and_change_bit routine based on compare and swap (CS)
193 test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
195 unsigned long addr, old, new, mask;
197 addr = (unsigned long) ptr;
198 /* calculate address for CS */
199 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
200 /* make XOR/test mask */
201 mask = 1UL << (nr & (BITS_PER_LONG - 1));
202 /* Do the atomic update. */
203 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
205 return (old & mask) != 0;
207 #endif /* CONFIG_SMP */
210 * fast, non-SMP set_bit routine
212 static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
216 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
219 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
223 __constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
227 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
228 *(unsigned char *) addr |= 1 << (nr & 7);
231 #define set_bit_simple(nr,addr) \
232 (__builtin_constant_p((nr)) ? \
233 __constant_set_bit((nr),(addr)) : \
234 __set_bit((nr),(addr)) )
237 * fast, non-SMP clear_bit routine
240 __clear_bit(unsigned long nr, volatile unsigned long *ptr)
244 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
247 : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
251 __constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
255 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
256 *(unsigned char *) addr &= ~(1 << (nr & 7));
259 #define clear_bit_simple(nr,addr) \
260 (__builtin_constant_p((nr)) ? \
261 __constant_clear_bit((nr),(addr)) : \
262 __clear_bit((nr),(addr)) )
265 * fast, non-SMP change_bit routine
267 static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
271 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
274 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
278 __constant_change_bit(const unsigned long nr, volatile unsigned long *ptr)
282 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
283 *(unsigned char *) addr ^= 1 << (nr & 7);
286 #define change_bit_simple(nr,addr) \
287 (__builtin_constant_p((nr)) ? \
288 __constant_change_bit((nr),(addr)) : \
289 __change_bit((nr),(addr)) )
292 * fast, non-SMP test_and_set_bit routine
295 test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
300 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
301 ch = *(unsigned char *) addr;
304 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
306 return (ch >> (nr & 7)) & 1;
308 #define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
311 * fast, non-SMP test_and_clear_bit routine
314 test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
319 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
320 ch = *(unsigned char *) addr;
323 : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7])
325 return (ch >> (nr & 7)) & 1;
327 #define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
330 * fast, non-SMP test_and_change_bit routine
333 test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
338 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
339 ch = *(unsigned char *) addr;
342 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
344 return (ch >> (nr & 7)) & 1;
346 #define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
349 #define set_bit set_bit_cs
350 #define clear_bit clear_bit_cs
351 #define change_bit change_bit_cs
352 #define test_and_set_bit test_and_set_bit_cs
353 #define test_and_clear_bit test_and_clear_bit_cs
354 #define test_and_change_bit test_and_change_bit_cs
356 #define set_bit set_bit_simple
357 #define clear_bit clear_bit_simple
358 #define change_bit change_bit_simple
359 #define test_and_set_bit test_and_set_bit_simple
360 #define test_and_clear_bit test_and_clear_bit_simple
361 #define test_and_change_bit test_and_change_bit_simple
366 * This routine doesn't need to be atomic.
369 static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
374 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
375 ch = *(volatile unsigned char *) addr;
376 return (ch >> (nr & 7)) & 1;
380 __constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
381 return (((volatile char *) addr)
382 [(nr^(BITS_PER_LONG-8))>>3] & (1<<(nr&7))) != 0;
385 #define test_bit(nr,addr) \
386 (__builtin_constant_p((nr)) ? \
387 __constant_test_bit((nr),(addr)) : \
388 __test_bit((nr),(addr)) )
391 * Optimized find bit helper functions.
395 * __ffz_word_loop - find byte offset of first long != -1UL
396 * @addr: pointer to array of unsigned long
397 * @size: size of the array in bits
399 static inline unsigned long __ffz_word_loop(const unsigned long *addr,
402 typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
403 unsigned long bytes = 0;
419 "0: cg %2,0(%0,%3)\n"
425 : "+&a" (bytes), "+&d" (size)
426 : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
432 * __ffs_word_loop - find byte offset of first long != 0UL
433 * @addr: pointer to array of unsigned long
434 * @size: size of the array in bits
436 static inline unsigned long __ffs_word_loop(const unsigned long *addr,
439 typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
440 unsigned long bytes = 0;
456 "0: cg %2,0(%0,%3)\n"
462 : "+&a" (bytes), "+&a" (size)
463 : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
469 * __ffz_word - add number of the first unset bit
470 * @nr: base value the bit number is added to
471 * @word: the word that is searched for unset bits
473 static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
476 if ((word & 0xffffffff) == 0xffffffff) {
481 if ((word & 0xffff) == 0xffff) {
485 if ((word & 0xff) == 0xff) {
489 return nr + _zb_findmap[(unsigned char) word];
493 * __ffs_word - add number of the first set bit
494 * @nr: base value the bit number is added to
495 * @word: the word that is searched for set bits
497 static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
500 if ((word & 0xffffffff) == 0) {
505 if ((word & 0xffff) == 0) {
509 if ((word & 0xff) == 0) {
513 return nr + _sb_findmap[(unsigned char) word];
518 * __load_ulong_be - load big endian unsigned long
519 * @p: pointer to array of unsigned long
520 * @offset: byte offset of source value in the array
522 static inline unsigned long __load_ulong_be(const unsigned long *p,
523 unsigned long offset)
525 p = (unsigned long *)((unsigned long) p + offset);
530 * __load_ulong_le - load little endian unsigned long
531 * @p: pointer to array of unsigned long
532 * @offset: byte offset of source value in the array
534 static inline unsigned long __load_ulong_le(const unsigned long *p,
535 unsigned long offset)
539 p = (unsigned long *)((unsigned long) p + offset);
543 " icm %0,2,%O1+1(%R1)\n"
544 " icm %0,4,%O1+2(%R1)\n"
545 " icm %0,8,%O1+3(%R1)"
546 : "=&d" (word) : "Q" (*p) : "cc");
550 : "=d" (word) : "m" (*p) );
556 * The various find bit functions.
560 * ffz - find first zero in word.
561 * @word: The word to search
563 * Undefined if no zero exists, so code should check against ~0UL first.
565 static inline unsigned long ffz(unsigned long word)
567 return __ffz_word(0, word);
571 * __ffs - find first bit in word.
572 * @word: The word to search
574 * Undefined if no bit exists, so code should check against 0 first.
576 static inline unsigned long __ffs (unsigned long word)
578 return __ffs_word(0, word);
582 * ffs - find first bit set
583 * @x: the word to search
585 * This is defined the same way as
586 * the libc and compiler builtin ffs routines, therefore
587 * differs in spirit from the above ffz (man ffs).
589 static inline int ffs(int x)
593 return __ffs_word(1, x);
597 * find_first_zero_bit - find the first zero bit in a memory region
598 * @addr: The address to start the search at
599 * @size: The maximum size to search
601 * Returns the bit-number of the first zero bit, not the number of the byte
604 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
607 unsigned long bytes, bits;
611 bytes = __ffz_word_loop(addr, size);
612 bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
613 return (bits < size) ? bits : size;
615 #define find_first_zero_bit find_first_zero_bit
618 * find_first_bit - find the first set bit in a memory region
619 * @addr: The address to start the search at
620 * @size: The maximum size to search
622 * Returns the bit-number of the first set bit, not the number of the byte
625 static inline unsigned long find_first_bit(const unsigned long * addr,
628 unsigned long bytes, bits;
632 bytes = __ffs_word_loop(addr, size);
633 bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
634 return (bits < size) ? bits : size;
636 #define find_first_bit find_first_bit
639 * Big endian variant whichs starts bit counting from left using
640 * the flogr (find leftmost one) instruction.
642 static inline unsigned long __flo_word(unsigned long nr, unsigned long val)
644 register unsigned long bit asm("2") = val;
645 register unsigned long out asm("3");
648 " .insn rre,0xb9830000,%[bit],%[bit]\n"
649 : [bit] "+d" (bit), [out] "=d" (out) : : "cc");
654 * 64 bit special left bitops format:
656 * 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
657 * 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
658 * 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
659 * 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
660 * after that follows the next long with bit numbers
661 * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
662 * 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
663 * 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
664 * 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
665 * The reason for this bit ordering is the fact that
666 * the hardware sets bits in a bitmap starting at bit 0
667 * and we don't want to scan the bitmap from the 'wrong
670 static inline unsigned long find_first_bit_left(const unsigned long *addr,
673 unsigned long bytes, bits;
677 bytes = __ffs_word_loop(addr, size);
678 bits = __flo_word(bytes * 8, __load_ulong_be(addr, bytes));
679 return (bits < size) ? bits : size;
682 static inline int find_next_bit_left(const unsigned long *addr,
684 unsigned long offset)
686 const unsigned long *p;
687 unsigned long bit, set;
691 bit = offset & (BITS_PER_LONG - 1);
694 p = addr + offset / BITS_PER_LONG;
696 set = __flo_word(0, *p & (~0UL << bit));
698 return size + offset;
699 if (set < BITS_PER_LONG)
701 offset += BITS_PER_LONG;
702 size -= BITS_PER_LONG;
705 return offset + find_first_bit_left(p, size);
708 #define for_each_set_bit_left(bit, addr, size) \
709 for ((bit) = find_first_bit_left((addr), (size)); \
711 (bit) = find_next_bit_left((addr), (size), (bit) + 1))
713 /* same as for_each_set_bit() but use bit as value to start with */
714 #define for_each_set_bit_left_cont(bit, addr, size) \
715 for ((bit) = find_next_bit_left((addr), (size), (bit)); \
717 (bit) = find_next_bit_left((addr), (size), (bit) + 1))
720 * find_next_zero_bit - find the first zero bit in a memory region
721 * @addr: The address to base the search on
722 * @offset: The bitnumber to start searching at
723 * @size: The maximum size to search
725 static inline int find_next_zero_bit (const unsigned long * addr,
727 unsigned long offset)
729 const unsigned long *p;
730 unsigned long bit, set;
734 bit = offset & (BITS_PER_LONG - 1);
737 p = addr + offset / BITS_PER_LONG;
740 * __ffz_word returns BITS_PER_LONG
741 * if no zero bit is present in the word.
743 set = __ffz_word(bit, *p >> bit);
745 return size + offset;
746 if (set < BITS_PER_LONG)
748 offset += BITS_PER_LONG;
749 size -= BITS_PER_LONG;
752 return offset + find_first_zero_bit(p, size);
754 #define find_next_zero_bit find_next_zero_bit
757 * find_next_bit - find the first set bit in a memory region
758 * @addr: The address to base the search on
759 * @offset: The bitnumber to start searching at
760 * @size: The maximum size to search
762 static inline int find_next_bit (const unsigned long * addr,
764 unsigned long offset)
766 const unsigned long *p;
767 unsigned long bit, set;
771 bit = offset & (BITS_PER_LONG - 1);
774 p = addr + offset / BITS_PER_LONG;
777 * __ffs_word returns BITS_PER_LONG
778 * if no one bit is present in the word.
780 set = __ffs_word(0, *p & (~0UL << bit));
782 return size + offset;
783 if (set < BITS_PER_LONG)
785 offset += BITS_PER_LONG;
786 size -= BITS_PER_LONG;
789 return offset + find_first_bit(p, size);
791 #define find_next_bit find_next_bit
794 * Every architecture must define this function. It's the fastest
795 * way of searching a 140-bit bitmap where the first 100 bits are
796 * unlikely to be set. It's guaranteed that at least one of the 140
799 static inline int sched_find_first_bit(unsigned long *b)
801 return find_first_bit(b, 140);
804 #include <asm-generic/bitops/fls.h>
805 #include <asm-generic/bitops/__fls.h>
806 #include <asm-generic/bitops/fls64.h>
808 #include <asm-generic/bitops/hweight.h>
809 #include <asm-generic/bitops/lock.h>
812 * ATTENTION: intel byte ordering convention for ext2 and minix !!
813 * bit 0 is the LSB of addr; bit 31 is the MSB of addr;
814 * bit 32 is the LSB of (addr+4).
815 * That combined with the little endian byte order of Intel gives the
816 * following bit order in memory:
817 * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
818 * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
821 static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
823 unsigned long bytes, bits;
827 bytes = __ffz_word_loop(vaddr, size);
828 bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
829 return (bits < size) ? bits : size;
831 #define find_first_zero_bit_le find_first_zero_bit_le
833 static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
834 unsigned long offset)
836 unsigned long *addr = vaddr, *p;
837 unsigned long bit, set;
841 bit = offset & (BITS_PER_LONG - 1);
844 p = addr + offset / BITS_PER_LONG;
847 * s390 version of ffz returns BITS_PER_LONG
848 * if no zero bit is present in the word.
850 set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
852 return size + offset;
853 if (set < BITS_PER_LONG)
855 offset += BITS_PER_LONG;
856 size -= BITS_PER_LONG;
859 return offset + find_first_zero_bit_le(p, size);
861 #define find_next_zero_bit_le find_next_zero_bit_le
863 static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
865 unsigned long bytes, bits;
869 bytes = __ffs_word_loop(vaddr, size);
870 bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
871 return (bits < size) ? bits : size;
873 #define find_first_bit_le find_first_bit_le
875 static inline int find_next_bit_le(void *vaddr, unsigned long size,
876 unsigned long offset)
878 unsigned long *addr = vaddr, *p;
879 unsigned long bit, set;
883 bit = offset & (BITS_PER_LONG - 1);
886 p = addr + offset / BITS_PER_LONG;
889 * s390 version of ffz returns BITS_PER_LONG
890 * if no zero bit is present in the word.
892 set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
894 return size + offset;
895 if (set < BITS_PER_LONG)
897 offset += BITS_PER_LONG;
898 size -= BITS_PER_LONG;
901 return offset + find_first_bit_le(p, size);
903 #define find_next_bit_le find_next_bit_le
905 #include <asm-generic/bitops/le.h>
907 #include <asm-generic/bitops/ext2-atomic-setbit.h>
909 #endif /* _S390_BITOPS_H */