1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
8 #include <linux/bitfield.h>
10 #include <linux/filter.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <asm/patch.h>
16 #define RV_FENTRY_NINSNS 2
18 #define RV_REG_TCC RV_REG_A6
19 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
21 static const int regmap[] = {
22 [BPF_REG_0] = RV_REG_A5,
23 [BPF_REG_1] = RV_REG_A0,
24 [BPF_REG_2] = RV_REG_A1,
25 [BPF_REG_3] = RV_REG_A2,
26 [BPF_REG_4] = RV_REG_A3,
27 [BPF_REG_5] = RV_REG_A4,
28 [BPF_REG_6] = RV_REG_S1,
29 [BPF_REG_7] = RV_REG_S2,
30 [BPF_REG_8] = RV_REG_S3,
31 [BPF_REG_9] = RV_REG_S4,
32 [BPF_REG_FP] = RV_REG_S5,
33 [BPF_REG_AX] = RV_REG_T0,
36 static const int pt_regmap[] = {
37 [RV_REG_A0] = offsetof(struct pt_regs, a0),
38 [RV_REG_A1] = offsetof(struct pt_regs, a1),
39 [RV_REG_A2] = offsetof(struct pt_regs, a2),
40 [RV_REG_A3] = offsetof(struct pt_regs, a3),
41 [RV_REG_A4] = offsetof(struct pt_regs, a4),
42 [RV_REG_A5] = offsetof(struct pt_regs, a5),
43 [RV_REG_S1] = offsetof(struct pt_regs, s1),
44 [RV_REG_S2] = offsetof(struct pt_regs, s2),
45 [RV_REG_S3] = offsetof(struct pt_regs, s3),
46 [RV_REG_S4] = offsetof(struct pt_regs, s4),
47 [RV_REG_S5] = offsetof(struct pt_regs, s5),
48 [RV_REG_T0] = offsetof(struct pt_regs, t0),
52 RV_CTX_F_SEEN_TAIL_CALL = 0,
53 RV_CTX_F_SEEN_CALL = RV_REG_RA,
54 RV_CTX_F_SEEN_S1 = RV_REG_S1,
55 RV_CTX_F_SEEN_S2 = RV_REG_S2,
56 RV_CTX_F_SEEN_S3 = RV_REG_S3,
57 RV_CTX_F_SEEN_S4 = RV_REG_S4,
58 RV_CTX_F_SEEN_S5 = RV_REG_S5,
59 RV_CTX_F_SEEN_S6 = RV_REG_S6,
62 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
64 u8 reg = regmap[bpf_reg];
67 case RV_CTX_F_SEEN_S1:
68 case RV_CTX_F_SEEN_S2:
69 case RV_CTX_F_SEEN_S3:
70 case RV_CTX_F_SEEN_S4:
71 case RV_CTX_F_SEEN_S5:
72 case RV_CTX_F_SEEN_S6:
73 __set_bit(reg, &ctx->flags);
78 static bool seen_reg(int reg, struct rv_jit_context *ctx)
81 case RV_CTX_F_SEEN_CALL:
82 case RV_CTX_F_SEEN_S1:
83 case RV_CTX_F_SEEN_S2:
84 case RV_CTX_F_SEEN_S3:
85 case RV_CTX_F_SEEN_S4:
86 case RV_CTX_F_SEEN_S5:
87 case RV_CTX_F_SEEN_S6:
88 return test_bit(reg, &ctx->flags);
93 static void mark_fp(struct rv_jit_context *ctx)
95 __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
98 static void mark_call(struct rv_jit_context *ctx)
100 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
103 static bool seen_call(struct rv_jit_context *ctx)
105 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
108 static void mark_tail_call(struct rv_jit_context *ctx)
110 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
113 static bool seen_tail_call(struct rv_jit_context *ctx)
115 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
118 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
122 if (seen_call(ctx)) {
123 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
129 static bool is_32b_int(s64 val)
131 return -(1L << 31) <= val && val < (1L << 31);
134 static bool in_auipc_jalr_range(s64 val)
137 * auipc+jalr can reach any signed PC-relative offset in the range
138 * [-2^31 - 2^11, 2^31 - 2^11).
140 return (-(1L << 31) - (1L << 11)) <= val &&
141 val < ((1L << 31) - (1L << 11));
144 /* Emit fixed-length instructions for address */
145 static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx)
148 * Use the ro_insns(RX) to calculate the offset as the BPF program will
149 * finally run from this memory region.
151 u64 ip = (u64)(ctx->ro_insns + ctx->ninsns);
153 s64 upper = (off + (1 << 11)) >> 12;
154 s64 lower = off & 0xfff;
156 if (extra_pass && !in_auipc_jalr_range(off)) {
157 pr_err("bpf-jit: target offset 0x%llx is out of range\n", off);
161 emit(rv_auipc(rd, upper), ctx);
162 emit(rv_addi(rd, rd, lower), ctx);
166 /* Emit variable-length instructions for 32-bit and 64-bit imm */
167 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
169 /* Note that the immediate from the add is sign-extended,
170 * which means that we need to compensate this by adding 2^12,
171 * when the 12th bit is set. A simpler way of doing this, and
172 * getting rid of the check, is to just add 2**11 before the
173 * shift. The "Loading a 32-Bit constant" example from the
174 * "Computer Organization and Design, RISC-V edition" book by
175 * Patterson/Hennessy highlights this fact.
177 * This also means that we need to process LSB to MSB.
179 s64 upper = (val + (1 << 11)) >> 12;
180 /* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
181 * and addi are signed and RVC checks will perform signed comparisons.
183 s64 lower = ((val & 0xfff) << 52) >> 52;
186 if (is_32b_int(val)) {
188 emit_lui(rd, upper, ctx);
191 emit_li(rd, lower, ctx);
195 emit_addiw(rd, rd, lower, ctx);
199 shift = __ffs(upper);
203 emit_imm(rd, upper, ctx);
205 emit_slli(rd, rd, shift, ctx);
207 emit_addi(rd, rd, lower, ctx);
210 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
212 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
214 if (seen_reg(RV_REG_RA, ctx)) {
215 emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
218 emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
220 if (seen_reg(RV_REG_S1, ctx)) {
221 emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
224 if (seen_reg(RV_REG_S2, ctx)) {
225 emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
228 if (seen_reg(RV_REG_S3, ctx)) {
229 emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
232 if (seen_reg(RV_REG_S4, ctx)) {
233 emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
236 if (seen_reg(RV_REG_S5, ctx)) {
237 emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
240 if (seen_reg(RV_REG_S6, ctx)) {
241 emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
245 emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
246 /* Set return value. */
248 emit_mv(RV_REG_A0, RV_REG_A5, ctx);
249 emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
250 is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */
254 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
255 struct rv_jit_context *ctx)
259 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
262 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
265 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
268 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
271 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
274 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
277 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
280 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
283 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
286 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
290 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
291 struct rv_jit_context *ctx)
295 if (is_13b_int(rvoff)) {
296 emit_bcc(cond, rd, rs, rvoff, ctx);
311 cond = invert_bpf_cond(cond);
312 if (is_21b_int(rvoff)) {
313 emit_bcc(cond, rd, rs, 8, ctx);
314 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
318 /* 32b No need for an additional rvoff adjustment, since we
319 * get that from the auipc at PC', where PC = PC' + 4.
321 upper = (rvoff + (1 << 11)) >> 12;
322 lower = rvoff & 0xfff;
324 emit_bcc(cond, rd, rs, 12, ctx);
325 emit(rv_auipc(RV_REG_T1, upper), ctx);
326 emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
329 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
331 emit_slli(reg, reg, 32, ctx);
332 emit_srli(reg, reg, 32, ctx);
335 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
337 int tc_ninsn, off, start_insn = ctx->ninsns;
338 u8 tcc = rv_tail_call_reg(ctx);
344 * if (index >= array->map.max_entries)
347 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
349 emit_zext_32(RV_REG_A2, ctx);
351 off = offsetof(struct bpf_array, map.max_entries);
352 if (is_12b_check(off, insn))
354 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
355 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
356 emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
361 emit_addi(RV_REG_TCC, tcc, -1, ctx);
362 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
363 emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx);
365 /* prog = array->ptrs[index];
369 emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
370 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
371 off = offsetof(struct bpf_array, ptrs);
372 if (is_12b_check(off, insn))
374 emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
375 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
376 emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
378 /* goto *(prog->bpf_func + 4); */
379 off = offsetof(struct bpf_prog, bpf_func);
380 if (is_12b_check(off, insn))
382 emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
383 __build_epilogue(true, ctx);
387 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
388 struct rv_jit_context *ctx)
390 u8 code = insn->code;
393 case BPF_JMP | BPF_JA:
394 case BPF_JMP | BPF_CALL:
395 case BPF_JMP | BPF_EXIT:
396 case BPF_JMP | BPF_TAIL_CALL:
399 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
402 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
403 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
404 code & BPF_LDX || code & BPF_STX)
405 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
408 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
410 emit_mv(RV_REG_T2, *rd, ctx);
411 emit_zext_32(RV_REG_T2, ctx);
412 emit_mv(RV_REG_T1, *rs, ctx);
413 emit_zext_32(RV_REG_T1, ctx);
418 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
420 emit_addiw(RV_REG_T2, *rd, 0, ctx);
421 emit_addiw(RV_REG_T1, *rs, 0, ctx);
426 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
428 emit_mv(RV_REG_T2, *rd, ctx);
429 emit_zext_32(RV_REG_T2, ctx);
430 emit_zext_32(RV_REG_T1, ctx);
434 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
436 emit_addiw(RV_REG_T2, *rd, 0, ctx);
440 static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr,
441 struct rv_jit_context *ctx)
445 if (rvoff && fixed_addr && is_21b_int(rvoff)) {
446 emit(rv_jal(rd, rvoff >> 1), ctx);
448 } else if (in_auipc_jalr_range(rvoff)) {
449 upper = (rvoff + (1 << 11)) >> 12;
450 lower = rvoff & 0xfff;
451 emit(rv_auipc(RV_REG_T1, upper), ctx);
452 emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
456 pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
460 static bool is_signed_bpf_cond(u8 cond)
462 return cond == BPF_JSGT || cond == BPF_JSLT ||
463 cond == BPF_JSGE || cond == BPF_JSLE;
466 static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx)
471 if (addr && ctx->insns && ctx->ro_insns) {
473 * Use the ro_insns(RX) to calculate the offset as the BPF
474 * program will finally run from this memory region.
476 ip = (u64)(long)(ctx->ro_insns + ctx->ninsns);
480 return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx);
483 static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64,
484 struct rv_jit_context *ctx)
490 if (is_12b_int(off)) {
491 emit_addi(RV_REG_T1, rd, off, ctx);
493 emit_imm(RV_REG_T1, off, ctx);
494 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
500 /* lock *(u32/u64 *)(dst_reg + off16) <op>= src_reg */
502 emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) :
503 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
506 emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) :
507 rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
510 emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) :
511 rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
514 emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) :
515 rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx);
517 /* src_reg = atomic_fetch_<op>(dst_reg + off16, src_reg) */
518 case BPF_ADD | BPF_FETCH:
519 emit(is64 ? rv_amoadd_d(rs, rs, rd, 0, 0) :
520 rv_amoadd_w(rs, rs, rd, 0, 0), ctx);
522 emit_zext_32(rs, ctx);
524 case BPF_AND | BPF_FETCH:
525 emit(is64 ? rv_amoand_d(rs, rs, rd, 0, 0) :
526 rv_amoand_w(rs, rs, rd, 0, 0), ctx);
528 emit_zext_32(rs, ctx);
530 case BPF_OR | BPF_FETCH:
531 emit(is64 ? rv_amoor_d(rs, rs, rd, 0, 0) :
532 rv_amoor_w(rs, rs, rd, 0, 0), ctx);
534 emit_zext_32(rs, ctx);
536 case BPF_XOR | BPF_FETCH:
537 emit(is64 ? rv_amoxor_d(rs, rs, rd, 0, 0) :
538 rv_amoxor_w(rs, rs, rd, 0, 0), ctx);
540 emit_zext_32(rs, ctx);
542 /* src_reg = atomic_xchg(dst_reg + off16, src_reg); */
544 emit(is64 ? rv_amoswap_d(rs, rs, rd, 0, 0) :
545 rv_amoswap_w(rs, rs, rd, 0, 0), ctx);
547 emit_zext_32(rs, ctx);
549 /* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */
551 r0 = bpf_to_rv_reg(BPF_REG_0, ctx);
552 emit(is64 ? rv_addi(RV_REG_T2, r0, 0) :
553 rv_addiw(RV_REG_T2, r0, 0), ctx);
554 emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) :
555 rv_lr_w(r0, 0, rd, 0, 0), ctx);
556 jmp_offset = ninsns_rvoff(8);
557 emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx);
558 emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) :
559 rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx);
560 jmp_offset = ninsns_rvoff(-6);
561 emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx);
562 emit(rv_fence(0x3, 0x3), ctx);
567 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
568 #define BPF_FIXUP_REG_MASK GENMASK(31, 27)
570 bool ex_handler_bpf(const struct exception_table_entry *ex,
571 struct pt_regs *regs)
573 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
574 int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
576 *(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0;
577 regs->epc = (unsigned long)&ex->fixup - offset;
582 /* For accesses to BTF pointers, add an entry to the exception table */
583 static int add_exception_handler(const struct bpf_insn *insn,
584 struct rv_jit_context *ctx,
585 int dst_reg, int insn_len)
587 struct exception_table_entry *ex;
592 if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable ||
593 (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX))
596 if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries))
599 if (WARN_ON_ONCE(insn_len > ctx->ninsns))
602 if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1))
605 ex = &ctx->prog->aux->extable[ctx->nexentries];
606 pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len];
609 * This is the relative offset of the instruction that may fault from
610 * the exception table itself. This will be written to the exception
611 * table and if this instruction faults, the destination register will
612 * be set to '0' and the execution will jump to the next instruction.
614 ins_offset = pc - (long)&ex->insn;
615 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
619 * Since the extable follows the program, the fixup offset is always
620 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
621 * to keep things simple, and put the destination register in the upper
622 * bits. We don't need to worry about buildtime or runtime sort
623 * modifying the upper bits because the table is already sorted, and
624 * isn't part of the main exception table.
626 * The fixup_offset is set to the next instruction from the instruction
627 * that may fault. The execution will jump to this after handling the
630 fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16));
631 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
635 * The offsets above have been calculated using the RO buffer but we
636 * need to use the R/W buffer for writes.
637 * switch ex to rw buffer for writing.
639 ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns);
641 ex->insn = ins_offset;
643 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
644 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
645 ex->type = EX_TYPE_BPF;
651 static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call)
654 struct rv_jit_context ctx;
657 ctx.insns = (u16 *)insns;
660 emit(rv_nop(), &ctx);
661 emit(rv_nop(), &ctx);
665 rvoff = (s64)(target - ip);
666 return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx);
669 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
670 void *old_addr, void *new_addr)
672 u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS];
673 bool is_call = poke_type == BPF_MOD_CALL;
676 if (!is_kernel_text((unsigned long)ip) &&
677 !is_bpf_text_address((unsigned long)ip))
680 ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call);
684 if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4))
687 ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call);
692 mutex_lock(&text_mutex);
693 if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4))
694 ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS);
695 mutex_unlock(&text_mutex);
701 static void store_args(int nregs, int args_off, struct rv_jit_context *ctx)
705 for (i = 0; i < nregs; i++) {
706 emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx);
711 static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx)
715 for (i = 0; i < nregs; i++) {
716 emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx);
721 static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off,
722 int run_ctx_off, bool save_ret, struct rv_jit_context *ctx)
725 struct bpf_prog *p = l->link.prog;
726 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
729 emit_imm(RV_REG_T1, l->cookie, ctx);
730 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx);
732 emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx);
736 emit_imm(RV_REG_A0, (const s64)p, ctx);
738 emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx);
739 ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx);
743 /* if (__bpf_prog_enter(prog) == 0)
744 * goto skip_exec_of_prog;
746 branch_off = ctx->ninsns;
747 /* nop reserved for conditional jump */
750 /* store prog start time */
751 emit_mv(RV_REG_S1, RV_REG_A0, ctx);
753 /* arg1: &args_off */
754 emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx);
756 /* arg2: progs[i]->insnsi for interpreter */
757 emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx);
758 ret = emit_call((const u64)p->bpf_func, true, ctx);
763 emit_sd(RV_REG_FP, -retval_off, regmap[BPF_REG_0], ctx);
765 /* update branch with beqz */
767 int offset = ninsns_rvoff(ctx->ninsns - branch_off);
768 u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1);
769 *(u32 *)(ctx->insns + branch_off) = insn;
773 emit_imm(RV_REG_A0, (const s64)p, ctx);
774 /* arg2: prog start time */
775 emit_mv(RV_REG_A1, RV_REG_S1, ctx);
777 emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx);
778 ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx);
783 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
784 const struct btf_func_model *m,
785 struct bpf_tramp_links *tlinks,
786 void *func_addr, u32 flags,
787 struct rv_jit_context *ctx)
790 int *branches_off = NULL;
791 int stack_size = 0, nregs = m->nr_args;
792 int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off;
793 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
794 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
795 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
796 void *orig_call = func_addr;
800 /* Two types of generated trampoline stack layout:
802 * 1. trampoline called from function entry
803 * --------------------------------------
804 * FP + 8 [ RA to parent func ] return address to parent
806 * FP + 0 [ FP of parent func ] frame pointer of parent
808 * FP - 8 [ T0 to traced func ] return address of traced
810 * FP - 16 [ FP of traced func ] frame pointer of traced
812 * --------------------------------------
814 * 2. trampoline called directly
815 * --------------------------------------
816 * FP - 8 [ RA to caller func ] return address to caller
818 * FP - 16 [ FP of caller func ] frame pointer of caller
820 * --------------------------------------
822 * FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or
823 * BPF_TRAMP_F_RET_FENTRY_RET
826 * FP - args_off [ arg1 ]
828 * FP - nregs_off [ regs count ]
830 * FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG
832 * FP - run_ctx_off [ bpf_tramp_run_ctx ]
834 * FP - sreg_off [ callee saved reg ]
836 * [ pads ] pads for 16 bytes alignment
839 if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY))
842 /* extra regiters for struct arguments */
843 for (i = 0; i < m->nr_args; i++)
844 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
845 nregs += round_up(m->arg_size[i], 8) / 8 - 1;
847 /* 8 arguments passed by registers */
851 /* room of trampoline frame to store return address and frame pointer */
854 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
857 retval_off = stack_size;
860 stack_size += nregs * 8;
861 args_off = stack_size;
864 nregs_off = stack_size;
866 if (flags & BPF_TRAMP_F_IP_ARG) {
871 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
872 run_ctx_off = stack_size;
875 sreg_off = stack_size;
877 stack_size = round_up(stack_size, 16);
880 /* For the trampoline called from function entry,
881 * the frame of traced function and the frame of
882 * trampoline need to be considered.
884 emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx);
885 emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx);
886 emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx);
887 emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx);
889 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
890 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx);
891 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
892 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
894 /* For the trampoline called directly, just handle
895 * the frame of trampoline.
897 emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx);
898 emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx);
899 emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx);
900 emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx);
903 /* callee saved register S1 to pass start time */
904 emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx);
906 /* store ip address of the traced function */
907 if (flags & BPF_TRAMP_F_IP_ARG) {
908 emit_imm(RV_REG_T1, (const s64)func_addr, ctx);
909 emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx);
912 emit_li(RV_REG_T1, nregs, ctx);
913 emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx);
915 store_args(nregs, args_off, ctx);
917 /* skip to actual body of traced function */
918 if (flags & BPF_TRAMP_F_SKIP_FRAME)
919 orig_call += RV_FENTRY_NINSNS * 4;
921 if (flags & BPF_TRAMP_F_CALL_ORIG) {
922 emit_imm(RV_REG_A0, (const s64)im, ctx);
923 ret = emit_call((const u64)__bpf_tramp_enter, true, ctx);
928 for (i = 0; i < fentry->nr_links; i++) {
929 ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off,
930 flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx);
935 if (fmod_ret->nr_links) {
936 branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL);
940 /* cleanup to avoid garbage return value confusion */
941 emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx);
942 for (i = 0; i < fmod_ret->nr_links; i++) {
943 ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off,
944 run_ctx_off, true, ctx);
947 emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx);
948 branches_off[i] = ctx->ninsns;
949 /* nop reserved for conditional jump */
954 if (flags & BPF_TRAMP_F_CALL_ORIG) {
955 restore_args(nregs, args_off, ctx);
956 ret = emit_call((const u64)orig_call, true, ctx);
959 emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx);
960 im->ip_after_call = ctx->insns + ctx->ninsns;
961 /* 2 nops reserved for auipc+jalr pair */
966 /* update branches saved in invoke_bpf_mod_ret with bnez */
967 for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) {
968 offset = ninsns_rvoff(ctx->ninsns - branches_off[i]);
969 insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1);
970 *(u32 *)(ctx->insns + branches_off[i]) = insn;
973 for (i = 0; i < fexit->nr_links; i++) {
974 ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off,
975 run_ctx_off, false, ctx);
980 if (flags & BPF_TRAMP_F_CALL_ORIG) {
981 im->ip_epilogue = ctx->insns + ctx->ninsns;
982 emit_imm(RV_REG_A0, (const s64)im, ctx);
983 ret = emit_call((const u64)__bpf_tramp_exit, true, ctx);
988 if (flags & BPF_TRAMP_F_RESTORE_REGS)
989 restore_args(nregs, args_off, ctx);
992 emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx);
994 emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx);
997 /* trampoline called from function entry */
998 emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx);
999 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1000 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1002 emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx);
1003 emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx);
1004 emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx);
1006 if (flags & BPF_TRAMP_F_SKIP_FRAME)
1007 /* return to parent function */
1008 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1010 /* return to traced function */
1011 emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx);
1013 /* trampoline called directly */
1014 emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx);
1015 emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx);
1016 emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx);
1018 emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx);
1023 kfree(branches_off);
1027 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
1028 void *image_end, const struct btf_func_model *m,
1029 u32 flags, struct bpf_tramp_links *tlinks,
1033 struct rv_jit_context ctx;
1037 ctx.ro_insns = NULL;
1038 ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1042 if (ninsns_rvoff(ret) > (long)image_end - (long)image)
1047 * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the
1048 * JITed instructions and later copies it to a RX region (ctx.ro_insns).
1049 * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the
1050 * trampoline image uses the same memory area for writing and execution,
1051 * both ctx.insns and ctx.ro_insns can be set to image.
1054 ctx.ro_insns = image;
1055 ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx);
1059 bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns);
1061 return ninsns_rvoff(ret);
1064 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
1067 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
1068 BPF_CLASS(insn->code) == BPF_JMP;
1069 int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
1070 struct bpf_prog_aux *aux = ctx->prog->aux;
1071 u8 rd = -1, rs = -1, code = insn->code;
1072 s16 off = insn->off;
1073 s32 imm = insn->imm;
1075 init_regs(&rd, &rs, insn, ctx);
1079 case BPF_ALU | BPF_MOV | BPF_X:
1080 case BPF_ALU64 | BPF_MOV | BPF_X:
1082 /* Special mov32 for zext */
1083 emit_zext_32(rd, ctx);
1086 switch (insn->off) {
1088 emit_mv(rd, rs, ctx);
1092 emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx);
1093 emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx);
1096 emit_addiw(rd, rs, 0, ctx);
1099 if (!is64 && !aux->verifier_zext)
1100 emit_zext_32(rd, ctx);
1103 /* dst = dst OP src */
1104 case BPF_ALU | BPF_ADD | BPF_X:
1105 case BPF_ALU64 | BPF_ADD | BPF_X:
1106 emit_add(rd, rd, rs, ctx);
1107 if (!is64 && !aux->verifier_zext)
1108 emit_zext_32(rd, ctx);
1110 case BPF_ALU | BPF_SUB | BPF_X:
1111 case BPF_ALU64 | BPF_SUB | BPF_X:
1113 emit_sub(rd, rd, rs, ctx);
1115 emit_subw(rd, rd, rs, ctx);
1117 if (!is64 && !aux->verifier_zext)
1118 emit_zext_32(rd, ctx);
1120 case BPF_ALU | BPF_AND | BPF_X:
1121 case BPF_ALU64 | BPF_AND | BPF_X:
1122 emit_and(rd, rd, rs, ctx);
1123 if (!is64 && !aux->verifier_zext)
1124 emit_zext_32(rd, ctx);
1126 case BPF_ALU | BPF_OR | BPF_X:
1127 case BPF_ALU64 | BPF_OR | BPF_X:
1128 emit_or(rd, rd, rs, ctx);
1129 if (!is64 && !aux->verifier_zext)
1130 emit_zext_32(rd, ctx);
1132 case BPF_ALU | BPF_XOR | BPF_X:
1133 case BPF_ALU64 | BPF_XOR | BPF_X:
1134 emit_xor(rd, rd, rs, ctx);
1135 if (!is64 && !aux->verifier_zext)
1136 emit_zext_32(rd, ctx);
1138 case BPF_ALU | BPF_MUL | BPF_X:
1139 case BPF_ALU64 | BPF_MUL | BPF_X:
1140 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
1141 if (!is64 && !aux->verifier_zext)
1142 emit_zext_32(rd, ctx);
1144 case BPF_ALU | BPF_DIV | BPF_X:
1145 case BPF_ALU64 | BPF_DIV | BPF_X:
1147 emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx);
1149 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
1150 if (!is64 && !aux->verifier_zext)
1151 emit_zext_32(rd, ctx);
1153 case BPF_ALU | BPF_MOD | BPF_X:
1154 case BPF_ALU64 | BPF_MOD | BPF_X:
1156 emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx);
1158 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
1159 if (!is64 && !aux->verifier_zext)
1160 emit_zext_32(rd, ctx);
1162 case BPF_ALU | BPF_LSH | BPF_X:
1163 case BPF_ALU64 | BPF_LSH | BPF_X:
1164 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
1165 if (!is64 && !aux->verifier_zext)
1166 emit_zext_32(rd, ctx);
1168 case BPF_ALU | BPF_RSH | BPF_X:
1169 case BPF_ALU64 | BPF_RSH | BPF_X:
1170 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
1171 if (!is64 && !aux->verifier_zext)
1172 emit_zext_32(rd, ctx);
1174 case BPF_ALU | BPF_ARSH | BPF_X:
1175 case BPF_ALU64 | BPF_ARSH | BPF_X:
1176 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
1177 if (!is64 && !aux->verifier_zext)
1178 emit_zext_32(rd, ctx);
1182 case BPF_ALU | BPF_NEG:
1183 case BPF_ALU64 | BPF_NEG:
1184 emit_sub(rd, RV_REG_ZERO, rd, ctx);
1185 if (!is64 && !aux->verifier_zext)
1186 emit_zext_32(rd, ctx);
1189 /* dst = BSWAP##imm(dst) */
1190 case BPF_ALU | BPF_END | BPF_FROM_LE:
1193 emit_slli(rd, rd, 48, ctx);
1194 emit_srli(rd, rd, 48, ctx);
1197 if (!aux->verifier_zext)
1198 emit_zext_32(rd, ctx);
1206 case BPF_ALU | BPF_END | BPF_FROM_BE:
1207 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1208 emit_li(RV_REG_T2, 0, ctx);
1210 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1211 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1212 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1213 emit_srli(rd, rd, 8, ctx);
1217 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1218 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1219 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1220 emit_srli(rd, rd, 8, ctx);
1222 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1223 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1224 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1225 emit_srli(rd, rd, 8, ctx);
1229 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1230 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1231 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1232 emit_srli(rd, rd, 8, ctx);
1234 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1235 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1236 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1237 emit_srli(rd, rd, 8, ctx);
1239 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1240 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1241 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1242 emit_srli(rd, rd, 8, ctx);
1244 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1245 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1246 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
1247 emit_srli(rd, rd, 8, ctx);
1249 emit_andi(RV_REG_T1, rd, 0xff, ctx);
1250 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
1252 emit_mv(rd, RV_REG_T2, ctx);
1256 case BPF_ALU | BPF_MOV | BPF_K:
1257 case BPF_ALU64 | BPF_MOV | BPF_K:
1258 emit_imm(rd, imm, ctx);
1259 if (!is64 && !aux->verifier_zext)
1260 emit_zext_32(rd, ctx);
1263 /* dst = dst OP imm */
1264 case BPF_ALU | BPF_ADD | BPF_K:
1265 case BPF_ALU64 | BPF_ADD | BPF_K:
1266 if (is_12b_int(imm)) {
1267 emit_addi(rd, rd, imm, ctx);
1269 emit_imm(RV_REG_T1, imm, ctx);
1270 emit_add(rd, rd, RV_REG_T1, ctx);
1272 if (!is64 && !aux->verifier_zext)
1273 emit_zext_32(rd, ctx);
1275 case BPF_ALU | BPF_SUB | BPF_K:
1276 case BPF_ALU64 | BPF_SUB | BPF_K:
1277 if (is_12b_int(-imm)) {
1278 emit_addi(rd, rd, -imm, ctx);
1280 emit_imm(RV_REG_T1, imm, ctx);
1281 emit_sub(rd, rd, RV_REG_T1, ctx);
1283 if (!is64 && !aux->verifier_zext)
1284 emit_zext_32(rd, ctx);
1286 case BPF_ALU | BPF_AND | BPF_K:
1287 case BPF_ALU64 | BPF_AND | BPF_K:
1288 if (is_12b_int(imm)) {
1289 emit_andi(rd, rd, imm, ctx);
1291 emit_imm(RV_REG_T1, imm, ctx);
1292 emit_and(rd, rd, RV_REG_T1, ctx);
1294 if (!is64 && !aux->verifier_zext)
1295 emit_zext_32(rd, ctx);
1297 case BPF_ALU | BPF_OR | BPF_K:
1298 case BPF_ALU64 | BPF_OR | BPF_K:
1299 if (is_12b_int(imm)) {
1300 emit(rv_ori(rd, rd, imm), ctx);
1302 emit_imm(RV_REG_T1, imm, ctx);
1303 emit_or(rd, rd, RV_REG_T1, ctx);
1305 if (!is64 && !aux->verifier_zext)
1306 emit_zext_32(rd, ctx);
1308 case BPF_ALU | BPF_XOR | BPF_K:
1309 case BPF_ALU64 | BPF_XOR | BPF_K:
1310 if (is_12b_int(imm)) {
1311 emit(rv_xori(rd, rd, imm), ctx);
1313 emit_imm(RV_REG_T1, imm, ctx);
1314 emit_xor(rd, rd, RV_REG_T1, ctx);
1316 if (!is64 && !aux->verifier_zext)
1317 emit_zext_32(rd, ctx);
1319 case BPF_ALU | BPF_MUL | BPF_K:
1320 case BPF_ALU64 | BPF_MUL | BPF_K:
1321 emit_imm(RV_REG_T1, imm, ctx);
1322 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1323 rv_mulw(rd, rd, RV_REG_T1), ctx);
1324 if (!is64 && !aux->verifier_zext)
1325 emit_zext_32(rd, ctx);
1327 case BPF_ALU | BPF_DIV | BPF_K:
1328 case BPF_ALU64 | BPF_DIV | BPF_K:
1329 emit_imm(RV_REG_T1, imm, ctx);
1331 emit(is64 ? rv_div(rd, rd, RV_REG_T1) :
1332 rv_divw(rd, rd, RV_REG_T1), ctx);
1334 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1335 rv_divuw(rd, rd, RV_REG_T1), ctx);
1336 if (!is64 && !aux->verifier_zext)
1337 emit_zext_32(rd, ctx);
1339 case BPF_ALU | BPF_MOD | BPF_K:
1340 case BPF_ALU64 | BPF_MOD | BPF_K:
1341 emit_imm(RV_REG_T1, imm, ctx);
1343 emit(is64 ? rv_rem(rd, rd, RV_REG_T1) :
1344 rv_remw(rd, rd, RV_REG_T1), ctx);
1346 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1347 rv_remuw(rd, rd, RV_REG_T1), ctx);
1348 if (!is64 && !aux->verifier_zext)
1349 emit_zext_32(rd, ctx);
1351 case BPF_ALU | BPF_LSH | BPF_K:
1352 case BPF_ALU64 | BPF_LSH | BPF_K:
1353 emit_slli(rd, rd, imm, ctx);
1355 if (!is64 && !aux->verifier_zext)
1356 emit_zext_32(rd, ctx);
1358 case BPF_ALU | BPF_RSH | BPF_K:
1359 case BPF_ALU64 | BPF_RSH | BPF_K:
1361 emit_srli(rd, rd, imm, ctx);
1363 emit(rv_srliw(rd, rd, imm), ctx);
1365 if (!is64 && !aux->verifier_zext)
1366 emit_zext_32(rd, ctx);
1368 case BPF_ALU | BPF_ARSH | BPF_K:
1369 case BPF_ALU64 | BPF_ARSH | BPF_K:
1371 emit_srai(rd, rd, imm, ctx);
1373 emit(rv_sraiw(rd, rd, imm), ctx);
1375 if (!is64 && !aux->verifier_zext)
1376 emit_zext_32(rd, ctx);
1380 case BPF_JMP | BPF_JA:
1381 case BPF_JMP32 | BPF_JA:
1382 if (BPF_CLASS(code) == BPF_JMP)
1383 rvoff = rv_offset(i, off, ctx);
1385 rvoff = rv_offset(i, imm, ctx);
1386 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1391 /* IF (dst COND src) JUMP off */
1392 case BPF_JMP | BPF_JEQ | BPF_X:
1393 case BPF_JMP32 | BPF_JEQ | BPF_X:
1394 case BPF_JMP | BPF_JGT | BPF_X:
1395 case BPF_JMP32 | BPF_JGT | BPF_X:
1396 case BPF_JMP | BPF_JLT | BPF_X:
1397 case BPF_JMP32 | BPF_JLT | BPF_X:
1398 case BPF_JMP | BPF_JGE | BPF_X:
1399 case BPF_JMP32 | BPF_JGE | BPF_X:
1400 case BPF_JMP | BPF_JLE | BPF_X:
1401 case BPF_JMP32 | BPF_JLE | BPF_X:
1402 case BPF_JMP | BPF_JNE | BPF_X:
1403 case BPF_JMP32 | BPF_JNE | BPF_X:
1404 case BPF_JMP | BPF_JSGT | BPF_X:
1405 case BPF_JMP32 | BPF_JSGT | BPF_X:
1406 case BPF_JMP | BPF_JSLT | BPF_X:
1407 case BPF_JMP32 | BPF_JSLT | BPF_X:
1408 case BPF_JMP | BPF_JSGE | BPF_X:
1409 case BPF_JMP32 | BPF_JSGE | BPF_X:
1410 case BPF_JMP | BPF_JSLE | BPF_X:
1411 case BPF_JMP32 | BPF_JSLE | BPF_X:
1412 case BPF_JMP | BPF_JSET | BPF_X:
1413 case BPF_JMP32 | BPF_JSET | BPF_X:
1414 rvoff = rv_offset(i, off, ctx);
1417 if (is_signed_bpf_cond(BPF_OP(code)))
1418 emit_sext_32_rd_rs(&rd, &rs, ctx);
1420 emit_zext_32_rd_rs(&rd, &rs, ctx);
1423 /* Adjust for extra insns */
1424 rvoff -= ninsns_rvoff(e - s);
1427 if (BPF_OP(code) == BPF_JSET) {
1428 /* Adjust for and */
1430 emit_and(RV_REG_T1, rd, rs, ctx);
1431 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1434 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1438 /* IF (dst COND imm) JUMP off */
1439 case BPF_JMP | BPF_JEQ | BPF_K:
1440 case BPF_JMP32 | BPF_JEQ | BPF_K:
1441 case BPF_JMP | BPF_JGT | BPF_K:
1442 case BPF_JMP32 | BPF_JGT | BPF_K:
1443 case BPF_JMP | BPF_JLT | BPF_K:
1444 case BPF_JMP32 | BPF_JLT | BPF_K:
1445 case BPF_JMP | BPF_JGE | BPF_K:
1446 case BPF_JMP32 | BPF_JGE | BPF_K:
1447 case BPF_JMP | BPF_JLE | BPF_K:
1448 case BPF_JMP32 | BPF_JLE | BPF_K:
1449 case BPF_JMP | BPF_JNE | BPF_K:
1450 case BPF_JMP32 | BPF_JNE | BPF_K:
1451 case BPF_JMP | BPF_JSGT | BPF_K:
1452 case BPF_JMP32 | BPF_JSGT | BPF_K:
1453 case BPF_JMP | BPF_JSLT | BPF_K:
1454 case BPF_JMP32 | BPF_JSLT | BPF_K:
1455 case BPF_JMP | BPF_JSGE | BPF_K:
1456 case BPF_JMP32 | BPF_JSGE | BPF_K:
1457 case BPF_JMP | BPF_JSLE | BPF_K:
1458 case BPF_JMP32 | BPF_JSLE | BPF_K:
1459 rvoff = rv_offset(i, off, ctx);
1462 emit_imm(RV_REG_T1, imm, ctx);
1465 /* If imm is 0, simply use zero register. */
1469 if (is_signed_bpf_cond(BPF_OP(code)))
1470 emit_sext_32_rd(&rd, ctx);
1472 emit_zext_32_rd_t1(&rd, ctx);
1476 /* Adjust for extra insns */
1477 rvoff -= ninsns_rvoff(e - s);
1478 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1481 case BPF_JMP | BPF_JSET | BPF_K:
1482 case BPF_JMP32 | BPF_JSET | BPF_K:
1483 rvoff = rv_offset(i, off, ctx);
1485 if (is_12b_int(imm)) {
1486 emit_andi(RV_REG_T1, rd, imm, ctx);
1488 emit_imm(RV_REG_T1, imm, ctx);
1489 emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
1491 /* For jset32, we should clear the upper 32 bits of t1, but
1492 * sign-extension is sufficient here and saves one instruction,
1493 * as t1 is used only in comparison against zero.
1495 if (!is64 && imm < 0)
1496 emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
1498 rvoff -= ninsns_rvoff(e - s);
1499 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
1503 case BPF_JMP | BPF_CALL:
1509 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1510 &addr, &fixed_addr);
1514 ret = emit_call(addr, fixed_addr, ctx);
1518 emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx);
1522 case BPF_JMP | BPF_TAIL_CALL:
1523 if (emit_bpf_tail_call(i, ctx))
1527 /* function return */
1528 case BPF_JMP | BPF_EXIT:
1529 if (i == ctx->prog->len - 1)
1532 rvoff = epilogue_offset(ctx);
1533 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx);
1539 case BPF_LD | BPF_IMM | BPF_DW:
1541 struct bpf_insn insn1 = insn[1];
1544 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1545 if (bpf_pseudo_func(insn)) {
1546 /* fixed-length insns for extra jit pass */
1547 ret = emit_addr(rd, imm64, extra_pass, ctx);
1551 emit_imm(rd, imm64, ctx);
1557 /* LDX: dst = *(unsigned size *)(src + off) */
1558 case BPF_LDX | BPF_MEM | BPF_B:
1559 case BPF_LDX | BPF_MEM | BPF_H:
1560 case BPF_LDX | BPF_MEM | BPF_W:
1561 case BPF_LDX | BPF_MEM | BPF_DW:
1562 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1563 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1564 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1565 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1566 /* LDSX: dst = *(signed size *)(src + off) */
1567 case BPF_LDX | BPF_MEMSX | BPF_B:
1568 case BPF_LDX | BPF_MEMSX | BPF_H:
1569 case BPF_LDX | BPF_MEMSX | BPF_W:
1570 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1571 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1572 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1574 int insn_len, insns_start;
1577 sign_ext = BPF_MODE(insn->code) == BPF_MEMSX ||
1578 BPF_MODE(insn->code) == BPF_PROBE_MEMSX;
1580 switch (BPF_SIZE(code)) {
1582 if (is_12b_int(off)) {
1583 insns_start = ctx->ninsns;
1585 emit(rv_lb(rd, off, rs), ctx);
1587 emit(rv_lbu(rd, off, rs), ctx);
1588 insn_len = ctx->ninsns - insns_start;
1592 emit_imm(RV_REG_T1, off, ctx);
1593 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1594 insns_start = ctx->ninsns;
1596 emit(rv_lb(rd, 0, RV_REG_T1), ctx);
1598 emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1599 insn_len = ctx->ninsns - insns_start;
1602 if (is_12b_int(off)) {
1603 insns_start = ctx->ninsns;
1605 emit(rv_lh(rd, off, rs), ctx);
1607 emit(rv_lhu(rd, off, rs), ctx);
1608 insn_len = ctx->ninsns - insns_start;
1612 emit_imm(RV_REG_T1, off, ctx);
1613 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1614 insns_start = ctx->ninsns;
1616 emit(rv_lh(rd, 0, RV_REG_T1), ctx);
1618 emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1619 insn_len = ctx->ninsns - insns_start;
1622 if (is_12b_int(off)) {
1623 insns_start = ctx->ninsns;
1625 emit(rv_lw(rd, off, rs), ctx);
1627 emit(rv_lwu(rd, off, rs), ctx);
1628 insn_len = ctx->ninsns - insns_start;
1632 emit_imm(RV_REG_T1, off, ctx);
1633 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1634 insns_start = ctx->ninsns;
1636 emit(rv_lw(rd, 0, RV_REG_T1), ctx);
1638 emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1639 insn_len = ctx->ninsns - insns_start;
1642 if (is_12b_int(off)) {
1643 insns_start = ctx->ninsns;
1644 emit_ld(rd, off, rs, ctx);
1645 insn_len = ctx->ninsns - insns_start;
1649 emit_imm(RV_REG_T1, off, ctx);
1650 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
1651 insns_start = ctx->ninsns;
1652 emit_ld(rd, 0, RV_REG_T1, ctx);
1653 insn_len = ctx->ninsns - insns_start;
1657 ret = add_exception_handler(insn, ctx, rd, insn_len);
1661 if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1]))
1665 /* speculation barrier */
1666 case BPF_ST | BPF_NOSPEC:
1669 /* ST: *(size *)(dst + off) = imm */
1670 case BPF_ST | BPF_MEM | BPF_B:
1671 emit_imm(RV_REG_T1, imm, ctx);
1672 if (is_12b_int(off)) {
1673 emit(rv_sb(rd, off, RV_REG_T1), ctx);
1677 emit_imm(RV_REG_T2, off, ctx);
1678 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1679 emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1682 case BPF_ST | BPF_MEM | BPF_H:
1683 emit_imm(RV_REG_T1, imm, ctx);
1684 if (is_12b_int(off)) {
1685 emit(rv_sh(rd, off, RV_REG_T1), ctx);
1689 emit_imm(RV_REG_T2, off, ctx);
1690 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1691 emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1693 case BPF_ST | BPF_MEM | BPF_W:
1694 emit_imm(RV_REG_T1, imm, ctx);
1695 if (is_12b_int(off)) {
1696 emit_sw(rd, off, RV_REG_T1, ctx);
1700 emit_imm(RV_REG_T2, off, ctx);
1701 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1702 emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
1704 case BPF_ST | BPF_MEM | BPF_DW:
1705 emit_imm(RV_REG_T1, imm, ctx);
1706 if (is_12b_int(off)) {
1707 emit_sd(rd, off, RV_REG_T1, ctx);
1711 emit_imm(RV_REG_T2, off, ctx);
1712 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
1713 emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
1716 /* STX: *(size *)(dst + off) = src */
1717 case BPF_STX | BPF_MEM | BPF_B:
1718 if (is_12b_int(off)) {
1719 emit(rv_sb(rd, off, rs), ctx);
1723 emit_imm(RV_REG_T1, off, ctx);
1724 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1725 emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1727 case BPF_STX | BPF_MEM | BPF_H:
1728 if (is_12b_int(off)) {
1729 emit(rv_sh(rd, off, rs), ctx);
1733 emit_imm(RV_REG_T1, off, ctx);
1734 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1735 emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1737 case BPF_STX | BPF_MEM | BPF_W:
1738 if (is_12b_int(off)) {
1739 emit_sw(rd, off, rs, ctx);
1743 emit_imm(RV_REG_T1, off, ctx);
1744 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1745 emit_sw(RV_REG_T1, 0, rs, ctx);
1747 case BPF_STX | BPF_MEM | BPF_DW:
1748 if (is_12b_int(off)) {
1749 emit_sd(rd, off, rs, ctx);
1753 emit_imm(RV_REG_T1, off, ctx);
1754 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1755 emit_sd(RV_REG_T1, 0, rs, ctx);
1757 case BPF_STX | BPF_ATOMIC | BPF_W:
1758 case BPF_STX | BPF_ATOMIC | BPF_DW:
1759 emit_atomic(rd, rs, off, imm,
1760 BPF_SIZE(code) == BPF_DW, ctx);
1763 pr_err("bpf-jit: unknown opcode %02x\n", code);
1770 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1772 int i, stack_adjust = 0, store_offset, bpf_stack_adjust;
1774 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1775 if (bpf_stack_adjust)
1778 if (seen_reg(RV_REG_RA, ctx))
1780 stack_adjust += 8; /* RV_REG_FP */
1781 if (seen_reg(RV_REG_S1, ctx))
1783 if (seen_reg(RV_REG_S2, ctx))
1785 if (seen_reg(RV_REG_S3, ctx))
1787 if (seen_reg(RV_REG_S4, ctx))
1789 if (seen_reg(RV_REG_S5, ctx))
1791 if (seen_reg(RV_REG_S6, ctx))
1794 stack_adjust = round_up(stack_adjust, 16);
1795 stack_adjust += bpf_stack_adjust;
1797 store_offset = stack_adjust - 8;
1799 /* nops reserved for auipc+jalr pair */
1800 for (i = 0; i < RV_FENTRY_NINSNS; i++)
1801 emit(rv_nop(), ctx);
1803 /* First instruction is always setting the tail-call-counter
1804 * (TCC) register. This instruction is skipped for tail calls.
1805 * Force using a 4-byte (non-compressed) instruction.
1807 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1809 emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1811 if (seen_reg(RV_REG_RA, ctx)) {
1812 emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1815 emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1817 if (seen_reg(RV_REG_S1, ctx)) {
1818 emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1821 if (seen_reg(RV_REG_S2, ctx)) {
1822 emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1825 if (seen_reg(RV_REG_S3, ctx)) {
1826 emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1829 if (seen_reg(RV_REG_S4, ctx)) {
1830 emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1833 if (seen_reg(RV_REG_S5, ctx)) {
1834 emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1837 if (seen_reg(RV_REG_S6, ctx)) {
1838 emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1842 emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1844 if (bpf_stack_adjust)
1845 emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1847 /* Program contains calls and tail calls, so RV_REG_TCC need
1848 * to be saved across calls.
1850 if (seen_tail_call(ctx) && seen_call(ctx))
1851 emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1853 ctx->stack_size = stack_adjust;
1856 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1858 __build_epilogue(false, ctx);
1861 bool bpf_jit_supports_kfunc_call(void)