MAINTAINERS: update the LSM maintainer info
[platform/kernel/linux-starfive.git] / arch / riscv / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/hugetlb.h>
13 #include <linux/module.h>
14 #include <linux/uaccess.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/signal.h>
18 #include <asm/csr.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21
22 #ifdef CONFIG_64BIT
23 static unsigned long gstage_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
24 static unsigned long gstage_pgd_levels = 3;
25 #define gstage_index_bits       9
26 #else
27 static unsigned long gstage_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
28 static unsigned long gstage_pgd_levels = 2;
29 #define gstage_index_bits       10
30 #endif
31
32 #define gstage_pgd_xbits        2
33 #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits))
34 #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \
35                          (gstage_pgd_levels * gstage_index_bits) + \
36                          gstage_pgd_xbits)
37 #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits))
38
39 #define gstage_pte_leaf(__ptep) \
40         (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
41
42 static inline unsigned long gstage_pte_index(gpa_t addr, u32 level)
43 {
44         unsigned long mask;
45         unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level);
46
47         if (level == (gstage_pgd_levels - 1))
48                 mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1;
49         else
50                 mask = PTRS_PER_PTE - 1;
51
52         return (addr >> shift) & mask;
53 }
54
55 static inline unsigned long gstage_pte_page_vaddr(pte_t pte)
56 {
57         return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
58 }
59
60 static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level)
61 {
62         u32 i;
63         unsigned long psz = 1UL << 12;
64
65         for (i = 0; i < gstage_pgd_levels; i++) {
66                 if (page_size == (psz << (i * gstage_index_bits))) {
67                         *out_level = i;
68                         return 0;
69                 }
70         }
71
72         return -EINVAL;
73 }
74
75 static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder)
76 {
77         if (gstage_pgd_levels < level)
78                 return -EINVAL;
79
80         *out_pgorder = 12 + (level * gstage_index_bits);
81         return 0;
82 }
83
84 static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize)
85 {
86         int rc;
87         unsigned long page_order = PAGE_SHIFT;
88
89         rc = gstage_level_to_page_order(level, &page_order);
90         if (rc)
91                 return rc;
92
93         *out_pgsize = BIT(page_order);
94         return 0;
95 }
96
97 static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr,
98                                   pte_t **ptepp, u32 *ptep_level)
99 {
100         pte_t *ptep;
101         u32 current_level = gstage_pgd_levels - 1;
102
103         *ptep_level = current_level;
104         ptep = (pte_t *)kvm->arch.pgd;
105         ptep = &ptep[gstage_pte_index(addr, current_level)];
106         while (ptep && pte_val(*ptep)) {
107                 if (gstage_pte_leaf(ptep)) {
108                         *ptep_level = current_level;
109                         *ptepp = ptep;
110                         return true;
111                 }
112
113                 if (current_level) {
114                         current_level--;
115                         *ptep_level = current_level;
116                         ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
117                         ptep = &ptep[gstage_pte_index(addr, current_level)];
118                 } else {
119                         ptep = NULL;
120                 }
121         }
122
123         return false;
124 }
125
126 static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
127 {
128         unsigned long order = PAGE_SHIFT;
129
130         if (gstage_level_to_page_order(level, &order))
131                 return;
132         addr &= ~(BIT(order) - 1);
133
134         kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order);
135 }
136
137 static int gstage_set_pte(struct kvm *kvm, u32 level,
138                            struct kvm_mmu_memory_cache *pcache,
139                            gpa_t addr, const pte_t *new_pte)
140 {
141         u32 current_level = gstage_pgd_levels - 1;
142         pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
143         pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)];
144
145         if (current_level < level)
146                 return -EINVAL;
147
148         while (current_level != level) {
149                 if (gstage_pte_leaf(ptep))
150                         return -EEXIST;
151
152                 if (!pte_val(*ptep)) {
153                         if (!pcache)
154                                 return -ENOMEM;
155                         next_ptep = kvm_mmu_memory_cache_alloc(pcache);
156                         if (!next_ptep)
157                                 return -ENOMEM;
158                         *ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
159                                         __pgprot(_PAGE_TABLE));
160                 } else {
161                         if (gstage_pte_leaf(ptep))
162                                 return -EEXIST;
163                         next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
164                 }
165
166                 current_level--;
167                 ptep = &next_ptep[gstage_pte_index(addr, current_level)];
168         }
169
170         *ptep = *new_pte;
171         if (gstage_pte_leaf(ptep))
172                 gstage_remote_tlb_flush(kvm, current_level, addr);
173
174         return 0;
175 }
176
177 static int gstage_map_page(struct kvm *kvm,
178                            struct kvm_mmu_memory_cache *pcache,
179                            gpa_t gpa, phys_addr_t hpa,
180                            unsigned long page_size,
181                            bool page_rdonly, bool page_exec)
182 {
183         int ret;
184         u32 level = 0;
185         pte_t new_pte;
186         pgprot_t prot;
187
188         ret = gstage_page_size_to_level(page_size, &level);
189         if (ret)
190                 return ret;
191
192         /*
193          * A RISC-V implementation can choose to either:
194          * 1) Update 'A' and 'D' PTE bits in hardware
195          * 2) Generate page fault when 'A' and/or 'D' bits are not set
196          *    PTE so that software can update these bits.
197          *
198          * We support both options mentioned above. To achieve this, we
199          * always set 'A' and 'D' PTE bits at time of creating G-stage
200          * mapping. To support KVM dirty page logging with both options
201          * mentioned above, we will write-protect G-stage PTEs to track
202          * dirty pages.
203          */
204
205         if (page_exec) {
206                 if (page_rdonly)
207                         prot = PAGE_READ_EXEC;
208                 else
209                         prot = PAGE_WRITE_EXEC;
210         } else {
211                 if (page_rdonly)
212                         prot = PAGE_READ;
213                 else
214                         prot = PAGE_WRITE;
215         }
216         new_pte = pfn_pte(PFN_DOWN(hpa), prot);
217         new_pte = pte_mkdirty(new_pte);
218
219         return gstage_set_pte(kvm, level, pcache, gpa, &new_pte);
220 }
221
222 enum gstage_op {
223         GSTAGE_OP_NOP = 0,      /* Nothing */
224         GSTAGE_OP_CLEAR,        /* Clear/Unmap */
225         GSTAGE_OP_WP,           /* Write-protect */
226 };
227
228 static void gstage_op_pte(struct kvm *kvm, gpa_t addr,
229                           pte_t *ptep, u32 ptep_level, enum gstage_op op)
230 {
231         int i, ret;
232         pte_t *next_ptep;
233         u32 next_ptep_level;
234         unsigned long next_page_size, page_size;
235
236         ret = gstage_level_to_page_size(ptep_level, &page_size);
237         if (ret)
238                 return;
239
240         BUG_ON(addr & (page_size - 1));
241
242         if (!pte_val(*ptep))
243                 return;
244
245         if (ptep_level && !gstage_pte_leaf(ptep)) {
246                 next_ptep = (pte_t *)gstage_pte_page_vaddr(*ptep);
247                 next_ptep_level = ptep_level - 1;
248                 ret = gstage_level_to_page_size(next_ptep_level,
249                                                 &next_page_size);
250                 if (ret)
251                         return;
252
253                 if (op == GSTAGE_OP_CLEAR)
254                         set_pte(ptep, __pte(0));
255                 for (i = 0; i < PTRS_PER_PTE; i++)
256                         gstage_op_pte(kvm, addr + i * next_page_size,
257                                         &next_ptep[i], next_ptep_level, op);
258                 if (op == GSTAGE_OP_CLEAR)
259                         put_page(virt_to_page(next_ptep));
260         } else {
261                 if (op == GSTAGE_OP_CLEAR)
262                         set_pte(ptep, __pte(0));
263                 else if (op == GSTAGE_OP_WP)
264                         set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
265                 gstage_remote_tlb_flush(kvm, ptep_level, addr);
266         }
267 }
268
269 static void gstage_unmap_range(struct kvm *kvm, gpa_t start,
270                                gpa_t size, bool may_block)
271 {
272         int ret;
273         pte_t *ptep;
274         u32 ptep_level;
275         bool found_leaf;
276         unsigned long page_size;
277         gpa_t addr = start, end = start + size;
278
279         while (addr < end) {
280                 found_leaf = gstage_get_leaf_entry(kvm, addr,
281                                                    &ptep, &ptep_level);
282                 ret = gstage_level_to_page_size(ptep_level, &page_size);
283                 if (ret)
284                         break;
285
286                 if (!found_leaf)
287                         goto next;
288
289                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
290                         gstage_op_pte(kvm, addr, ptep,
291                                       ptep_level, GSTAGE_OP_CLEAR);
292
293 next:
294                 addr += page_size;
295
296                 /*
297                  * If the range is too large, release the kvm->mmu_lock
298                  * to prevent starvation and lockup detector warnings.
299                  */
300                 if (may_block && addr < end)
301                         cond_resched_lock(&kvm->mmu_lock);
302         }
303 }
304
305 static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
306 {
307         int ret;
308         pte_t *ptep;
309         u32 ptep_level;
310         bool found_leaf;
311         gpa_t addr = start;
312         unsigned long page_size;
313
314         while (addr < end) {
315                 found_leaf = gstage_get_leaf_entry(kvm, addr,
316                                                    &ptep, &ptep_level);
317                 ret = gstage_level_to_page_size(ptep_level, &page_size);
318                 if (ret)
319                         break;
320
321                 if (!found_leaf)
322                         goto next;
323
324                 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
325                         gstage_op_pte(kvm, addr, ptep,
326                                       ptep_level, GSTAGE_OP_WP);
327
328 next:
329                 addr += page_size;
330         }
331 }
332
333 static void gstage_wp_memory_region(struct kvm *kvm, int slot)
334 {
335         struct kvm_memslots *slots = kvm_memslots(kvm);
336         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
337         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
338         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
339
340         spin_lock(&kvm->mmu_lock);
341         gstage_wp_range(kvm, start, end);
342         spin_unlock(&kvm->mmu_lock);
343         kvm_flush_remote_tlbs(kvm);
344 }
345
346 static int gstage_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
347                           unsigned long size, bool writable)
348 {
349         pte_t pte;
350         int ret = 0;
351         unsigned long pfn;
352         phys_addr_t addr, end;
353         struct kvm_mmu_memory_cache pcache;
354
355         memset(&pcache, 0, sizeof(pcache));
356         pcache.gfp_zero = __GFP_ZERO;
357
358         end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
359         pfn = __phys_to_pfn(hpa);
360
361         for (addr = gpa; addr < end; addr += PAGE_SIZE) {
362                 pte = pfn_pte(pfn, PAGE_KERNEL);
363
364                 if (!writable)
365                         pte = pte_wrprotect(pte);
366
367                 ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels);
368                 if (ret)
369                         goto out;
370
371                 spin_lock(&kvm->mmu_lock);
372                 ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte);
373                 spin_unlock(&kvm->mmu_lock);
374                 if (ret)
375                         goto out;
376
377                 pfn++;
378         }
379
380 out:
381         kvm_mmu_free_memory_cache(&pcache);
382         return ret;
383 }
384
385 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
386                                              struct kvm_memory_slot *slot,
387                                              gfn_t gfn_offset,
388                                              unsigned long mask)
389 {
390         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
391         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
392         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
393
394         gstage_wp_range(kvm, start, end);
395 }
396
397 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
398 {
399 }
400
401 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
402                                         const struct kvm_memory_slot *memslot)
403 {
404         kvm_flush_remote_tlbs(kvm);
405 }
406
407 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
408 {
409 }
410
411 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
412 {
413 }
414
415 void kvm_arch_flush_shadow_all(struct kvm *kvm)
416 {
417         kvm_riscv_gstage_free_pgd(kvm);
418 }
419
420 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
421                                    struct kvm_memory_slot *slot)
422 {
423         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
424         phys_addr_t size = slot->npages << PAGE_SHIFT;
425
426         spin_lock(&kvm->mmu_lock);
427         gstage_unmap_range(kvm, gpa, size, false);
428         spin_unlock(&kvm->mmu_lock);
429 }
430
431 void kvm_arch_commit_memory_region(struct kvm *kvm,
432                                 struct kvm_memory_slot *old,
433                                 const struct kvm_memory_slot *new,
434                                 enum kvm_mr_change change)
435 {
436         /*
437          * At this point memslot has been committed and there is an
438          * allocated dirty_bitmap[], dirty pages will be tracked while
439          * the memory slot is write protected.
440          */
441         if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES)
442                 gstage_wp_memory_region(kvm, new->id);
443 }
444
445 int kvm_arch_prepare_memory_region(struct kvm *kvm,
446                                 const struct kvm_memory_slot *old,
447                                 struct kvm_memory_slot *new,
448                                 enum kvm_mr_change change)
449 {
450         hva_t hva, reg_end, size;
451         gpa_t base_gpa;
452         bool writable;
453         int ret = 0;
454
455         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
456                         change != KVM_MR_FLAGS_ONLY)
457                 return 0;
458
459         /*
460          * Prevent userspace from creating a memory region outside of the GPA
461          * space addressable by the KVM guest GPA space.
462          */
463         if ((new->base_gfn + new->npages) >=
464             (gstage_gpa_size >> PAGE_SHIFT))
465                 return -EFAULT;
466
467         hva = new->userspace_addr;
468         size = new->npages << PAGE_SHIFT;
469         reg_end = hva + size;
470         base_gpa = new->base_gfn << PAGE_SHIFT;
471         writable = !(new->flags & KVM_MEM_READONLY);
472
473         mmap_read_lock(current->mm);
474
475         /*
476          * A memory region could potentially cover multiple VMAs, and
477          * any holes between them, so iterate over all of them to find
478          * out if we can map any of them right now.
479          *
480          *     +--------------------------------------------+
481          * +---------------+----------------+   +----------------+
482          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
483          * +---------------+----------------+   +----------------+
484          *     |               memory region                |
485          *     +--------------------------------------------+
486          */
487         do {
488                 struct vm_area_struct *vma = find_vma(current->mm, hva);
489                 hva_t vm_start, vm_end;
490
491                 if (!vma || vma->vm_start >= reg_end)
492                         break;
493
494                 /*
495                  * Mapping a read-only VMA is only allowed if the
496                  * memory region is configured as read-only.
497                  */
498                 if (writable && !(vma->vm_flags & VM_WRITE)) {
499                         ret = -EPERM;
500                         break;
501                 }
502
503                 /* Take the intersection of this VMA with the memory region */
504                 vm_start = max(hva, vma->vm_start);
505                 vm_end = min(reg_end, vma->vm_end);
506
507                 if (vma->vm_flags & VM_PFNMAP) {
508                         gpa_t gpa = base_gpa + (vm_start - hva);
509                         phys_addr_t pa;
510
511                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
512                         pa += vm_start - vma->vm_start;
513
514                         /* IO region dirty page logging not allowed */
515                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
516                                 ret = -EINVAL;
517                                 goto out;
518                         }
519
520                         ret = gstage_ioremap(kvm, gpa, pa,
521                                              vm_end - vm_start, writable);
522                         if (ret)
523                                 break;
524                 }
525                 hva = vm_end;
526         } while (hva < reg_end);
527
528         if (change == KVM_MR_FLAGS_ONLY)
529                 goto out;
530
531         spin_lock(&kvm->mmu_lock);
532         if (ret)
533                 gstage_unmap_range(kvm, base_gpa, size, false);
534         spin_unlock(&kvm->mmu_lock);
535
536 out:
537         mmap_read_unlock(current->mm);
538         return ret;
539 }
540
541 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
542 {
543         if (!kvm->arch.pgd)
544                 return false;
545
546         gstage_unmap_range(kvm, range->start << PAGE_SHIFT,
547                            (range->end - range->start) << PAGE_SHIFT,
548                            range->may_block);
549         return false;
550 }
551
552 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
553 {
554         int ret;
555         kvm_pfn_t pfn = pte_pfn(range->pte);
556
557         if (!kvm->arch.pgd)
558                 return false;
559
560         WARN_ON(range->end - range->start != 1);
561
562         ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT,
563                               __pfn_to_phys(pfn), PAGE_SIZE, true, true);
564         if (ret) {
565                 kvm_debug("Failed to map G-stage page (error %d)\n", ret);
566                 return true;
567         }
568
569         return false;
570 }
571
572 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
573 {
574         pte_t *ptep;
575         u32 ptep_level = 0;
576         u64 size = (range->end - range->start) << PAGE_SHIFT;
577
578         if (!kvm->arch.pgd)
579                 return false;
580
581         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
582
583         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
584                                    &ptep, &ptep_level))
585                 return false;
586
587         return ptep_test_and_clear_young(NULL, 0, ptep);
588 }
589
590 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
591 {
592         pte_t *ptep;
593         u32 ptep_level = 0;
594         u64 size = (range->end - range->start) << PAGE_SHIFT;
595
596         if (!kvm->arch.pgd)
597                 return false;
598
599         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
600
601         if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
602                                    &ptep, &ptep_level))
603                 return false;
604
605         return pte_young(*ptep);
606 }
607
608 int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu,
609                          struct kvm_memory_slot *memslot,
610                          gpa_t gpa, unsigned long hva, bool is_write)
611 {
612         int ret;
613         kvm_pfn_t hfn;
614         bool writeable;
615         short vma_pageshift;
616         gfn_t gfn = gpa >> PAGE_SHIFT;
617         struct vm_area_struct *vma;
618         struct kvm *kvm = vcpu->kvm;
619         struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache;
620         bool logging = (memslot->dirty_bitmap &&
621                         !(memslot->flags & KVM_MEM_READONLY)) ? true : false;
622         unsigned long vma_pagesize, mmu_seq;
623
624         mmap_read_lock(current->mm);
625
626         vma = find_vma_intersection(current->mm, hva, hva + 1);
627         if (unlikely(!vma)) {
628                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
629                 mmap_read_unlock(current->mm);
630                 return -EFAULT;
631         }
632
633         if (is_vm_hugetlb_page(vma))
634                 vma_pageshift = huge_page_shift(hstate_vma(vma));
635         else
636                 vma_pageshift = PAGE_SHIFT;
637         vma_pagesize = 1ULL << vma_pageshift;
638         if (logging || (vma->vm_flags & VM_PFNMAP))
639                 vma_pagesize = PAGE_SIZE;
640
641         if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
642                 gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
643
644         mmap_read_unlock(current->mm);
645
646         if (vma_pagesize != PGDIR_SIZE &&
647             vma_pagesize != PMD_SIZE &&
648             vma_pagesize != PAGE_SIZE) {
649                 kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
650                 return -EFAULT;
651         }
652
653         /* We need minimum second+third level pages */
654         ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels);
655         if (ret) {
656                 kvm_err("Failed to topup G-stage cache\n");
657                 return ret;
658         }
659
660         mmu_seq = kvm->mmu_notifier_seq;
661
662         hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
663         if (hfn == KVM_PFN_ERR_HWPOISON) {
664                 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
665                                 vma_pageshift, current);
666                 return 0;
667         }
668         if (is_error_noslot_pfn(hfn))
669                 return -EFAULT;
670
671         /*
672          * If logging is active then we allow writable pages only
673          * for write faults.
674          */
675         if (logging && !is_write)
676                 writeable = false;
677
678         spin_lock(&kvm->mmu_lock);
679
680         if (mmu_notifier_retry(kvm, mmu_seq))
681                 goto out_unlock;
682
683         if (writeable) {
684                 kvm_set_pfn_dirty(hfn);
685                 mark_page_dirty(kvm, gfn);
686                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
687                                       vma_pagesize, false, true);
688         } else {
689                 ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
690                                       vma_pagesize, true, true);
691         }
692
693         if (ret)
694                 kvm_err("Failed to map in G-stage\n");
695
696 out_unlock:
697         spin_unlock(&kvm->mmu_lock);
698         kvm_set_pfn_accessed(hfn);
699         kvm_release_pfn_clean(hfn);
700         return ret;
701 }
702
703 int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm)
704 {
705         struct page *pgd_page;
706
707         if (kvm->arch.pgd != NULL) {
708                 kvm_err("kvm_arch already initialized?\n");
709                 return -EINVAL;
710         }
711
712         pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
713                                 get_order(gstage_pgd_size));
714         if (!pgd_page)
715                 return -ENOMEM;
716         kvm->arch.pgd = page_to_virt(pgd_page);
717         kvm->arch.pgd_phys = page_to_phys(pgd_page);
718
719         return 0;
720 }
721
722 void kvm_riscv_gstage_free_pgd(struct kvm *kvm)
723 {
724         void *pgd = NULL;
725
726         spin_lock(&kvm->mmu_lock);
727         if (kvm->arch.pgd) {
728                 gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false);
729                 pgd = READ_ONCE(kvm->arch.pgd);
730                 kvm->arch.pgd = NULL;
731                 kvm->arch.pgd_phys = 0;
732         }
733         spin_unlock(&kvm->mmu_lock);
734
735         if (pgd)
736                 free_pages((unsigned long)pgd, get_order(gstage_pgd_size));
737 }
738
739 void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu)
740 {
741         unsigned long hgatp = gstage_mode;
742         struct kvm_arch *k = &vcpu->kvm->arch;
743
744         hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
745                  HGATP_VMID_MASK;
746         hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
747
748         csr_write(CSR_HGATP, hgatp);
749
750         if (!kvm_riscv_gstage_vmid_bits())
751                 kvm_riscv_local_hfence_gvma_all();
752 }
753
754 void kvm_riscv_gstage_mode_detect(void)
755 {
756 #ifdef CONFIG_64BIT
757         /* Try Sv57x4 G-stage mode */
758         csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
759         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) {
760                 gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT);
761                 gstage_pgd_levels = 5;
762                 goto skip_sv48x4_test;
763         }
764
765         /* Try Sv48x4 G-stage mode */
766         csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
767         if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
768                 gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
769                 gstage_pgd_levels = 4;
770         }
771 skip_sv48x4_test:
772
773         csr_write(CSR_HGATP, 0);
774         kvm_riscv_local_hfence_gvma_all();
775 #endif
776 }
777
778 unsigned long kvm_riscv_gstage_mode(void)
779 {
780         return gstage_mode >> HGATP_MODE_SHIFT;
781 }
782
783 int kvm_riscv_gstage_gpa_bits(void)
784 {
785         return gstage_gpa_bits;
786 }