9d229ef7f86efa3b085cba41931f4b4c544f51d3
[platform/kernel/linux-starfive.git] / arch / powerpc / perf / imc-pmu.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 #include <linux/spinlock.h>
18
19 /* Nest IMC data structures and variables */
20
21 /*
22  * Used to avoid races in counting the nest-pmu units during hotplug
23  * register and unregister
24  */
25 static DEFINE_MUTEX(nest_init_lock);
26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27 static struct imc_pmu **per_nest_pmu_arr;
28 static cpumask_t nest_imc_cpumask;
29 static struct imc_pmu_ref *nest_imc_refc;
30 static int nest_pmus;
31
32 /* Core IMC data structures and variables */
33
34 static cpumask_t core_imc_cpumask;
35 static struct imc_pmu_ref *core_imc_refc;
36 static struct imc_pmu *core_imc_pmu;
37
38 /* Thread IMC data structures and variables */
39
40 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41 static struct imc_pmu *thread_imc_pmu;
42 static int thread_imc_mem_size;
43
44 /* Trace IMC data structures */
45 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46 static struct imc_pmu_ref *trace_imc_refc;
47 static int trace_imc_mem_size;
48
49 /*
50  * Global data structure used to avoid races between thread,
51  * core and trace-imc
52  */
53 static struct imc_pmu_ref imc_global_refc = {
54         .lock = __SPIN_LOCK_INITIALIZER(imc_global_refc.lock),
55         .id = 0,
56         .refc = 0,
57 };
58
59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60 {
61         return container_of(event->pmu, struct imc_pmu, pmu);
62 }
63
64 PMU_FORMAT_ATTR(event, "config:0-61");
65 PMU_FORMAT_ATTR(offset, "config:0-31");
66 PMU_FORMAT_ATTR(rvalue, "config:32");
67 PMU_FORMAT_ATTR(mode, "config:33-40");
68 static struct attribute *imc_format_attrs[] = {
69         &format_attr_event.attr,
70         &format_attr_offset.attr,
71         &format_attr_rvalue.attr,
72         &format_attr_mode.attr,
73         NULL,
74 };
75
76 static const struct attribute_group imc_format_group = {
77         .name = "format",
78         .attrs = imc_format_attrs,
79 };
80
81 /* Format attribute for imc trace-mode */
82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86 static struct attribute *trace_imc_format_attrs[] = {
87         &format_attr_event.attr,
88         &format_attr_cpmc_reserved.attr,
89         &format_attr_cpmc_event.attr,
90         &format_attr_cpmc_samplesel.attr,
91         &format_attr_cpmc_load.attr,
92         NULL,
93 };
94
95 static const struct attribute_group trace_imc_format_group = {
96 .name = "format",
97 .attrs = trace_imc_format_attrs,
98 };
99
100 /* Get the cpumask printed to a buffer "buf" */
101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102                                         struct device_attribute *attr,
103                                         char *buf)
104 {
105         struct pmu *pmu = dev_get_drvdata(dev);
106         struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107         cpumask_t *active_mask;
108
109         switch(imc_pmu->domain){
110         case IMC_DOMAIN_NEST:
111                 active_mask = &nest_imc_cpumask;
112                 break;
113         case IMC_DOMAIN_CORE:
114                 active_mask = &core_imc_cpumask;
115                 break;
116         default:
117                 return 0;
118         }
119
120         return cpumap_print_to_pagebuf(true, buf, active_mask);
121 }
122
123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124
125 static struct attribute *imc_pmu_cpumask_attrs[] = {
126         &dev_attr_cpumask.attr,
127         NULL,
128 };
129
130 static const struct attribute_group imc_pmu_cpumask_attr_group = {
131         .attrs = imc_pmu_cpumask_attrs,
132 };
133
134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
135 static struct attribute *device_str_attr_create(const char *name, const char *str)
136 {
137         struct perf_pmu_events_attr *attr;
138
139         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140         if (!attr)
141                 return NULL;
142         sysfs_attr_init(&attr->attr.attr);
143
144         attr->event_str = str;
145         attr->attr.attr.name = name;
146         attr->attr.attr.mode = 0444;
147         attr->attr.show = perf_event_sysfs_show;
148
149         return &attr->attr.attr;
150 }
151
152 static int imc_parse_event(struct device_node *np, const char *scale,
153                                   const char *unit, const char *prefix,
154                                   u32 base, struct imc_events *event)
155 {
156         const char *s;
157         u32 reg;
158
159         if (of_property_read_u32(np, "reg", &reg))
160                 goto error;
161         /* Add the base_reg value to the "reg" */
162         event->value = base + reg;
163
164         if (of_property_read_string(np, "event-name", &s))
165                 goto error;
166
167         event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168         if (!event->name)
169                 goto error;
170
171         if (of_property_read_string(np, "scale", &s))
172                 s = scale;
173
174         if (s) {
175                 event->scale = kstrdup(s, GFP_KERNEL);
176                 if (!event->scale)
177                         goto error;
178         }
179
180         if (of_property_read_string(np, "unit", &s))
181                 s = unit;
182
183         if (s) {
184                 event->unit = kstrdup(s, GFP_KERNEL);
185                 if (!event->unit)
186                         goto error;
187         }
188
189         return 0;
190 error:
191         kfree(event->unit);
192         kfree(event->scale);
193         kfree(event->name);
194         return -EINVAL;
195 }
196
197 /*
198  * imc_free_events: Function to cleanup the events list, having
199  *                  "nr_entries".
200  */
201 static void imc_free_events(struct imc_events *events, int nr_entries)
202 {
203         int i;
204
205         /* Nothing to clean, return */
206         if (!events)
207                 return;
208         for (i = 0; i < nr_entries; i++) {
209                 kfree(events[i].unit);
210                 kfree(events[i].scale);
211                 kfree(events[i].name);
212         }
213
214         kfree(events);
215 }
216
217 /*
218  * update_events_in_group: Update the "events" information in an attr_group
219  *                         and assign the attr_group to the pmu "pmu".
220  */
221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222 {
223         struct attribute_group *attr_group;
224         struct attribute **attrs, *dev_str;
225         struct device_node *np, *pmu_events;
226         u32 handle, base_reg;
227         int i = 0, j = 0, ct, ret;
228         const char *prefix, *g_scale, *g_unit;
229         const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230
231         if (!of_property_read_u32(node, "events", &handle))
232                 pmu_events = of_find_node_by_phandle(handle);
233         else
234                 return 0;
235
236         /* Did not find any node with a given phandle */
237         if (!pmu_events)
238                 return 0;
239
240         /* Get a count of number of child nodes */
241         ct = of_get_child_count(pmu_events);
242
243         /* Get the event prefix */
244         if (of_property_read_string(node, "events-prefix", &prefix)) {
245                 of_node_put(pmu_events);
246                 return 0;
247         }
248
249         /* Get a global unit and scale data if available */
250         if (of_property_read_string(node, "scale", &g_scale))
251                 g_scale = NULL;
252
253         if (of_property_read_string(node, "unit", &g_unit))
254                 g_unit = NULL;
255
256         /* "reg" property gives out the base offset of the counters data */
257         of_property_read_u32(node, "reg", &base_reg);
258
259         /* Allocate memory for the events */
260         pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261         if (!pmu->events) {
262                 of_node_put(pmu_events);
263                 return -ENOMEM;
264         }
265
266         ct = 0;
267         /* Parse the events and update the struct */
268         for_each_child_of_node(pmu_events, np) {
269                 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270                 if (!ret)
271                         ct++;
272         }
273
274         of_node_put(pmu_events);
275
276         /* Allocate memory for attribute group */
277         attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278         if (!attr_group) {
279                 imc_free_events(pmu->events, ct);
280                 return -ENOMEM;
281         }
282
283         /*
284          * Allocate memory for attributes.
285          * Since we have count of events for this pmu, we also allocate
286          * memory for the scale and unit attribute for now.
287          * "ct" has the total event structs added from the events-parent node.
288          * So allocate three times the "ct" (this includes event, event_scale and
289          * event_unit).
290          */
291         attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292         if (!attrs) {
293                 kfree(attr_group);
294                 imc_free_events(pmu->events, ct);
295                 return -ENOMEM;
296         }
297
298         attr_group->name = "events";
299         attr_group->attrs = attrs;
300         do {
301                 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302                 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
303                 if (!dev_str)
304                         continue;
305
306                 attrs[j++] = dev_str;
307                 if (pmu->events[i].scale) {
308                         ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
309                         dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
310                         if (!dev_str)
311                                 continue;
312
313                         attrs[j++] = dev_str;
314                 }
315
316                 if (pmu->events[i].unit) {
317                         ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
318                         dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
319                         if (!dev_str)
320                                 continue;
321
322                         attrs[j++] = dev_str;
323                 }
324         } while (++i < ct);
325
326         /* Save the event attribute */
327         pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
328
329         return 0;
330 }
331
332 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
333 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
334 {
335         return per_cpu(local_nest_imc_refc, cpu);
336 }
337
338 static void nest_change_cpu_context(int old_cpu, int new_cpu)
339 {
340         struct imc_pmu **pn = per_nest_pmu_arr;
341
342         if (old_cpu < 0 || new_cpu < 0)
343                 return;
344
345         while (*pn) {
346                 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
347                 pn++;
348         }
349 }
350
351 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
352 {
353         int nid, target = -1;
354         const struct cpumask *l_cpumask;
355         struct imc_pmu_ref *ref;
356
357         /*
358          * Check in the designated list for this cpu. Dont bother
359          * if not one of them.
360          */
361         if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
362                 return 0;
363
364         /*
365          * Check whether nest_imc is registered. We could end up here if the
366          * cpuhotplug callback registration fails. i.e, callback invokes the
367          * offline path for all successfully registered nodes. At this stage,
368          * nest_imc pmu will not be registered and we should return here.
369          *
370          * We return with a zero since this is not an offline failure. And
371          * cpuhp_setup_state() returns the actual failure reason to the caller,
372          * which in turn will call the cleanup routine.
373          */
374         if (!nest_pmus)
375                 return 0;
376
377         /*
378          * Now that this cpu is one of the designated,
379          * find a next cpu a) which is online and b) in same chip.
380          */
381         nid = cpu_to_node(cpu);
382         l_cpumask = cpumask_of_node(nid);
383         target = cpumask_last(l_cpumask);
384
385         /*
386          * If this(target) is the last cpu in the cpumask for this chip,
387          * check for any possible online cpu in the chip.
388          */
389         if (unlikely(target == cpu))
390                 target = cpumask_any_but(l_cpumask, cpu);
391
392         /*
393          * Update the cpumask with the target cpu and
394          * migrate the context if needed
395          */
396         if (target >= 0 && target < nr_cpu_ids) {
397                 cpumask_set_cpu(target, &nest_imc_cpumask);
398                 nest_change_cpu_context(cpu, target);
399         } else {
400                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
401                                        get_hard_smp_processor_id(cpu));
402                 /*
403                  * If this is the last cpu in this chip then, skip the reference
404                  * count lock and make the reference count on this chip zero.
405                  */
406                 ref = get_nest_pmu_ref(cpu);
407                 if (!ref)
408                         return -EINVAL;
409
410                 ref->refc = 0;
411         }
412         return 0;
413 }
414
415 static int ppc_nest_imc_cpu_online(unsigned int cpu)
416 {
417         const struct cpumask *l_cpumask;
418         static struct cpumask tmp_mask;
419         int res;
420
421         /* Get the cpumask of this node */
422         l_cpumask = cpumask_of_node(cpu_to_node(cpu));
423
424         /*
425          * If this is not the first online CPU on this node, then
426          * just return.
427          */
428         if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
429                 return 0;
430
431         /*
432          * If this is the first online cpu on this node
433          * disable the nest counters by making an OPAL call.
434          */
435         res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
436                                      get_hard_smp_processor_id(cpu));
437         if (res)
438                 return res;
439
440         /* Make this CPU the designated target for counter collection */
441         cpumask_set_cpu(cpu, &nest_imc_cpumask);
442         return 0;
443 }
444
445 static int nest_pmu_cpumask_init(void)
446 {
447         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
448                                  "perf/powerpc/imc:online",
449                                  ppc_nest_imc_cpu_online,
450                                  ppc_nest_imc_cpu_offline);
451 }
452
453 static void nest_imc_counters_release(struct perf_event *event)
454 {
455         int rc, node_id;
456         struct imc_pmu_ref *ref;
457
458         if (event->cpu < 0)
459                 return;
460
461         node_id = cpu_to_node(event->cpu);
462
463         /*
464          * See if we need to disable the nest PMU.
465          * If no events are currently in use, then we have to take a
466          * lock to ensure that we don't race with another task doing
467          * enable or disable the nest counters.
468          */
469         ref = get_nest_pmu_ref(event->cpu);
470         if (!ref)
471                 return;
472
473         /* Take the lock for this node and then decrement the reference count */
474         spin_lock(&ref->lock);
475         if (ref->refc == 0) {
476                 /*
477                  * The scenario where this is true is, when perf session is
478                  * started, followed by offlining of all cpus in a given node.
479                  *
480                  * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
481                  * function set the ref->count to zero, if the cpu which is
482                  * about to offline is the last cpu in a given node and make
483                  * an OPAL call to disable the engine in that node.
484                  *
485                  */
486                 spin_unlock(&ref->lock);
487                 return;
488         }
489         ref->refc--;
490         if (ref->refc == 0) {
491                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
492                                             get_hard_smp_processor_id(event->cpu));
493                 if (rc) {
494                         spin_unlock(&ref->lock);
495                         pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
496                         return;
497                 }
498         } else if (ref->refc < 0) {
499                 WARN(1, "nest-imc: Invalid event reference count\n");
500                 ref->refc = 0;
501         }
502         spin_unlock(&ref->lock);
503 }
504
505 static int nest_imc_event_init(struct perf_event *event)
506 {
507         int chip_id, rc, node_id;
508         u32 l_config, config = event->attr.config;
509         struct imc_mem_info *pcni;
510         struct imc_pmu *pmu;
511         struct imc_pmu_ref *ref;
512         bool flag = false;
513
514         if (event->attr.type != event->pmu->type)
515                 return -ENOENT;
516
517         /* Sampling not supported */
518         if (event->hw.sample_period)
519                 return -EINVAL;
520
521         if (event->cpu < 0)
522                 return -EINVAL;
523
524         pmu = imc_event_to_pmu(event);
525
526         /* Sanity check for config (event offset) */
527         if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
528                 return -EINVAL;
529
530         /*
531          * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
532          * Get the base memory address for this cpu.
533          */
534         chip_id = cpu_to_chip_id(event->cpu);
535
536         /* Return, if chip_id is not valid */
537         if (chip_id < 0)
538                 return -ENODEV;
539
540         pcni = pmu->mem_info;
541         do {
542                 if (pcni->id == chip_id) {
543                         flag = true;
544                         break;
545                 }
546                 pcni++;
547         } while (pcni->vbase != 0);
548
549         if (!flag)
550                 return -ENODEV;
551
552         /*
553          * Add the event offset to the base address.
554          */
555         l_config = config & IMC_EVENT_OFFSET_MASK;
556         event->hw.event_base = (u64)pcni->vbase + l_config;
557         node_id = cpu_to_node(event->cpu);
558
559         /*
560          * Get the imc_pmu_ref struct for this node.
561          * Take the lock and then increment the count of nest pmu events inited.
562          */
563         ref = get_nest_pmu_ref(event->cpu);
564         if (!ref)
565                 return -EINVAL;
566
567         spin_lock(&ref->lock);
568         if (ref->refc == 0) {
569                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
570                                              get_hard_smp_processor_id(event->cpu));
571                 if (rc) {
572                         spin_unlock(&ref->lock);
573                         pr_err("nest-imc: Unable to start the counters for node %d\n",
574                                                                         node_id);
575                         return rc;
576                 }
577         }
578         ++ref->refc;
579         spin_unlock(&ref->lock);
580
581         event->destroy = nest_imc_counters_release;
582         return 0;
583 }
584
585 /*
586  * core_imc_mem_init : Initializes memory for the current core.
587  *
588  * Uses alloc_pages_node() and uses the returned address as an argument to
589  * an opal call to configure the pdbar. The address sent as an argument is
590  * converted to physical address before the opal call is made. This is the
591  * base address at which the core imc counters are populated.
592  */
593 static int core_imc_mem_init(int cpu, int size)
594 {
595         int nid, rc = 0, core_id = (cpu / threads_per_core);
596         struct imc_mem_info *mem_info;
597         struct page *page;
598
599         /*
600          * alloc_pages_node() will allocate memory for core in the
601          * local node only.
602          */
603         nid = cpu_to_node(cpu);
604         mem_info = &core_imc_pmu->mem_info[core_id];
605         mem_info->id = core_id;
606
607         /* We need only vbase for core counters */
608         page = alloc_pages_node(nid,
609                                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
610                                 __GFP_NOWARN, get_order(size));
611         if (!page)
612                 return -ENOMEM;
613         mem_info->vbase = page_address(page);
614
615         core_imc_refc[core_id].id = core_id;
616         spin_lock_init(&core_imc_refc[core_id].lock);
617
618         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
619                                 __pa((void *)mem_info->vbase),
620                                 get_hard_smp_processor_id(cpu));
621         if (rc) {
622                 free_pages((u64)mem_info->vbase, get_order(size));
623                 mem_info->vbase = NULL;
624         }
625
626         return rc;
627 }
628
629 static bool is_core_imc_mem_inited(int cpu)
630 {
631         struct imc_mem_info *mem_info;
632         int core_id = (cpu / threads_per_core);
633
634         mem_info = &core_imc_pmu->mem_info[core_id];
635         if (!mem_info->vbase)
636                 return false;
637
638         return true;
639 }
640
641 static int ppc_core_imc_cpu_online(unsigned int cpu)
642 {
643         const struct cpumask *l_cpumask;
644         static struct cpumask tmp_mask;
645         int ret = 0;
646
647         /* Get the cpumask for this core */
648         l_cpumask = cpu_sibling_mask(cpu);
649
650         /* If a cpu for this core is already set, then, don't do anything */
651         if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
652                 return 0;
653
654         if (!is_core_imc_mem_inited(cpu)) {
655                 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
656                 if (ret) {
657                         pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
658                         return ret;
659                 }
660         }
661
662         /* set the cpu in the mask */
663         cpumask_set_cpu(cpu, &core_imc_cpumask);
664         return 0;
665 }
666
667 static int ppc_core_imc_cpu_offline(unsigned int cpu)
668 {
669         unsigned int core_id;
670         int ncpu;
671         struct imc_pmu_ref *ref;
672
673         /*
674          * clear this cpu out of the mask, if not present in the mask,
675          * don't bother doing anything.
676          */
677         if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
678                 return 0;
679
680         /*
681          * Check whether core_imc is registered. We could end up here
682          * if the cpuhotplug callback registration fails. i.e, callback
683          * invokes the offline path for all successfully registered cpus.
684          * At this stage, core_imc pmu will not be registered and we
685          * should return here.
686          *
687          * We return with a zero since this is not an offline failure.
688          * And cpuhp_setup_state() returns the actual failure reason
689          * to the caller, which inturn will call the cleanup routine.
690          */
691         if (!core_imc_pmu->pmu.event_init)
692                 return 0;
693
694         /* Find any online cpu in that core except the current "cpu" */
695         ncpu = cpumask_last(cpu_sibling_mask(cpu));
696
697         if (unlikely(ncpu == cpu))
698                 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
699
700         if (ncpu >= 0 && ncpu < nr_cpu_ids) {
701                 cpumask_set_cpu(ncpu, &core_imc_cpumask);
702                 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
703         } else {
704                 /*
705                  * If this is the last cpu in this core then skip taking reference
706                  * count lock for this core and directly zero "refc" for this core.
707                  */
708                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
709                                        get_hard_smp_processor_id(cpu));
710                 core_id = cpu / threads_per_core;
711                 ref = &core_imc_refc[core_id];
712                 if (!ref)
713                         return -EINVAL;
714
715                 ref->refc = 0;
716                 /*
717                  * Reduce the global reference count, if this is the
718                  * last cpu in this core and core-imc event running
719                  * in this cpu.
720                  */
721                 spin_lock(&imc_global_refc.lock);
722                 if (imc_global_refc.id == IMC_DOMAIN_CORE)
723                         imc_global_refc.refc--;
724
725                 spin_unlock(&imc_global_refc.lock);
726         }
727         return 0;
728 }
729
730 static int core_imc_pmu_cpumask_init(void)
731 {
732         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
733                                  "perf/powerpc/imc_core:online",
734                                  ppc_core_imc_cpu_online,
735                                  ppc_core_imc_cpu_offline);
736 }
737
738 static void reset_global_refc(struct perf_event *event)
739 {
740                 spin_lock(&imc_global_refc.lock);
741                 imc_global_refc.refc--;
742
743                 /*
744                  * If no other thread is running any
745                  * event for this domain(thread/core/trace),
746                  * set the global id to zero.
747                  */
748                 if (imc_global_refc.refc <= 0) {
749                         imc_global_refc.refc = 0;
750                         imc_global_refc.id = 0;
751                 }
752                 spin_unlock(&imc_global_refc.lock);
753 }
754
755 static void core_imc_counters_release(struct perf_event *event)
756 {
757         int rc, core_id;
758         struct imc_pmu_ref *ref;
759
760         if (event->cpu < 0)
761                 return;
762         /*
763          * See if we need to disable the IMC PMU.
764          * If no events are currently in use, then we have to take a
765          * lock to ensure that we don't race with another task doing
766          * enable or disable the core counters.
767          */
768         core_id = event->cpu / threads_per_core;
769
770         /* Take the lock and decrement the refernce count for this core */
771         ref = &core_imc_refc[core_id];
772         if (!ref)
773                 return;
774
775         spin_lock(&ref->lock);
776         if (ref->refc == 0) {
777                 /*
778                  * The scenario where this is true is, when perf session is
779                  * started, followed by offlining of all cpus in a given core.
780                  *
781                  * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
782                  * function set the ref->count to zero, if the cpu which is
783                  * about to offline is the last cpu in a given core and make
784                  * an OPAL call to disable the engine in that core.
785                  *
786                  */
787                 spin_unlock(&ref->lock);
788                 return;
789         }
790         ref->refc--;
791         if (ref->refc == 0) {
792                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
793                                             get_hard_smp_processor_id(event->cpu));
794                 if (rc) {
795                         spin_unlock(&ref->lock);
796                         pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
797                         return;
798                 }
799         } else if (ref->refc < 0) {
800                 WARN(1, "core-imc: Invalid event reference count\n");
801                 ref->refc = 0;
802         }
803         spin_unlock(&ref->lock);
804
805         reset_global_refc(event);
806 }
807
808 static int core_imc_event_init(struct perf_event *event)
809 {
810         int core_id, rc;
811         u64 config = event->attr.config;
812         struct imc_mem_info *pcmi;
813         struct imc_pmu *pmu;
814         struct imc_pmu_ref *ref;
815
816         if (event->attr.type != event->pmu->type)
817                 return -ENOENT;
818
819         /* Sampling not supported */
820         if (event->hw.sample_period)
821                 return -EINVAL;
822
823         if (event->cpu < 0)
824                 return -EINVAL;
825
826         event->hw.idx = -1;
827         pmu = imc_event_to_pmu(event);
828
829         /* Sanity check for config (event offset) */
830         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
831                 return -EINVAL;
832
833         if (!is_core_imc_mem_inited(event->cpu))
834                 return -ENODEV;
835
836         core_id = event->cpu / threads_per_core;
837         pcmi = &core_imc_pmu->mem_info[core_id];
838         if ((!pcmi->vbase))
839                 return -ENODEV;
840
841         ref = &core_imc_refc[core_id];
842         if (!ref)
843                 return -EINVAL;
844
845         /*
846          * Core pmu units are enabled only when it is used.
847          * See if this is triggered for the first time.
848          * If yes, take the lock and enable the core counters.
849          * If not, just increment the count in core_imc_refc struct.
850          */
851         spin_lock(&ref->lock);
852         if (ref->refc == 0) {
853                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
854                                              get_hard_smp_processor_id(event->cpu));
855                 if (rc) {
856                         spin_unlock(&ref->lock);
857                         pr_err("core-imc: Unable to start the counters for core %d\n",
858                                                                         core_id);
859                         return rc;
860                 }
861         }
862         ++ref->refc;
863         spin_unlock(&ref->lock);
864
865         /*
866          * Since the system can run either in accumulation or trace-mode
867          * of IMC at a time, core-imc events are allowed only if no other
868          * trace/thread imc events are enabled/monitored.
869          *
870          * Take the global lock, and check the refc.id
871          * to know whether any other trace/thread imc
872          * events are running.
873          */
874         spin_lock(&imc_global_refc.lock);
875         if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
876                 /*
877                  * No other trace/thread imc events are running in
878                  * the system, so set the refc.id to core-imc.
879                  */
880                 imc_global_refc.id = IMC_DOMAIN_CORE;
881                 imc_global_refc.refc++;
882         } else {
883                 spin_unlock(&imc_global_refc.lock);
884                 return -EBUSY;
885         }
886         spin_unlock(&imc_global_refc.lock);
887
888         event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
889         event->destroy = core_imc_counters_release;
890         return 0;
891 }
892
893 /*
894  * Allocates a page of memory for each of the online cpus, and load
895  * LDBAR with 0.
896  * The physical base address of the page allocated for a cpu will be
897  * written to the LDBAR for that cpu, when the thread-imc event
898  * is added.
899  *
900  * LDBAR Register Layout:
901  *
902  *  0          4         8         12        16        20        24        28
903  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
904  *   | |       [   ]    [                   Counter Address [8:50]
905  *   | * Mode    |
906  *   |           * PB Scope
907  *   * Enable/Disable
908  *
909  *  32        36        40        44        48        52        56        60
910  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
911  *           Counter Address [8:50]              ]
912  *
913  */
914 static int thread_imc_mem_alloc(int cpu_id, int size)
915 {
916         u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
917         int nid = cpu_to_node(cpu_id);
918
919         if (!local_mem) {
920                 struct page *page;
921                 /*
922                  * This case could happen only once at start, since we dont
923                  * free the memory in cpu offline path.
924                  */
925                 page = alloc_pages_node(nid,
926                                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
927                                   __GFP_NOWARN, get_order(size));
928                 if (!page)
929                         return -ENOMEM;
930                 local_mem = page_address(page);
931
932                 per_cpu(thread_imc_mem, cpu_id) = local_mem;
933         }
934
935         mtspr(SPRN_LDBAR, 0);
936         return 0;
937 }
938
939 static int ppc_thread_imc_cpu_online(unsigned int cpu)
940 {
941         return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
942 }
943
944 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
945 {
946         /*
947          * Set the bit 0 of LDBAR to zero.
948          *
949          * If bit 0 of LDBAR is unset, it will stop posting
950          * the counter data to memory.
951          * For thread-imc, bit 0 of LDBAR will be set to 1 in the
952          * event_add function. So reset this bit here, to stop the updates
953          * to memory in the cpu_offline path.
954          */
955         mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
956
957         /* Reduce the refc if thread-imc event running on this cpu */
958         spin_lock(&imc_global_refc.lock);
959         if (imc_global_refc.id == IMC_DOMAIN_THREAD)
960                 imc_global_refc.refc--;
961         spin_unlock(&imc_global_refc.lock);
962
963         return 0;
964 }
965
966 static int thread_imc_cpu_init(void)
967 {
968         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
969                           "perf/powerpc/imc_thread:online",
970                           ppc_thread_imc_cpu_online,
971                           ppc_thread_imc_cpu_offline);
972 }
973
974 static int thread_imc_event_init(struct perf_event *event)
975 {
976         u32 config = event->attr.config;
977         struct task_struct *target;
978         struct imc_pmu *pmu;
979
980         if (event->attr.type != event->pmu->type)
981                 return -ENOENT;
982
983         if (!perfmon_capable())
984                 return -EACCES;
985
986         /* Sampling not supported */
987         if (event->hw.sample_period)
988                 return -EINVAL;
989
990         event->hw.idx = -1;
991         pmu = imc_event_to_pmu(event);
992
993         /* Sanity check for config offset */
994         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
995                 return -EINVAL;
996
997         target = event->hw.target;
998         if (!target)
999                 return -EINVAL;
1000
1001         spin_lock(&imc_global_refc.lock);
1002         /*
1003          * Check if any other trace/core imc events are running in the
1004          * system, if not set the global id to thread-imc.
1005          */
1006         if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1007                 imc_global_refc.id = IMC_DOMAIN_THREAD;
1008                 imc_global_refc.refc++;
1009         } else {
1010                 spin_unlock(&imc_global_refc.lock);
1011                 return -EBUSY;
1012         }
1013         spin_unlock(&imc_global_refc.lock);
1014
1015         event->pmu->task_ctx_nr = perf_sw_context;
1016         event->destroy = reset_global_refc;
1017         return 0;
1018 }
1019
1020 static bool is_thread_imc_pmu(struct perf_event *event)
1021 {
1022         if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1023                 return true;
1024
1025         return false;
1026 }
1027
1028 static u64 * get_event_base_addr(struct perf_event *event)
1029 {
1030         u64 addr;
1031
1032         if (is_thread_imc_pmu(event)) {
1033                 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1034                 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1035         }
1036
1037         return (u64 *)event->hw.event_base;
1038 }
1039
1040 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1041                                      unsigned int txn_flags)
1042 {
1043         if (txn_flags & ~PERF_PMU_TXN_ADD)
1044                 return;
1045         perf_pmu_disable(pmu);
1046 }
1047
1048 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1049 {
1050         perf_pmu_enable(pmu);
1051 }
1052
1053 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1054 {
1055         perf_pmu_enable(pmu);
1056         return 0;
1057 }
1058
1059 static u64 imc_read_counter(struct perf_event *event)
1060 {
1061         u64 *addr, data;
1062
1063         /*
1064          * In-Memory Collection (IMC) counters are free flowing counters.
1065          * So we take a snapshot of the counter value on enable and save it
1066          * to calculate the delta at later stage to present the event counter
1067          * value.
1068          */
1069         addr = get_event_base_addr(event);
1070         data = be64_to_cpu(READ_ONCE(*addr));
1071         local64_set(&event->hw.prev_count, data);
1072
1073         return data;
1074 }
1075
1076 static void imc_event_update(struct perf_event *event)
1077 {
1078         u64 counter_prev, counter_new, final_count;
1079
1080         counter_prev = local64_read(&event->hw.prev_count);
1081         counter_new = imc_read_counter(event);
1082         final_count = counter_new - counter_prev;
1083
1084         /* Update the delta to the event count */
1085         local64_add(final_count, &event->count);
1086 }
1087
1088 static void imc_event_start(struct perf_event *event, int flags)
1089 {
1090         /*
1091          * In Memory Counters are free flowing counters. HW or the microcode
1092          * keeps adding to the counter offset in memory. To get event
1093          * counter value, we snapshot the value here and we calculate
1094          * delta at later point.
1095          */
1096         imc_read_counter(event);
1097 }
1098
1099 static void imc_event_stop(struct perf_event *event, int flags)
1100 {
1101         /*
1102          * Take a snapshot and calculate the delta and update
1103          * the event counter values.
1104          */
1105         imc_event_update(event);
1106 }
1107
1108 static int imc_event_add(struct perf_event *event, int flags)
1109 {
1110         if (flags & PERF_EF_START)
1111                 imc_event_start(event, flags);
1112
1113         return 0;
1114 }
1115
1116 static int thread_imc_event_add(struct perf_event *event, int flags)
1117 {
1118         int core_id;
1119         struct imc_pmu_ref *ref;
1120         u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1121
1122         if (flags & PERF_EF_START)
1123                 imc_event_start(event, flags);
1124
1125         if (!is_core_imc_mem_inited(smp_processor_id()))
1126                 return -EINVAL;
1127
1128         core_id = smp_processor_id() / threads_per_core;
1129         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1130         mtspr(SPRN_LDBAR, ldbar_value);
1131
1132         /*
1133          * imc pmus are enabled only when it is used.
1134          * See if this is triggered for the first time.
1135          * If yes, take the lock and enable the counters.
1136          * If not, just increment the count in ref count struct.
1137          */
1138         ref = &core_imc_refc[core_id];
1139         if (!ref)
1140                 return -EINVAL;
1141
1142         spin_lock(&ref->lock);
1143         if (ref->refc == 0) {
1144                 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1145                     get_hard_smp_processor_id(smp_processor_id()))) {
1146                         spin_unlock(&ref->lock);
1147                         pr_err("thread-imc: Unable to start the counter\
1148                                 for core %d\n", core_id);
1149                         return -EINVAL;
1150                 }
1151         }
1152         ++ref->refc;
1153         spin_unlock(&ref->lock);
1154         return 0;
1155 }
1156
1157 static void thread_imc_event_del(struct perf_event *event, int flags)
1158 {
1159
1160         int core_id;
1161         struct imc_pmu_ref *ref;
1162
1163         core_id = smp_processor_id() / threads_per_core;
1164         ref = &core_imc_refc[core_id];
1165         if (!ref) {
1166                 pr_debug("imc: Failed to get event reference count\n");
1167                 return;
1168         }
1169
1170         spin_lock(&ref->lock);
1171         ref->refc--;
1172         if (ref->refc == 0) {
1173                 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1174                     get_hard_smp_processor_id(smp_processor_id()))) {
1175                         spin_unlock(&ref->lock);
1176                         pr_err("thread-imc: Unable to stop the counters\
1177                                 for core %d\n", core_id);
1178                         return;
1179                 }
1180         } else if (ref->refc < 0) {
1181                 ref->refc = 0;
1182         }
1183         spin_unlock(&ref->lock);
1184
1185         /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1186         mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1187
1188         /*
1189          * Take a snapshot and calculate the delta and update
1190          * the event counter values.
1191          */
1192         imc_event_update(event);
1193 }
1194
1195 /*
1196  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1197  */
1198 static int trace_imc_mem_alloc(int cpu_id, int size)
1199 {
1200         u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1201         int phys_id = cpu_to_node(cpu_id), rc = 0;
1202         int core_id = (cpu_id / threads_per_core);
1203
1204         if (!local_mem) {
1205                 struct page *page;
1206
1207                 page = alloc_pages_node(phys_id,
1208                                 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1209                                 __GFP_NOWARN, get_order(size));
1210                 if (!page)
1211                         return -ENOMEM;
1212                 local_mem = page_address(page);
1213                 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1214
1215                 /* Initialise the counters for trace mode */
1216                 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1217                                             get_hard_smp_processor_id(cpu_id));
1218                 if (rc) {
1219                         pr_info("IMC:opal init failed for trace imc\n");
1220                         return rc;
1221                 }
1222         }
1223
1224         trace_imc_refc[core_id].id = core_id;
1225         spin_lock_init(&trace_imc_refc[core_id].lock);
1226
1227         mtspr(SPRN_LDBAR, 0);
1228         return 0;
1229 }
1230
1231 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1232 {
1233         return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1234 }
1235
1236 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1237 {
1238         /*
1239          * No need to set bit 0 of LDBAR to zero, as
1240          * it is set to zero for imc trace-mode
1241          *
1242          * Reduce the refc if any trace-imc event running
1243          * on this cpu.
1244          */
1245         spin_lock(&imc_global_refc.lock);
1246         if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1247                 imc_global_refc.refc--;
1248         spin_unlock(&imc_global_refc.lock);
1249
1250         return 0;
1251 }
1252
1253 static int trace_imc_cpu_init(void)
1254 {
1255         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1256                           "perf/powerpc/imc_trace:online",
1257                           ppc_trace_imc_cpu_online,
1258                           ppc_trace_imc_cpu_offline);
1259 }
1260
1261 static u64 get_trace_imc_event_base_addr(void)
1262 {
1263         return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1264 }
1265
1266 /*
1267  * Function to parse trace-imc data obtained
1268  * and to prepare the perf sample.
1269  */
1270 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1271                                     struct perf_sample_data *data,
1272                                     u64 *prev_tb,
1273                                     struct perf_event_header *header,
1274                                     struct perf_event *event)
1275 {
1276         /* Sanity checks for a valid record */
1277         if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1278                 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1279         else
1280                 return -EINVAL;
1281
1282         if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1283                          be64_to_cpu(READ_ONCE(mem->tb2)))
1284                 return -EINVAL;
1285
1286         /* Prepare perf sample */
1287         data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1288         data->period = event->hw.last_period;
1289
1290         header->type = PERF_RECORD_SAMPLE;
1291         header->size = sizeof(*header) + event->header_size;
1292         header->misc = 0;
1293
1294         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1295                 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1296                 case 0:/* when MSR HV and PR not set in the trace-record */
1297                         header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1298                         break;
1299                 case 1: /* MSR HV is 0 and PR is 1 */
1300                         header->misc |= PERF_RECORD_MISC_GUEST_USER;
1301                         break;
1302                 case 2: /* MSR HV is 1 and PR is 0 */
1303                         header->misc |= PERF_RECORD_MISC_KERNEL;
1304                         break;
1305                 case 3: /* MSR HV is 1 and PR is 1 */
1306                         header->misc |= PERF_RECORD_MISC_USER;
1307                         break;
1308                 default:
1309                         pr_info("IMC: Unable to set the flag based on MSR bits\n");
1310                         break;
1311                 }
1312         } else {
1313                 if (is_kernel_addr(data->ip))
1314                         header->misc |= PERF_RECORD_MISC_KERNEL;
1315                 else
1316                         header->misc |= PERF_RECORD_MISC_USER;
1317         }
1318         perf_event_header__init_id(header, data, event);
1319
1320         return 0;
1321 }
1322
1323 static void dump_trace_imc_data(struct perf_event *event)
1324 {
1325         struct trace_imc_data *mem;
1326         int i, ret;
1327         u64 prev_tb = 0;
1328
1329         mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1330         for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1331                 i++, mem++) {
1332                 struct perf_sample_data data;
1333                 struct perf_event_header header;
1334
1335                 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1336                 if (ret) /* Exit, if not a valid record */
1337                         break;
1338                 else {
1339                         /* If this is a valid record, create the sample */
1340                         struct perf_output_handle handle;
1341
1342                         if (perf_output_begin(&handle, &data, event, header.size))
1343                                 return;
1344
1345                         perf_output_sample(&handle, &header, &data, event);
1346                         perf_output_end(&handle);
1347                 }
1348         }
1349 }
1350
1351 static int trace_imc_event_add(struct perf_event *event, int flags)
1352 {
1353         int core_id = smp_processor_id() / threads_per_core;
1354         struct imc_pmu_ref *ref = NULL;
1355         u64 local_mem, ldbar_value;
1356
1357         /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1358         local_mem = get_trace_imc_event_base_addr();
1359         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1360
1361         /* trace-imc reference count */
1362         if (trace_imc_refc)
1363                 ref = &trace_imc_refc[core_id];
1364         if (!ref) {
1365                 pr_debug("imc: Failed to get the event reference count\n");
1366                 return -EINVAL;
1367         }
1368
1369         mtspr(SPRN_LDBAR, ldbar_value);
1370         spin_lock(&ref->lock);
1371         if (ref->refc == 0) {
1372                 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1373                                 get_hard_smp_processor_id(smp_processor_id()))) {
1374                         spin_unlock(&ref->lock);
1375                         pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1376                         return -EINVAL;
1377                 }
1378         }
1379         ++ref->refc;
1380         spin_unlock(&ref->lock);
1381         return 0;
1382 }
1383
1384 static void trace_imc_event_read(struct perf_event *event)
1385 {
1386         return;
1387 }
1388
1389 static void trace_imc_event_stop(struct perf_event *event, int flags)
1390 {
1391         u64 local_mem = get_trace_imc_event_base_addr();
1392         dump_trace_imc_data(event);
1393         memset((void *)local_mem, 0, sizeof(u64));
1394 }
1395
1396 static void trace_imc_event_start(struct perf_event *event, int flags)
1397 {
1398         return;
1399 }
1400
1401 static void trace_imc_event_del(struct perf_event *event, int flags)
1402 {
1403         int core_id = smp_processor_id() / threads_per_core;
1404         struct imc_pmu_ref *ref = NULL;
1405
1406         if (trace_imc_refc)
1407                 ref = &trace_imc_refc[core_id];
1408         if (!ref) {
1409                 pr_debug("imc: Failed to get event reference count\n");
1410                 return;
1411         }
1412
1413         spin_lock(&ref->lock);
1414         ref->refc--;
1415         if (ref->refc == 0) {
1416                 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1417                                 get_hard_smp_processor_id(smp_processor_id()))) {
1418                         spin_unlock(&ref->lock);
1419                         pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1420                         return;
1421                 }
1422         } else if (ref->refc < 0) {
1423                 ref->refc = 0;
1424         }
1425         spin_unlock(&ref->lock);
1426
1427         trace_imc_event_stop(event, flags);
1428 }
1429
1430 static int trace_imc_event_init(struct perf_event *event)
1431 {
1432         if (event->attr.type != event->pmu->type)
1433                 return -ENOENT;
1434
1435         if (!perfmon_capable())
1436                 return -EACCES;
1437
1438         /* Return if this is a couting event */
1439         if (event->attr.sample_period == 0)
1440                 return -ENOENT;
1441
1442         /*
1443          * Take the global lock, and make sure
1444          * no other thread is running any core/thread imc
1445          * events
1446          */
1447         spin_lock(&imc_global_refc.lock);
1448         if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1449                 /*
1450                  * No core/thread imc events are running in the
1451                  * system, so set the refc.id to trace-imc.
1452                  */
1453                 imc_global_refc.id = IMC_DOMAIN_TRACE;
1454                 imc_global_refc.refc++;
1455         } else {
1456                 spin_unlock(&imc_global_refc.lock);
1457                 return -EBUSY;
1458         }
1459         spin_unlock(&imc_global_refc.lock);
1460
1461         event->hw.idx = -1;
1462
1463         /*
1464          * There can only be a single PMU for perf_hw_context events which is assigned to
1465          * core PMU. Hence use "perf_sw_context" for trace_imc.
1466          */
1467         event->pmu->task_ctx_nr = perf_sw_context;
1468         event->destroy = reset_global_refc;
1469         return 0;
1470 }
1471
1472 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1473 static int update_pmu_ops(struct imc_pmu *pmu)
1474 {
1475         pmu->pmu.task_ctx_nr = perf_invalid_context;
1476         pmu->pmu.add = imc_event_add;
1477         pmu->pmu.del = imc_event_stop;
1478         pmu->pmu.start = imc_event_start;
1479         pmu->pmu.stop = imc_event_stop;
1480         pmu->pmu.read = imc_event_update;
1481         pmu->pmu.attr_groups = pmu->attr_groups;
1482         pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1483         pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1484
1485         switch (pmu->domain) {
1486         case IMC_DOMAIN_NEST:
1487                 pmu->pmu.event_init = nest_imc_event_init;
1488                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1489                 break;
1490         case IMC_DOMAIN_CORE:
1491                 pmu->pmu.event_init = core_imc_event_init;
1492                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1493                 break;
1494         case IMC_DOMAIN_THREAD:
1495                 pmu->pmu.event_init = thread_imc_event_init;
1496                 pmu->pmu.add = thread_imc_event_add;
1497                 pmu->pmu.del = thread_imc_event_del;
1498                 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1499                 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1500                 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1501                 break;
1502         case IMC_DOMAIN_TRACE:
1503                 pmu->pmu.event_init = trace_imc_event_init;
1504                 pmu->pmu.add = trace_imc_event_add;
1505                 pmu->pmu.del = trace_imc_event_del;
1506                 pmu->pmu.start = trace_imc_event_start;
1507                 pmu->pmu.stop = trace_imc_event_stop;
1508                 pmu->pmu.read = trace_imc_event_read;
1509                 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1510                 break;
1511         default:
1512                 break;
1513         }
1514
1515         return 0;
1516 }
1517
1518 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1519 static int init_nest_pmu_ref(void)
1520 {
1521         int nid, i, cpu;
1522
1523         nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1524                                                                 GFP_KERNEL);
1525
1526         if (!nest_imc_refc)
1527                 return -ENOMEM;
1528
1529         i = 0;
1530         for_each_node(nid) {
1531                 /*
1532                  * Take the lock to avoid races while tracking the number of
1533                  * sessions using the chip's nest pmu units.
1534                  */
1535                 spin_lock_init(&nest_imc_refc[i].lock);
1536
1537                 /*
1538                  * Loop to init the "id" with the node_id. Variable "i" initialized to
1539                  * 0 and will be used as index to the array. "i" will not go off the
1540                  * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1541                  * nodes only.
1542                  */
1543                 nest_imc_refc[i++].id = nid;
1544         }
1545
1546         /*
1547          * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1548          * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1549          */
1550         for_each_possible_cpu(cpu) {
1551                 nid = cpu_to_node(cpu);
1552                 for (i = 0; i < num_possible_nodes(); i++) {
1553                         if (nest_imc_refc[i].id == nid) {
1554                                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1555                                 break;
1556                         }
1557                 }
1558         }
1559         return 0;
1560 }
1561
1562 static void cleanup_all_core_imc_memory(void)
1563 {
1564         int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1565         struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1566         int size = core_imc_pmu->counter_mem_size;
1567
1568         /* mem_info will never be NULL */
1569         for (i = 0; i < nr_cores; i++) {
1570                 if (ptr[i].vbase)
1571                         free_pages((u64)ptr[i].vbase, get_order(size));
1572         }
1573
1574         kfree(ptr);
1575         kfree(core_imc_refc);
1576 }
1577
1578 static void thread_imc_ldbar_disable(void *dummy)
1579 {
1580         /*
1581          * By setting 0th bit of LDBAR to zero, we disable thread-imc
1582          * updates to memory.
1583          */
1584         mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1585 }
1586
1587 void thread_imc_disable(void)
1588 {
1589         on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1590 }
1591
1592 static void cleanup_all_thread_imc_memory(void)
1593 {
1594         int i, order = get_order(thread_imc_mem_size);
1595
1596         for_each_online_cpu(i) {
1597                 if (per_cpu(thread_imc_mem, i))
1598                         free_pages((u64)per_cpu(thread_imc_mem, i), order);
1599
1600         }
1601 }
1602
1603 static void cleanup_all_trace_imc_memory(void)
1604 {
1605         int i, order = get_order(trace_imc_mem_size);
1606
1607         for_each_online_cpu(i) {
1608                 if (per_cpu(trace_imc_mem, i))
1609                         free_pages((u64)per_cpu(trace_imc_mem, i), order);
1610
1611         }
1612         kfree(trace_imc_refc);
1613 }
1614
1615 /* Function to free the attr_groups which are dynamically allocated */
1616 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1617 {
1618         if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1619                 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1620         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1621 }
1622
1623 /*
1624  * Common function to unregister cpu hotplug callback and
1625  * free the memory.
1626  * TODO: Need to handle pmu unregistering, which will be
1627  * done in followup series.
1628  */
1629 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1630 {
1631         if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1632                 mutex_lock(&nest_init_lock);
1633                 if (nest_pmus == 1) {
1634                         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1635                         kfree(nest_imc_refc);
1636                         kfree(per_nest_pmu_arr);
1637                         per_nest_pmu_arr = NULL;
1638                 }
1639
1640                 if (nest_pmus > 0)
1641                         nest_pmus--;
1642                 mutex_unlock(&nest_init_lock);
1643         }
1644
1645         /* Free core_imc memory */
1646         if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1647                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1648                 cleanup_all_core_imc_memory();
1649         }
1650
1651         /* Free thread_imc memory */
1652         if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1653                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1654                 cleanup_all_thread_imc_memory();
1655         }
1656
1657         if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1658                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1659                 cleanup_all_trace_imc_memory();
1660         }
1661 }
1662
1663 /*
1664  * Function to unregister thread-imc if core-imc
1665  * is not registered.
1666  */
1667 void unregister_thread_imc(void)
1668 {
1669         imc_common_cpuhp_mem_free(thread_imc_pmu);
1670         imc_common_mem_free(thread_imc_pmu);
1671         perf_pmu_unregister(&thread_imc_pmu->pmu);
1672 }
1673
1674 /*
1675  * imc_mem_init : Function to support memory allocation for core imc.
1676  */
1677 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1678                                                                 int pmu_index)
1679 {
1680         const char *s;
1681         int nr_cores, cpu, res = -ENOMEM;
1682
1683         if (of_property_read_string(parent, "name", &s))
1684                 return -ENODEV;
1685
1686         switch (pmu_ptr->domain) {
1687         case IMC_DOMAIN_NEST:
1688                 /* Update the pmu name */
1689                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1690                 if (!pmu_ptr->pmu.name)
1691                         goto err;
1692
1693                 /* Needed for hotplug/migration */
1694                 if (!per_nest_pmu_arr) {
1695                         per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1696                                                 sizeof(struct imc_pmu *),
1697                                                 GFP_KERNEL);
1698                         if (!per_nest_pmu_arr)
1699                                 goto err;
1700                 }
1701                 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1702                 break;
1703         case IMC_DOMAIN_CORE:
1704                 /* Update the pmu name */
1705                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1706                 if (!pmu_ptr->pmu.name)
1707                         goto err;
1708
1709                 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1710                 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1711                                                                 GFP_KERNEL);
1712
1713                 if (!pmu_ptr->mem_info)
1714                         goto err;
1715
1716                 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1717                                                                 GFP_KERNEL);
1718
1719                 if (!core_imc_refc) {
1720                         kfree(pmu_ptr->mem_info);
1721                         goto err;
1722                 }
1723
1724                 core_imc_pmu = pmu_ptr;
1725                 break;
1726         case IMC_DOMAIN_THREAD:
1727                 /* Update the pmu name */
1728                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1729                 if (!pmu_ptr->pmu.name)
1730                         goto err;
1731
1732                 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1733                 for_each_online_cpu(cpu) {
1734                         res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1735                         if (res) {
1736                                 cleanup_all_thread_imc_memory();
1737                                 goto err;
1738                         }
1739                 }
1740
1741                 thread_imc_pmu = pmu_ptr;
1742                 break;
1743         case IMC_DOMAIN_TRACE:
1744                 /* Update the pmu name */
1745                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1746                 if (!pmu_ptr->pmu.name)
1747                         return -ENOMEM;
1748
1749                 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1750                 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1751                                                                 GFP_KERNEL);
1752                 if (!trace_imc_refc)
1753                         return -ENOMEM;
1754
1755                 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1756                 for_each_online_cpu(cpu) {
1757                         res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1758                         if (res) {
1759                                 cleanup_all_trace_imc_memory();
1760                                 goto err;
1761                         }
1762                 }
1763                 break;
1764         default:
1765                 return -EINVAL;
1766         }
1767
1768         return 0;
1769 err:
1770         return res;
1771 }
1772
1773 /*
1774  * init_imc_pmu : Setup and register the IMC pmu device.
1775  *
1776  * @parent:     Device tree unit node
1777  * @pmu_ptr:    memory allocated for this pmu
1778  * @pmu_idx:    Count of nest pmc registered
1779  *
1780  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1781  * Handles failure cases and accordingly frees memory.
1782  */
1783 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1784 {
1785         int ret;
1786
1787         ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1788         if (ret)
1789                 goto err_free_mem;
1790
1791         switch (pmu_ptr->domain) {
1792         case IMC_DOMAIN_NEST:
1793                 /*
1794                 * Nest imc pmu need only one cpu per chip, we initialize the
1795                 * cpumask for the first nest imc pmu and use the same for the
1796                 * rest. To handle the cpuhotplug callback unregister, we track
1797                 * the number of nest pmus in "nest_pmus".
1798                 */
1799                 mutex_lock(&nest_init_lock);
1800                 if (nest_pmus == 0) {
1801                         ret = init_nest_pmu_ref();
1802                         if (ret) {
1803                                 mutex_unlock(&nest_init_lock);
1804                                 kfree(per_nest_pmu_arr);
1805                                 per_nest_pmu_arr = NULL;
1806                                 goto err_free_mem;
1807                         }
1808                         /* Register for cpu hotplug notification. */
1809                         ret = nest_pmu_cpumask_init();
1810                         if (ret) {
1811                                 mutex_unlock(&nest_init_lock);
1812                                 kfree(nest_imc_refc);
1813                                 kfree(per_nest_pmu_arr);
1814                                 per_nest_pmu_arr = NULL;
1815                                 goto err_free_mem;
1816                         }
1817                 }
1818                 nest_pmus++;
1819                 mutex_unlock(&nest_init_lock);
1820                 break;
1821         case IMC_DOMAIN_CORE:
1822                 ret = core_imc_pmu_cpumask_init();
1823                 if (ret) {
1824                         cleanup_all_core_imc_memory();
1825                         goto err_free_mem;
1826                 }
1827
1828                 break;
1829         case IMC_DOMAIN_THREAD:
1830                 ret = thread_imc_cpu_init();
1831                 if (ret) {
1832                         cleanup_all_thread_imc_memory();
1833                         goto err_free_mem;
1834                 }
1835
1836                 break;
1837         case IMC_DOMAIN_TRACE:
1838                 ret = trace_imc_cpu_init();
1839                 if (ret) {
1840                         cleanup_all_trace_imc_memory();
1841                         goto err_free_mem;
1842                 }
1843
1844                 break;
1845         default:
1846                 return  -EINVAL;        /* Unknown domain */
1847         }
1848
1849         ret = update_events_in_group(parent, pmu_ptr);
1850         if (ret)
1851                 goto err_free_cpuhp_mem;
1852
1853         ret = update_pmu_ops(pmu_ptr);
1854         if (ret)
1855                 goto err_free_cpuhp_mem;
1856
1857         ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1858         if (ret)
1859                 goto err_free_cpuhp_mem;
1860
1861         pr_debug("%s performance monitor hardware support registered\n",
1862                                                         pmu_ptr->pmu.name);
1863
1864         return 0;
1865
1866 err_free_cpuhp_mem:
1867         imc_common_cpuhp_mem_free(pmu_ptr);
1868 err_free_mem:
1869         imc_common_mem_free(pmu_ptr);
1870         return ret;
1871 }