kvm/riscv: rework guest entry logic
[platform/kernel/linux-rpi.git] / arch / riscv / kvm / vcpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24         KVM_GENERIC_VCPU_STATS(),
25         STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26         STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27         STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28         STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29         STATS_DESC_COUNTER(VCPU, exits)
30 };
31
32 const struct kvm_stats_header kvm_vcpu_stats_header = {
33         .name_size = KVM_STATS_NAME_SIZE,
34         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
35         .id_offset = sizeof(struct kvm_stats_header),
36         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
37         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
38                        sizeof(kvm_vcpu_stats_desc),
39 };
40
41 #define KVM_RISCV_ISA_ALLOWED   (riscv_isa_extension_mask(a) | \
42                                  riscv_isa_extension_mask(c) | \
43                                  riscv_isa_extension_mask(d) | \
44                                  riscv_isa_extension_mask(f) | \
45                                  riscv_isa_extension_mask(i) | \
46                                  riscv_isa_extension_mask(m) | \
47                                  riscv_isa_extension_mask(s) | \
48                                  riscv_isa_extension_mask(u))
49
50 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
51 {
52         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
53         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
54         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
55         struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
56         bool loaded;
57
58         /**
59          * The preemption should be disabled here because it races with
60          * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
61          * also calls vcpu_load/put.
62          */
63         get_cpu();
64         loaded = (vcpu->cpu != -1);
65         if (loaded)
66                 kvm_arch_vcpu_put(vcpu);
67
68         memcpy(csr, reset_csr, sizeof(*csr));
69
70         memcpy(cntx, reset_cntx, sizeof(*cntx));
71
72         kvm_riscv_vcpu_fp_reset(vcpu);
73
74         kvm_riscv_vcpu_timer_reset(vcpu);
75
76         WRITE_ONCE(vcpu->arch.irqs_pending, 0);
77         WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
78
79         /* Reset the guest CSRs for hotplug usecase */
80         if (loaded)
81                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
82         put_cpu();
83 }
84
85 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
86 {
87         return 0;
88 }
89
90 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
91 {
92         struct kvm_cpu_context *cntx;
93
94         /* Mark this VCPU never ran */
95         vcpu->arch.ran_atleast_once = false;
96         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
97
98         /* Setup ISA features available to VCPU */
99         vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED;
100
101         /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
102         cntx = &vcpu->arch.guest_reset_context;
103         cntx->sstatus = SR_SPP | SR_SPIE;
104         cntx->hstatus = 0;
105         cntx->hstatus |= HSTATUS_VTW;
106         cntx->hstatus |= HSTATUS_SPVP;
107         cntx->hstatus |= HSTATUS_SPV;
108
109         /* Setup VCPU timer */
110         kvm_riscv_vcpu_timer_init(vcpu);
111
112         /* Reset VCPU */
113         kvm_riscv_reset_vcpu(vcpu);
114
115         return 0;
116 }
117
118 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
119 {
120         /**
121          * vcpu with id 0 is the designated boot cpu.
122          * Keep all vcpus with non-zero id in power-off state so that
123          * they can be brought up using SBI HSM extension.
124          */
125         if (vcpu->vcpu_idx != 0)
126                 kvm_riscv_vcpu_power_off(vcpu);
127 }
128
129 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
130 {
131         /* Cleanup VCPU timer */
132         kvm_riscv_vcpu_timer_deinit(vcpu);
133
134         /* Free unused pages pre-allocated for Stage2 page table mappings */
135         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
136 }
137
138 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
139 {
140         return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
141 }
142
143 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
144 {
145 }
146
147 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
148 {
149 }
150
151 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
152 {
153         return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
154                 !vcpu->arch.power_off && !vcpu->arch.pause);
155 }
156
157 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
158 {
159         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
160 }
161
162 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
163 {
164         return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
165 }
166
167 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
168 {
169         return VM_FAULT_SIGBUS;
170 }
171
172 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
173                                          const struct kvm_one_reg *reg)
174 {
175         unsigned long __user *uaddr =
176                         (unsigned long __user *)(unsigned long)reg->addr;
177         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
178                                             KVM_REG_SIZE_MASK |
179                                             KVM_REG_RISCV_CONFIG);
180         unsigned long reg_val;
181
182         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
183                 return -EINVAL;
184
185         switch (reg_num) {
186         case KVM_REG_RISCV_CONFIG_REG(isa):
187                 reg_val = vcpu->arch.isa;
188                 break;
189         default:
190                 return -EINVAL;
191         }
192
193         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
194                 return -EFAULT;
195
196         return 0;
197 }
198
199 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
200                                          const struct kvm_one_reg *reg)
201 {
202         unsigned long __user *uaddr =
203                         (unsigned long __user *)(unsigned long)reg->addr;
204         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
205                                             KVM_REG_SIZE_MASK |
206                                             KVM_REG_RISCV_CONFIG);
207         unsigned long reg_val;
208
209         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
210                 return -EINVAL;
211
212         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
213                 return -EFAULT;
214
215         switch (reg_num) {
216         case KVM_REG_RISCV_CONFIG_REG(isa):
217                 if (!vcpu->arch.ran_atleast_once) {
218                         vcpu->arch.isa = reg_val;
219                         vcpu->arch.isa &= riscv_isa_extension_base(NULL);
220                         vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
221                         kvm_riscv_vcpu_fp_reset(vcpu);
222                 } else {
223                         return -EOPNOTSUPP;
224                 }
225                 break;
226         default:
227                 return -EINVAL;
228         }
229
230         return 0;
231 }
232
233 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
234                                        const struct kvm_one_reg *reg)
235 {
236         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
237         unsigned long __user *uaddr =
238                         (unsigned long __user *)(unsigned long)reg->addr;
239         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
240                                             KVM_REG_SIZE_MASK |
241                                             KVM_REG_RISCV_CORE);
242         unsigned long reg_val;
243
244         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
245                 return -EINVAL;
246         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
247                 return -EINVAL;
248
249         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
250                 reg_val = cntx->sepc;
251         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
252                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
253                 reg_val = ((unsigned long *)cntx)[reg_num];
254         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
255                 reg_val = (cntx->sstatus & SR_SPP) ?
256                                 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
257         else
258                 return -EINVAL;
259
260         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
261                 return -EFAULT;
262
263         return 0;
264 }
265
266 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
267                                        const struct kvm_one_reg *reg)
268 {
269         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
270         unsigned long __user *uaddr =
271                         (unsigned long __user *)(unsigned long)reg->addr;
272         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
273                                             KVM_REG_SIZE_MASK |
274                                             KVM_REG_RISCV_CORE);
275         unsigned long reg_val;
276
277         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
278                 return -EINVAL;
279         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
280                 return -EINVAL;
281
282         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
283                 return -EFAULT;
284
285         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
286                 cntx->sepc = reg_val;
287         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
288                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
289                 ((unsigned long *)cntx)[reg_num] = reg_val;
290         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
291                 if (reg_val == KVM_RISCV_MODE_S)
292                         cntx->sstatus |= SR_SPP;
293                 else
294                         cntx->sstatus &= ~SR_SPP;
295         } else
296                 return -EINVAL;
297
298         return 0;
299 }
300
301 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
302                                       const struct kvm_one_reg *reg)
303 {
304         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
305         unsigned long __user *uaddr =
306                         (unsigned long __user *)(unsigned long)reg->addr;
307         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
308                                             KVM_REG_SIZE_MASK |
309                                             KVM_REG_RISCV_CSR);
310         unsigned long reg_val;
311
312         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
313                 return -EINVAL;
314         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
315                 return -EINVAL;
316
317         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
318                 kvm_riscv_vcpu_flush_interrupts(vcpu);
319                 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
320         } else
321                 reg_val = ((unsigned long *)csr)[reg_num];
322
323         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
324                 return -EFAULT;
325
326         return 0;
327 }
328
329 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
330                                       const struct kvm_one_reg *reg)
331 {
332         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
333         unsigned long __user *uaddr =
334                         (unsigned long __user *)(unsigned long)reg->addr;
335         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
336                                             KVM_REG_SIZE_MASK |
337                                             KVM_REG_RISCV_CSR);
338         unsigned long reg_val;
339
340         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
341                 return -EINVAL;
342         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
343                 return -EINVAL;
344
345         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
346                 return -EFAULT;
347
348         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
349                 reg_val &= VSIP_VALID_MASK;
350                 reg_val <<= VSIP_TO_HVIP_SHIFT;
351         }
352
353         ((unsigned long *)csr)[reg_num] = reg_val;
354
355         if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
356                 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
357
358         return 0;
359 }
360
361 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
362                                   const struct kvm_one_reg *reg)
363 {
364         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
365                 return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
366         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
367                 return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
368         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
369                 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
370         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
371                 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
372         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
373                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
374                                                  KVM_REG_RISCV_FP_F);
375         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
376                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
377                                                  KVM_REG_RISCV_FP_D);
378
379         return -EINVAL;
380 }
381
382 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
383                                   const struct kvm_one_reg *reg)
384 {
385         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
386                 return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
387         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
388                 return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
389         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
390                 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
391         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
392                 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
393         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
394                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
395                                                  KVM_REG_RISCV_FP_F);
396         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
397                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
398                                                  KVM_REG_RISCV_FP_D);
399
400         return -EINVAL;
401 }
402
403 long kvm_arch_vcpu_async_ioctl(struct file *filp,
404                                unsigned int ioctl, unsigned long arg)
405 {
406         struct kvm_vcpu *vcpu = filp->private_data;
407         void __user *argp = (void __user *)arg;
408
409         if (ioctl == KVM_INTERRUPT) {
410                 struct kvm_interrupt irq;
411
412                 if (copy_from_user(&irq, argp, sizeof(irq)))
413                         return -EFAULT;
414
415                 if (irq.irq == KVM_INTERRUPT_SET)
416                         return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
417                 else
418                         return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
419         }
420
421         return -ENOIOCTLCMD;
422 }
423
424 long kvm_arch_vcpu_ioctl(struct file *filp,
425                          unsigned int ioctl, unsigned long arg)
426 {
427         struct kvm_vcpu *vcpu = filp->private_data;
428         void __user *argp = (void __user *)arg;
429         long r = -EINVAL;
430
431         switch (ioctl) {
432         case KVM_SET_ONE_REG:
433         case KVM_GET_ONE_REG: {
434                 struct kvm_one_reg reg;
435
436                 r = -EFAULT;
437                 if (copy_from_user(&reg, argp, sizeof(reg)))
438                         break;
439
440                 if (ioctl == KVM_SET_ONE_REG)
441                         r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
442                 else
443                         r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
444                 break;
445         }
446         default:
447                 break;
448         }
449
450         return r;
451 }
452
453 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
454                                   struct kvm_sregs *sregs)
455 {
456         return -EINVAL;
457 }
458
459 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
460                                   struct kvm_sregs *sregs)
461 {
462         return -EINVAL;
463 }
464
465 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
466 {
467         return -EINVAL;
468 }
469
470 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
471 {
472         return -EINVAL;
473 }
474
475 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
476                                   struct kvm_translation *tr)
477 {
478         return -EINVAL;
479 }
480
481 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
482 {
483         return -EINVAL;
484 }
485
486 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
487 {
488         return -EINVAL;
489 }
490
491 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
492 {
493         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
494         unsigned long mask, val;
495
496         if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
497                 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
498                 val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
499
500                 csr->hvip &= ~mask;
501                 csr->hvip |= val;
502         }
503 }
504
505 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
506 {
507         unsigned long hvip;
508         struct kvm_vcpu_arch *v = &vcpu->arch;
509         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
510
511         /* Read current HVIP and VSIE CSRs */
512         csr->vsie = csr_read(CSR_VSIE);
513
514         /* Sync-up HVIP.VSSIP bit changes does by Guest */
515         hvip = csr_read(CSR_HVIP);
516         if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
517                 if (hvip & (1UL << IRQ_VS_SOFT)) {
518                         if (!test_and_set_bit(IRQ_VS_SOFT,
519                                               &v->irqs_pending_mask))
520                                 set_bit(IRQ_VS_SOFT, &v->irqs_pending);
521                 } else {
522                         if (!test_and_set_bit(IRQ_VS_SOFT,
523                                               &v->irqs_pending_mask))
524                                 clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
525                 }
526         }
527 }
528
529 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
530 {
531         if (irq != IRQ_VS_SOFT &&
532             irq != IRQ_VS_TIMER &&
533             irq != IRQ_VS_EXT)
534                 return -EINVAL;
535
536         set_bit(irq, &vcpu->arch.irqs_pending);
537         smp_mb__before_atomic();
538         set_bit(irq, &vcpu->arch.irqs_pending_mask);
539
540         kvm_vcpu_kick(vcpu);
541
542         return 0;
543 }
544
545 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
546 {
547         if (irq != IRQ_VS_SOFT &&
548             irq != IRQ_VS_TIMER &&
549             irq != IRQ_VS_EXT)
550                 return -EINVAL;
551
552         clear_bit(irq, &vcpu->arch.irqs_pending);
553         smp_mb__before_atomic();
554         set_bit(irq, &vcpu->arch.irqs_pending_mask);
555
556         return 0;
557 }
558
559 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
560 {
561         unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
562                             << VSIP_TO_HVIP_SHIFT) & mask;
563
564         return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
565 }
566
567 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
568 {
569         vcpu->arch.power_off = true;
570         kvm_make_request(KVM_REQ_SLEEP, vcpu);
571         kvm_vcpu_kick(vcpu);
572 }
573
574 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
575 {
576         vcpu->arch.power_off = false;
577         kvm_vcpu_wake_up(vcpu);
578 }
579
580 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
581                                     struct kvm_mp_state *mp_state)
582 {
583         if (vcpu->arch.power_off)
584                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
585         else
586                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
587
588         return 0;
589 }
590
591 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
592                                     struct kvm_mp_state *mp_state)
593 {
594         int ret = 0;
595
596         switch (mp_state->mp_state) {
597         case KVM_MP_STATE_RUNNABLE:
598                 vcpu->arch.power_off = false;
599                 break;
600         case KVM_MP_STATE_STOPPED:
601                 kvm_riscv_vcpu_power_off(vcpu);
602                 break;
603         default:
604                 ret = -EINVAL;
605         }
606
607         return ret;
608 }
609
610 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
611                                         struct kvm_guest_debug *dbg)
612 {
613         /* TODO; To be implemented later. */
614         return -EINVAL;
615 }
616
617 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
618 {
619         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
620
621         csr_write(CSR_VSSTATUS, csr->vsstatus);
622         csr_write(CSR_VSIE, csr->vsie);
623         csr_write(CSR_VSTVEC, csr->vstvec);
624         csr_write(CSR_VSSCRATCH, csr->vsscratch);
625         csr_write(CSR_VSEPC, csr->vsepc);
626         csr_write(CSR_VSCAUSE, csr->vscause);
627         csr_write(CSR_VSTVAL, csr->vstval);
628         csr_write(CSR_HVIP, csr->hvip);
629         csr_write(CSR_VSATP, csr->vsatp);
630
631         kvm_riscv_stage2_update_hgatp(vcpu);
632
633         kvm_riscv_vcpu_timer_restore(vcpu);
634
635         kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
636         kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
637                                         vcpu->arch.isa);
638
639         vcpu->cpu = cpu;
640 }
641
642 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
643 {
644         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
645
646         vcpu->cpu = -1;
647
648         kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
649                                      vcpu->arch.isa);
650         kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
651
652         csr_write(CSR_HGATP, 0);
653
654         csr->vsstatus = csr_read(CSR_VSSTATUS);
655         csr->vsie = csr_read(CSR_VSIE);
656         csr->vstvec = csr_read(CSR_VSTVEC);
657         csr->vsscratch = csr_read(CSR_VSSCRATCH);
658         csr->vsepc = csr_read(CSR_VSEPC);
659         csr->vscause = csr_read(CSR_VSCAUSE);
660         csr->vstval = csr_read(CSR_VSTVAL);
661         csr->hvip = csr_read(CSR_HVIP);
662         csr->vsatp = csr_read(CSR_VSATP);
663 }
664
665 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
666 {
667         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
668
669         if (kvm_request_pending(vcpu)) {
670                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
671                         rcuwait_wait_event(wait,
672                                 (!vcpu->arch.power_off) && (!vcpu->arch.pause),
673                                 TASK_INTERRUPTIBLE);
674
675                         if (vcpu->arch.power_off || vcpu->arch.pause) {
676                                 /*
677                                  * Awaken to handle a signal, request to
678                                  * sleep again later.
679                                  */
680                                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
681                         }
682                 }
683
684                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
685                         kvm_riscv_reset_vcpu(vcpu);
686
687                 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
688                         kvm_riscv_stage2_update_hgatp(vcpu);
689
690                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
691                         __kvm_riscv_hfence_gvma_all();
692         }
693 }
694
695 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
696 {
697         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
698
699         csr_write(CSR_HVIP, csr->hvip);
700 }
701
702 /*
703  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
704  * the vCPU is running.
705  *
706  * This must be noinstr as instrumentation may make use of RCU, and this is not
707  * safe during the EQS.
708  */
709 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
710 {
711         guest_state_enter_irqoff();
712         __kvm_riscv_switch_to(&vcpu->arch);
713         guest_state_exit_irqoff();
714 }
715
716 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
717 {
718         int ret;
719         struct kvm_cpu_trap trap;
720         struct kvm_run *run = vcpu->run;
721
722         /* Mark this VCPU ran at least once */
723         vcpu->arch.ran_atleast_once = true;
724
725         vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
726
727         /* Process MMIO value returned from user-space */
728         if (run->exit_reason == KVM_EXIT_MMIO) {
729                 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
730                 if (ret) {
731                         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
732                         return ret;
733                 }
734         }
735
736         /* Process SBI value returned from user-space */
737         if (run->exit_reason == KVM_EXIT_RISCV_SBI) {
738                 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
739                 if (ret) {
740                         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
741                         return ret;
742                 }
743         }
744
745         if (run->immediate_exit) {
746                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
747                 return -EINTR;
748         }
749
750         vcpu_load(vcpu);
751
752         kvm_sigset_activate(vcpu);
753
754         ret = 1;
755         run->exit_reason = KVM_EXIT_UNKNOWN;
756         while (ret > 0) {
757                 /* Check conditions before entering the guest */
758                 cond_resched();
759
760                 kvm_riscv_stage2_vmid_update(vcpu);
761
762                 kvm_riscv_check_vcpu_requests(vcpu);
763
764                 preempt_disable();
765
766                 local_irq_disable();
767
768                 /*
769                  * Exit if we have a signal pending so that we can deliver
770                  * the signal to user space.
771                  */
772                 if (signal_pending(current)) {
773                         ret = -EINTR;
774                         run->exit_reason = KVM_EXIT_INTR;
775                 }
776
777                 /*
778                  * Ensure we set mode to IN_GUEST_MODE after we disable
779                  * interrupts and before the final VCPU requests check.
780                  * See the comment in kvm_vcpu_exiting_guest_mode() and
781                  * Documentation/virt/kvm/vcpu-requests.rst
782                  */
783                 vcpu->mode = IN_GUEST_MODE;
784
785                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
786                 smp_mb__after_srcu_read_unlock();
787
788                 /*
789                  * We might have got VCPU interrupts updated asynchronously
790                  * so update it in HW.
791                  */
792                 kvm_riscv_vcpu_flush_interrupts(vcpu);
793
794                 /* Update HVIP CSR for current CPU */
795                 kvm_riscv_update_hvip(vcpu);
796
797                 if (ret <= 0 ||
798                     kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
799                     kvm_request_pending(vcpu)) {
800                         vcpu->mode = OUTSIDE_GUEST_MODE;
801                         local_irq_enable();
802                         preempt_enable();
803                         vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
804                         continue;
805                 }
806
807                 guest_timing_enter_irqoff();
808
809                 kvm_riscv_vcpu_enter_exit(vcpu);
810
811                 vcpu->mode = OUTSIDE_GUEST_MODE;
812                 vcpu->stat.exits++;
813
814                 /*
815                  * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
816                  * get an interrupt between __kvm_riscv_switch_to() and
817                  * local_irq_enable() which can potentially change CSRs.
818                  */
819                 trap.sepc = vcpu->arch.guest_context.sepc;
820                 trap.scause = csr_read(CSR_SCAUSE);
821                 trap.stval = csr_read(CSR_STVAL);
822                 trap.htval = csr_read(CSR_HTVAL);
823                 trap.htinst = csr_read(CSR_HTINST);
824
825                 /* Syncup interrupts state with HW */
826                 kvm_riscv_vcpu_sync_interrupts(vcpu);
827
828                 /*
829                  * We must ensure that any pending interrupts are taken before
830                  * we exit guest timing so that timer ticks are accounted as
831                  * guest time. Transiently unmask interrupts so that any
832                  * pending interrupts are taken.
833                  *
834                  * There's no barrier which ensures that pending interrupts are
835                  * recognised, so we just hope that the CPU takes any pending
836                  * interrupts between the enable and disable.
837                  */
838                 local_irq_enable();
839                 local_irq_disable();
840
841                 guest_timing_exit_irqoff();
842
843                 local_irq_enable();
844
845                 preempt_enable();
846
847                 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
848
849                 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
850         }
851
852         kvm_sigset_deactivate(vcpu);
853
854         vcpu_put(vcpu);
855
856         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
857
858         return ret;
859 }