riscv: mm: notify remote harts about mmu cache updates
[platform/kernel/linux-rpi.git] / arch / riscv / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR        PAGE_OFFSET
16 #else
17
18 #define ADDRESS_SPACE_END       (UL(-1))
19
20 #ifdef CONFIG_64BIT
21 /* Leave 2GB for kernel and BPF at the end of the address space */
22 #define KERNEL_LINK_ADDR        (ADDRESS_SPACE_END - SZ_2G + 1)
23 #else
24 #define KERNEL_LINK_ADDR        PAGE_OFFSET
25 #endif
26
27 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
28 #define VMALLOC_END      (PAGE_OFFSET - 1)
29 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
30
31 #define BPF_JIT_REGION_SIZE     (SZ_128M)
32 #ifdef CONFIG_64BIT
33 #define BPF_JIT_REGION_START    (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
34 #define BPF_JIT_REGION_END      (MODULES_END)
35 #else
36 #define BPF_JIT_REGION_START    (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
37 #define BPF_JIT_REGION_END      (VMALLOC_END)
38 #endif
39
40 /* Modules always live before the kernel */
41 #ifdef CONFIG_64BIT
42 #define MODULES_VADDR   (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
43 #define MODULES_END     (PFN_ALIGN((unsigned long)&_start))
44 #endif
45
46 /*
47  * Roughly size the vmemmap space to be large enough to fit enough
48  * struct pages to map half the virtual address space. Then
49  * position vmemmap directly below the VMALLOC region.
50  */
51 #define VMEMMAP_SHIFT \
52         (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
53 #define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
54 #define VMEMMAP_END     (VMALLOC_START - 1)
55 #define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)
56
57 /*
58  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
59  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
60  */
61 #define vmemmap         ((struct page *)VMEMMAP_START)
62
63 #define PCI_IO_SIZE      SZ_16M
64 #define PCI_IO_END       VMEMMAP_START
65 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
66
67 #define FIXADDR_TOP      PCI_IO_START
68 #ifdef CONFIG_64BIT
69 #define FIXADDR_SIZE     PMD_SIZE
70 #else
71 #define FIXADDR_SIZE     PGDIR_SIZE
72 #endif
73 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
74
75 #endif
76
77 #ifdef CONFIG_XIP_KERNEL
78 #define XIP_OFFSET              SZ_8M
79 #else
80 #define XIP_OFFSET              0
81 #endif
82
83 #ifndef __ASSEMBLY__
84
85 /* Page Upper Directory not used in RISC-V */
86 #include <asm-generic/pgtable-nopud.h>
87 #include <asm/page.h>
88 #include <asm/tlbflush.h>
89 #include <linux/mm_types.h>
90
91 #ifdef CONFIG_64BIT
92 #include <asm/pgtable-64.h>
93 #else
94 #include <asm/pgtable-32.h>
95 #endif /* CONFIG_64BIT */
96
97 #ifdef CONFIG_XIP_KERNEL
98 #define XIP_FIXUP(addr) ({                                                      \
99         uintptr_t __a = (uintptr_t)(addr);                                      \
100         (__a >= CONFIG_XIP_PHYS_ADDR && __a < CONFIG_XIP_PHYS_ADDR + SZ_16M) ?  \
101                 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
102                 __a;                                                            \
103         })
104 #else
105 #define XIP_FIXUP(addr)         (addr)
106 #endif /* CONFIG_XIP_KERNEL */
107
108 #ifdef CONFIG_MMU
109 /* Number of entries in the page global directory */
110 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
111 /* Number of entries in the page table */
112 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
113
114 /* Number of PGD entries that a user-mode program can use */
115 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
116
117 /* Page protection bits */
118 #define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
119
120 #define PAGE_NONE               __pgprot(_PAGE_PROT_NONE)
121 #define PAGE_READ               __pgprot(_PAGE_BASE | _PAGE_READ)
122 #define PAGE_WRITE              __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
123 #define PAGE_EXEC               __pgprot(_PAGE_BASE | _PAGE_EXEC)
124 #define PAGE_READ_EXEC          __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
125 #define PAGE_WRITE_EXEC         __pgprot(_PAGE_BASE | _PAGE_READ |      \
126                                          _PAGE_EXEC | _PAGE_WRITE)
127
128 #define PAGE_COPY               PAGE_READ
129 #define PAGE_COPY_EXEC          PAGE_EXEC
130 #define PAGE_COPY_READ_EXEC     PAGE_READ_EXEC
131 #define PAGE_SHARED             PAGE_WRITE
132 #define PAGE_SHARED_EXEC        PAGE_WRITE_EXEC
133
134 #define _PAGE_KERNEL            (_PAGE_READ \
135                                 | _PAGE_WRITE \
136                                 | _PAGE_PRESENT \
137                                 | _PAGE_ACCESSED \
138                                 | _PAGE_DIRTY \
139                                 | _PAGE_GLOBAL)
140
141 #define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
142 #define PAGE_KERNEL_READ        __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
143 #define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
144 #define PAGE_KERNEL_READ_EXEC   __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
145                                          | _PAGE_EXEC)
146
147 #define PAGE_TABLE              __pgprot(_PAGE_TABLE)
148
149 /*
150  * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
151  * change the properties of memory regions.
152  */
153 #define _PAGE_IOREMAP _PAGE_KERNEL
154
155 extern pgd_t swapper_pg_dir[];
156
157 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
158 #define __P000  PAGE_NONE
159 #define __P001  PAGE_READ
160 #define __P010  PAGE_COPY
161 #define __P011  PAGE_COPY
162 #define __P100  PAGE_EXEC
163 #define __P101  PAGE_READ_EXEC
164 #define __P110  PAGE_COPY_EXEC
165 #define __P111  PAGE_COPY_READ_EXEC
166
167 /* MAP_SHARED permissions: xwr */
168 #define __S000  PAGE_NONE
169 #define __S001  PAGE_READ
170 #define __S010  PAGE_SHARED
171 #define __S011  PAGE_SHARED
172 #define __S100  PAGE_EXEC
173 #define __S101  PAGE_READ_EXEC
174 #define __S110  PAGE_SHARED_EXEC
175 #define __S111  PAGE_SHARED_EXEC
176
177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
178 static inline int pmd_present(pmd_t pmd)
179 {
180         /*
181          * Checking for _PAGE_LEAF is needed too because:
182          * When splitting a THP, split_huge_page() will temporarily clear
183          * the present bit, in this situation, pmd_present() and
184          * pmd_trans_huge() still needs to return true.
185          */
186         return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
187 }
188 #else
189 static inline int pmd_present(pmd_t pmd)
190 {
191         return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
192 }
193 #endif
194
195 static inline int pmd_none(pmd_t pmd)
196 {
197         return (pmd_val(pmd) == 0);
198 }
199
200 static inline int pmd_bad(pmd_t pmd)
201 {
202         return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
203 }
204
205 #define pmd_leaf        pmd_leaf
206 static inline int pmd_leaf(pmd_t pmd)
207 {
208         return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
209 }
210
211 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
212 {
213         *pmdp = pmd;
214 }
215
216 static inline void pmd_clear(pmd_t *pmdp)
217 {
218         set_pmd(pmdp, __pmd(0));
219 }
220
221 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
222 {
223         return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
224 }
225
226 static inline unsigned long _pgd_pfn(pgd_t pgd)
227 {
228         return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
229 }
230
231 static inline struct page *pmd_page(pmd_t pmd)
232 {
233         return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
234 }
235
236 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
237 {
238         return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
239 }
240
241 static inline pte_t pmd_pte(pmd_t pmd)
242 {
243         return __pte(pmd_val(pmd));
244 }
245
246 static inline pte_t pud_pte(pud_t pud)
247 {
248         return __pte(pud_val(pud));
249 }
250
251 /* Yields the page frame number (PFN) of a page table entry */
252 static inline unsigned long pte_pfn(pte_t pte)
253 {
254         return (pte_val(pte) >> _PAGE_PFN_SHIFT);
255 }
256
257 #define pte_page(x)     pfn_to_page(pte_pfn(x))
258
259 /* Constructs a page table entry */
260 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
261 {
262         return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
263 }
264
265 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
266
267 static inline int pte_present(pte_t pte)
268 {
269         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
270 }
271
272 static inline int pte_none(pte_t pte)
273 {
274         return (pte_val(pte) == 0);
275 }
276
277 static inline int pte_write(pte_t pte)
278 {
279         return pte_val(pte) & _PAGE_WRITE;
280 }
281
282 static inline int pte_exec(pte_t pte)
283 {
284         return pte_val(pte) & _PAGE_EXEC;
285 }
286
287 static inline int pte_huge(pte_t pte)
288 {
289         return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
290 }
291
292 static inline int pte_dirty(pte_t pte)
293 {
294         return pte_val(pte) & _PAGE_DIRTY;
295 }
296
297 static inline int pte_young(pte_t pte)
298 {
299         return pte_val(pte) & _PAGE_ACCESSED;
300 }
301
302 static inline int pte_special(pte_t pte)
303 {
304         return pte_val(pte) & _PAGE_SPECIAL;
305 }
306
307 /* static inline pte_t pte_rdprotect(pte_t pte) */
308
309 static inline pte_t pte_wrprotect(pte_t pte)
310 {
311         return __pte(pte_val(pte) & ~(_PAGE_WRITE));
312 }
313
314 /* static inline pte_t pte_mkread(pte_t pte) */
315
316 static inline pte_t pte_mkwrite(pte_t pte)
317 {
318         return __pte(pte_val(pte) | _PAGE_WRITE);
319 }
320
321 /* static inline pte_t pte_mkexec(pte_t pte) */
322
323 static inline pte_t pte_mkdirty(pte_t pte)
324 {
325         return __pte(pte_val(pte) | _PAGE_DIRTY);
326 }
327
328 static inline pte_t pte_mkclean(pte_t pte)
329 {
330         return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
331 }
332
333 static inline pte_t pte_mkyoung(pte_t pte)
334 {
335         return __pte(pte_val(pte) | _PAGE_ACCESSED);
336 }
337
338 static inline pte_t pte_mkold(pte_t pte)
339 {
340         return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
341 }
342
343 static inline pte_t pte_mkspecial(pte_t pte)
344 {
345         return __pte(pte_val(pte) | _PAGE_SPECIAL);
346 }
347
348 static inline pte_t pte_mkhuge(pte_t pte)
349 {
350         return pte;
351 }
352
353 #ifdef CONFIG_NUMA_BALANCING
354 /*
355  * See the comment in include/asm-generic/pgtable.h
356  */
357 static inline int pte_protnone(pte_t pte)
358 {
359         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
360 }
361
362 static inline int pmd_protnone(pmd_t pmd)
363 {
364         return pte_protnone(pmd_pte(pmd));
365 }
366 #endif
367
368 /* Modify page protection bits */
369 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
370 {
371         return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
372 }
373
374 #define pgd_ERROR(e) \
375         pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
376
377
378 /* Commit new configuration to MMU hardware */
379 static inline void update_mmu_cache(struct vm_area_struct *vma,
380         unsigned long address, pte_t *ptep)
381 {
382         /*
383          * The kernel assumes that TLBs don't cache invalid entries, but
384          * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
385          * cache flush; it is necessary even after writing invalid entries.
386          * Relying on flush_tlb_fix_spurious_fault would suffice, but
387          * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
388          */
389         flush_tlb_page(vma, address);
390 }
391
392 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
393                 unsigned long address, pmd_t *pmdp)
394 {
395         pte_t *ptep = (pte_t *)pmdp;
396
397         update_mmu_cache(vma, address, ptep);
398 }
399
400 #define __HAVE_ARCH_PTE_SAME
401 static inline int pte_same(pte_t pte_a, pte_t pte_b)
402 {
403         return pte_val(pte_a) == pte_val(pte_b);
404 }
405
406 /*
407  * Certain architectures need to do special things when PTEs within
408  * a page table are directly modified.  Thus, the following hook is
409  * made available.
410  */
411 static inline void set_pte(pte_t *ptep, pte_t pteval)
412 {
413         *ptep = pteval;
414 }
415
416 void flush_icache_pte(pte_t pte);
417
418 static inline void set_pte_at(struct mm_struct *mm,
419         unsigned long addr, pte_t *ptep, pte_t pteval)
420 {
421         if (pte_present(pteval) && pte_exec(pteval))
422                 flush_icache_pte(pteval);
423
424         set_pte(ptep, pteval);
425 }
426
427 static inline void pte_clear(struct mm_struct *mm,
428         unsigned long addr, pte_t *ptep)
429 {
430         set_pte_at(mm, addr, ptep, __pte(0));
431 }
432
433 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
434 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
435                                         unsigned long address, pte_t *ptep,
436                                         pte_t entry, int dirty)
437 {
438         if (!pte_same(*ptep, entry))
439                 set_pte_at(vma->vm_mm, address, ptep, entry);
440         /*
441          * update_mmu_cache will unconditionally execute, handling both
442          * the case that the PTE changed and the spurious fault case.
443          */
444         return true;
445 }
446
447 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
448 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
449                                        unsigned long address, pte_t *ptep)
450 {
451         return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
452 }
453
454 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
455 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
456                                             unsigned long address,
457                                             pte_t *ptep)
458 {
459         if (!pte_young(*ptep))
460                 return 0;
461         return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
462 }
463
464 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
465 static inline void ptep_set_wrprotect(struct mm_struct *mm,
466                                       unsigned long address, pte_t *ptep)
467 {
468         atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
469 }
470
471 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
472 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
473                                          unsigned long address, pte_t *ptep)
474 {
475         /*
476          * This comment is borrowed from x86, but applies equally to RISC-V:
477          *
478          * Clearing the accessed bit without a TLB flush
479          * doesn't cause data corruption. [ It could cause incorrect
480          * page aging and the (mistaken) reclaim of hot pages, but the
481          * chance of that should be relatively low. ]
482          *
483          * So as a performance optimization don't flush the TLB when
484          * clearing the accessed bit, it will eventually be flushed by
485          * a context switch or a VM operation anyway. [ In the rare
486          * event of it not getting flushed for a long time the delay
487          * shouldn't really matter because there's no real memory
488          * pressure for swapout to react to. ]
489          */
490         return ptep_test_and_clear_young(vma, address, ptep);
491 }
492
493 /*
494  * THP functions
495  */
496 static inline pmd_t pte_pmd(pte_t pte)
497 {
498         return __pmd(pte_val(pte));
499 }
500
501 static inline pmd_t pmd_mkhuge(pmd_t pmd)
502 {
503         return pmd;
504 }
505
506 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
507 {
508         return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
509 }
510
511 #define __pmd_to_phys(pmd)  (pmd_val(pmd) >> _PAGE_PFN_SHIFT << PAGE_SHIFT)
512
513 static inline unsigned long pmd_pfn(pmd_t pmd)
514 {
515         return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
516 }
517
518 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
519 {
520         return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
521 }
522
523 #define pmd_write pmd_write
524 static inline int pmd_write(pmd_t pmd)
525 {
526         return pte_write(pmd_pte(pmd));
527 }
528
529 static inline int pmd_dirty(pmd_t pmd)
530 {
531         return pte_dirty(pmd_pte(pmd));
532 }
533
534 static inline int pmd_young(pmd_t pmd)
535 {
536         return pte_young(pmd_pte(pmd));
537 }
538
539 static inline pmd_t pmd_mkold(pmd_t pmd)
540 {
541         return pte_pmd(pte_mkold(pmd_pte(pmd)));
542 }
543
544 static inline pmd_t pmd_mkyoung(pmd_t pmd)
545 {
546         return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
547 }
548
549 static inline pmd_t pmd_mkwrite(pmd_t pmd)
550 {
551         return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
552 }
553
554 static inline pmd_t pmd_wrprotect(pmd_t pmd)
555 {
556         return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
557 }
558
559 static inline pmd_t pmd_mkclean(pmd_t pmd)
560 {
561         return pte_pmd(pte_mkclean(pmd_pte(pmd)));
562 }
563
564 static inline pmd_t pmd_mkdirty(pmd_t pmd)
565 {
566         return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
567 }
568
569 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
570                                 pmd_t *pmdp, pmd_t pmd)
571 {
572         return set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
573 }
574
575 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
576                                 pud_t *pudp, pud_t pud)
577 {
578         return set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
579 }
580
581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
582 static inline int pmd_trans_huge(pmd_t pmd)
583 {
584         return pmd_leaf(pmd);
585 }
586
587 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
588 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
589                                         unsigned long address, pmd_t *pmdp,
590                                         pmd_t entry, int dirty)
591 {
592         return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
593 }
594
595 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
596 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
597                                         unsigned long address, pmd_t *pmdp)
598 {
599         return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
600 }
601
602 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
603 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
604                                         unsigned long address, pmd_t *pmdp)
605 {
606         return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
607 }
608
609 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
610 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
611                                         unsigned long address, pmd_t *pmdp)
612 {
613         ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
614 }
615
616 #define pmdp_establish pmdp_establish
617 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
618                                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
619 {
620         return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
621 }
622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
623
624 /*
625  * Encode and decode a swap entry
626  *
627  * Format of swap PTE:
628  *      bit            0:       _PAGE_PRESENT (zero)
629  *      bit            1:       _PAGE_PROT_NONE (zero)
630  *      bits      2 to 6:       swap type
631  *      bits 7 to XLEN-1:       swap offset
632  */
633 #define __SWP_TYPE_SHIFT        2
634 #define __SWP_TYPE_BITS         5
635 #define __SWP_TYPE_MASK         ((1UL << __SWP_TYPE_BITS) - 1)
636 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
637
638 #define MAX_SWAPFILES_CHECK()   \
639         BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
640
641 #define __swp_type(x)   (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
642 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
643 #define __swp_entry(type, offset) ((swp_entry_t) \
644         { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
645
646 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
647 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
648
649 /*
650  * In the RV64 Linux scheme, we give the user half of the virtual-address space
651  * and give the kernel the other (upper) half.
652  */
653 #ifdef CONFIG_64BIT
654 #define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
655 #else
656 #define KERN_VIRT_START FIXADDR_START
657 #endif
658
659 /*
660  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
661  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
662  */
663 #ifdef CONFIG_64BIT
664 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
665 #else
666 #define TASK_SIZE FIXADDR_START
667 #endif
668
669 #else /* CONFIG_MMU */
670
671 #define PAGE_SHARED             __pgprot(0)
672 #define PAGE_KERNEL             __pgprot(0)
673 #define swapper_pg_dir          NULL
674 #define TASK_SIZE               0xffffffffUL
675 #define VMALLOC_START           0
676 #define VMALLOC_END             TASK_SIZE
677
678 #endif /* !CONFIG_MMU */
679
680 #define kern_addr_valid(addr)   (1) /* FIXME */
681
682 extern char _start[];
683 extern void *_dtb_early_va;
684 extern uintptr_t _dtb_early_pa;
685 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
686 #define dtb_early_va    (*(void **)XIP_FIXUP(&_dtb_early_va))
687 #define dtb_early_pa    (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
688 #else
689 #define dtb_early_va    _dtb_early_va
690 #define dtb_early_pa    _dtb_early_pa
691 #endif /* CONFIG_XIP_KERNEL */
692
693 void paging_init(void);
694 void misc_mem_init(void);
695
696 /*
697  * ZERO_PAGE is a global shared page that is always zero,
698  * used for zero-mapped memory areas, etc.
699  */
700 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
701 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
702
703 #endif /* !__ASSEMBLY__ */
704
705 #endif /* _ASM_RISCV_PGTABLE_H */