2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFC
29 struct cpu_hw_events {
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
39 unsigned long mmcr[3];
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned int group_flag;
50 u64 bhrb_filter; /* BHRB HW branch filter */
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
57 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
59 struct power_pmu *ppmu;
62 * Normally, to ignore kernel events we set the FCS (freeze counters
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
68 static unsigned int freeze_events_kernel = MMCR0_FCS;
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
77 #define MMCR0_PMCjCE MMCR0_PMCnCE
79 #define SPRN_MMCRA SPRN_MMCR2
80 #define MMCRA_SAMPLE_ENABLE 0
82 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
86 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
87 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
91 static inline void perf_read_regs(struct pt_regs *regs)
95 static inline int perf_intr_is_nmi(struct pt_regs *regs)
100 static inline int siar_valid(struct pt_regs *regs)
105 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
106 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
107 void power_pmu_flush_branch_stack(void) {}
108 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
109 #endif /* CONFIG_PPC32 */
111 static bool regs_use_siar(struct pt_regs *regs)
113 return !!(regs->result & 1);
117 * Things that are specific to 64-bit implementations.
121 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
123 unsigned long mmcra = regs->dsisr;
125 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
126 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
128 return 4 * (slot - 1);
135 * The user wants a data address recorded.
136 * If we're not doing instruction sampling, give them the SDAR
137 * (sampled data address). If we are doing instruction sampling, then
138 * only give them the SDAR if it corresponds to the instruction
139 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC or
140 * the [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA.
142 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
144 unsigned long mmcra = regs->dsisr;
145 unsigned long sdsync;
147 if (ppmu->flags & PPMU_SIAR_VALID)
148 sdsync = POWER7P_MMCRA_SDAR_VALID;
149 else if (ppmu->flags & PPMU_ALT_SIPR)
150 sdsync = POWER6_MMCRA_SDSYNC;
152 sdsync = MMCRA_SDSYNC;
154 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
155 *addrp = mfspr(SPRN_SDAR);
158 static bool regs_sihv(struct pt_regs *regs)
160 unsigned long sihv = MMCRA_SIHV;
162 if (ppmu->flags & PPMU_HAS_SIER)
163 return !!(regs->dar & SIER_SIHV);
165 if (ppmu->flags & PPMU_ALT_SIPR)
166 sihv = POWER6_MMCRA_SIHV;
168 return !!(regs->dsisr & sihv);
171 static bool regs_sipr(struct pt_regs *regs)
173 unsigned long sipr = MMCRA_SIPR;
175 if (ppmu->flags & PPMU_HAS_SIER)
176 return !!(regs->dar & SIER_SIPR);
178 if (ppmu->flags & PPMU_ALT_SIPR)
179 sipr = POWER6_MMCRA_SIPR;
181 return !!(regs->dsisr & sipr);
184 static bool regs_no_sipr(struct pt_regs *regs)
186 return !!(regs->result & 2);
189 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
191 if (regs->msr & MSR_PR)
192 return PERF_RECORD_MISC_USER;
193 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
194 return PERF_RECORD_MISC_HYPERVISOR;
195 return PERF_RECORD_MISC_KERNEL;
198 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
200 bool use_siar = regs_use_siar(regs);
203 return perf_flags_from_msr(regs);
206 * If we don't have flags in MMCRA, rather than using
207 * the MSR, we intuit the flags from the address in
208 * SIAR which should give slightly more reliable
211 if (regs_no_sipr(regs)) {
212 unsigned long siar = mfspr(SPRN_SIAR);
213 if (siar >= PAGE_OFFSET)
214 return PERF_RECORD_MISC_KERNEL;
215 return PERF_RECORD_MISC_USER;
218 /* PR has priority over HV, so order below is important */
220 return PERF_RECORD_MISC_USER;
222 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
223 return PERF_RECORD_MISC_HYPERVISOR;
225 return PERF_RECORD_MISC_KERNEL;
229 * Overload regs->dsisr to store MMCRA so we only need to read it once
231 * Overload regs->dar to store SIER if we have it.
232 * Overload regs->result to specify whether we should use the MSR (result
233 * is zero) or the SIAR (result is non zero).
235 static inline void perf_read_regs(struct pt_regs *regs)
237 unsigned long mmcra = mfspr(SPRN_MMCRA);
238 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
244 if (ppmu->flags & PPMU_NO_SIPR)
248 * On power8 if we're in random sampling mode, the SIER is updated.
249 * If we're in continuous sampling mode, we don't have SIPR.
251 if (ppmu->flags & PPMU_HAS_SIER) {
253 regs->dar = mfspr(SPRN_SIER);
260 * If this isn't a PMU exception (eg a software event) the SIAR is
261 * not valid. Use pt_regs.
263 * If it is a marked event use the SIAR.
265 * If the PMU doesn't update the SIAR for non marked events use
268 * If the PMU has HV/PR flags then check to see if they
269 * place the exception in userspace. If so, use pt_regs. In
270 * continuous sampling mode the SIAR and the PMU exception are
271 * not synchronised, so they may be many instructions apart.
272 * This can result in confusing backtraces. We still want
273 * hypervisor samples as well as samples in the kernel with
274 * interrupts off hence the userspace check.
276 if (TRAP(regs) != 0xf00)
280 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
282 else if (!regs_no_sipr(regs) && regs_sipr(regs))
287 regs->result |= use_siar;
291 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
294 static inline int perf_intr_is_nmi(struct pt_regs *regs)
300 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
301 * must be sampled only if the SIAR-valid bit is set.
303 * For unmarked instructions and for processors that don't have the SIAR-Valid
304 * bit, assume that SIAR is valid.
306 static inline int siar_valid(struct pt_regs *regs)
308 unsigned long mmcra = regs->dsisr;
309 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
311 if ((ppmu->flags & PPMU_SIAR_VALID) && marked)
312 return mmcra & POWER7P_MMCRA_SIAR_VALID;
318 /* Reset all possible BHRB entries */
319 static void power_pmu_bhrb_reset(void)
321 asm volatile(PPC_CLRBHRB);
324 static void power_pmu_bhrb_enable(struct perf_event *event)
326 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
331 /* Clear BHRB if we changed task context to avoid data leaks */
332 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
333 power_pmu_bhrb_reset();
334 cpuhw->bhrb_context = event->ctx;
339 static void power_pmu_bhrb_disable(struct perf_event *event)
341 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
347 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
349 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
350 /* BHRB cannot be turned off when other
351 * events are active on the PMU.
354 /* avoid stale pointer */
355 cpuhw->bhrb_context = NULL;
359 /* Called from ctxsw to prevent one process's branch entries to
360 * mingle with the other process's entries during context switch.
362 void power_pmu_flush_branch_stack(void)
365 power_pmu_bhrb_reset();
367 /* Calculate the to address for a branch */
368 static __u64 power_pmu_bhrb_to(u64 addr)
374 if (is_kernel_addr(addr))
375 return branch_target((unsigned int *)addr);
377 /* Userspace: need copy instruction here then translate it */
379 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
386 target = branch_target(&instr);
387 if ((!target) || (instr & BRANCH_ABSOLUTE))
390 /* Translate relative branch target from kernel to user address */
391 return target - (unsigned long)&instr + addr;
394 /* Processing BHRB entries */
395 void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
399 int r_index, u_index, pred;
403 while (r_index < ppmu->bhrb_nr) {
404 /* Assembly read function */
405 val = read_bhrb(r_index++);
407 /* Terminal marker: End of valid BHRB entries */
410 addr = val & BHRB_EA;
411 pred = val & BHRB_PREDICTION;
417 /* Branches are read most recent first (ie. mfbhrb 0 is
418 * the most recent branch).
419 * There are two types of valid entries:
420 * 1) a target entry which is the to address of a
421 * computed goto like a blr,bctr,btar. The next
422 * entry read from the bhrb will be branch
423 * corresponding to this target (ie. the actual
424 * blr/bctr/btar instruction).
425 * 2) a from address which is an actual branch. If a
426 * target entry proceeds this, then this is the
427 * matching branch for that target. If this is not
428 * following a target entry, then this is a branch
429 * where the target is given as an immediate field
430 * in the instruction (ie. an i or b form branch).
431 * In this case we need to read the instruction from
432 * memory to determine the target/to address.
435 if (val & BHRB_TARGET) {
436 /* Target branches use two entries
437 * (ie. computed gotos/XL form)
439 cpuhw->bhrb_entries[u_index].to = addr;
440 cpuhw->bhrb_entries[u_index].mispred = pred;
441 cpuhw->bhrb_entries[u_index].predicted = ~pred;
443 /* Get from address in next entry */
444 val = read_bhrb(r_index++);
445 addr = val & BHRB_EA;
446 if (val & BHRB_TARGET) {
447 /* Shouldn't have two targets in a
448 row.. Reset index and try again */
452 cpuhw->bhrb_entries[u_index].from = addr;
454 /* Branches to immediate field
456 cpuhw->bhrb_entries[u_index].from = addr;
457 cpuhw->bhrb_entries[u_index].to =
458 power_pmu_bhrb_to(addr);
459 cpuhw->bhrb_entries[u_index].mispred = pred;
460 cpuhw->bhrb_entries[u_index].predicted = ~pred;
466 cpuhw->bhrb_stack.nr = u_index;
470 #endif /* CONFIG_PPC64 */
472 static void perf_event_interrupt(struct pt_regs *regs);
474 void perf_event_print_debug(void)
479 * Read one performance monitor counter (PMC).
481 static unsigned long read_pmc(int idx)
487 val = mfspr(SPRN_PMC1);
490 val = mfspr(SPRN_PMC2);
493 val = mfspr(SPRN_PMC3);
496 val = mfspr(SPRN_PMC4);
499 val = mfspr(SPRN_PMC5);
502 val = mfspr(SPRN_PMC6);
506 val = mfspr(SPRN_PMC7);
509 val = mfspr(SPRN_PMC8);
511 #endif /* CONFIG_PPC64 */
513 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
522 static void write_pmc(int idx, unsigned long val)
526 mtspr(SPRN_PMC1, val);
529 mtspr(SPRN_PMC2, val);
532 mtspr(SPRN_PMC3, val);
535 mtspr(SPRN_PMC4, val);
538 mtspr(SPRN_PMC5, val);
541 mtspr(SPRN_PMC6, val);
545 mtspr(SPRN_PMC7, val);
548 mtspr(SPRN_PMC8, val);
550 #endif /* CONFIG_PPC64 */
552 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
557 * Check if a set of events can all go on the PMU at once.
558 * If they can't, this will look at alternative codes for the events
559 * and see if any combination of alternative codes is feasible.
560 * The feasible set is returned in event_id[].
562 static int power_check_constraints(struct cpu_hw_events *cpuhw,
563 u64 event_id[], unsigned int cflags[],
566 unsigned long mask, value, nv;
567 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
568 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
570 unsigned long addf = ppmu->add_fields;
571 unsigned long tadd = ppmu->test_adder;
573 if (n_ev > ppmu->n_counter)
576 /* First see if the events will go on as-is */
577 for (i = 0; i < n_ev; ++i) {
578 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
579 && !ppmu->limited_pmc_event(event_id[i])) {
580 ppmu->get_alternatives(event_id[i], cflags[i],
581 cpuhw->alternatives[i]);
582 event_id[i] = cpuhw->alternatives[i][0];
584 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
585 &cpuhw->avalues[i][0]))
589 for (i = 0; i < n_ev; ++i) {
590 nv = (value | cpuhw->avalues[i][0]) +
591 (value & cpuhw->avalues[i][0] & addf);
592 if ((((nv + tadd) ^ value) & mask) != 0 ||
593 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
594 cpuhw->amasks[i][0]) != 0)
597 mask |= cpuhw->amasks[i][0];
600 return 0; /* all OK */
602 /* doesn't work, gather alternatives... */
603 if (!ppmu->get_alternatives)
605 for (i = 0; i < n_ev; ++i) {
607 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
608 cpuhw->alternatives[i]);
609 for (j = 1; j < n_alt[i]; ++j)
610 ppmu->get_constraint(cpuhw->alternatives[i][j],
611 &cpuhw->amasks[i][j],
612 &cpuhw->avalues[i][j]);
615 /* enumerate all possibilities and see if any will work */
618 value = mask = nv = 0;
621 /* we're backtracking, restore context */
627 * See if any alternative k for event_id i,
628 * where k > j, will satisfy the constraints.
630 while (++j < n_alt[i]) {
631 nv = (value | cpuhw->avalues[i][j]) +
632 (value & cpuhw->avalues[i][j] & addf);
633 if ((((nv + tadd) ^ value) & mask) == 0 &&
634 (((nv + tadd) ^ cpuhw->avalues[i][j])
635 & cpuhw->amasks[i][j]) == 0)
640 * No feasible alternative, backtrack
641 * to event_id i-1 and continue enumerating its
642 * alternatives from where we got up to.
648 * Found a feasible alternative for event_id i,
649 * remember where we got up to with this event_id,
650 * go on to the next event_id, and start with
651 * the first alternative for it.
657 mask |= cpuhw->amasks[i][j];
663 /* OK, we have a feasible combination, tell the caller the solution */
664 for (i = 0; i < n_ev; ++i)
665 event_id[i] = cpuhw->alternatives[i][choice[i]];
670 * Check if newly-added events have consistent settings for
671 * exclude_{user,kernel,hv} with each other and any previously
674 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
675 int n_prev, int n_new)
677 int eu = 0, ek = 0, eh = 0;
679 struct perf_event *event;
686 for (i = 0; i < n; ++i) {
687 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
688 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
693 eu = event->attr.exclude_user;
694 ek = event->attr.exclude_kernel;
695 eh = event->attr.exclude_hv;
697 } else if (event->attr.exclude_user != eu ||
698 event->attr.exclude_kernel != ek ||
699 event->attr.exclude_hv != eh) {
705 for (i = 0; i < n; ++i)
706 if (cflags[i] & PPMU_LIMITED_PMC_OK)
707 cflags[i] |= PPMU_LIMITED_PMC_REQD;
712 static u64 check_and_compute_delta(u64 prev, u64 val)
714 u64 delta = (val - prev) & 0xfffffffful;
717 * POWER7 can roll back counter values, if the new value is smaller
718 * than the previous value it will cause the delta and the counter to
719 * have bogus values unless we rolled a counter over. If a coutner is
720 * rolled back, it will be smaller, but within 256, which is the maximum
721 * number of events to rollback at once. If we dectect a rollback
722 * return 0. This can lead to a small lack of precision in the
725 if (prev > val && (prev - val) < 256)
731 static void power_pmu_read(struct perf_event *event)
733 s64 val, delta, prev;
735 if (event->hw.state & PERF_HES_STOPPED)
741 * Performance monitor interrupts come even when interrupts
742 * are soft-disabled, as long as interrupts are hard-enabled.
743 * Therefore we treat them like NMIs.
746 prev = local64_read(&event->hw.prev_count);
748 val = read_pmc(event->hw.idx);
749 delta = check_and_compute_delta(prev, val);
752 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
754 local64_add(delta, &event->count);
755 local64_sub(delta, &event->hw.period_left);
759 * On some machines, PMC5 and PMC6 can't be written, don't respect
760 * the freeze conditions, and don't generate interrupts. This tells
761 * us if `event' is using such a PMC.
763 static int is_limited_pmc(int pmcnum)
765 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
766 && (pmcnum == 5 || pmcnum == 6);
769 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
770 unsigned long pmc5, unsigned long pmc6)
772 struct perf_event *event;
773 u64 val, prev, delta;
776 for (i = 0; i < cpuhw->n_limited; ++i) {
777 event = cpuhw->limited_counter[i];
780 val = (event->hw.idx == 5) ? pmc5 : pmc6;
781 prev = local64_read(&event->hw.prev_count);
783 delta = check_and_compute_delta(prev, val);
785 local64_add(delta, &event->count);
789 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
790 unsigned long pmc5, unsigned long pmc6)
792 struct perf_event *event;
796 for (i = 0; i < cpuhw->n_limited; ++i) {
797 event = cpuhw->limited_counter[i];
798 event->hw.idx = cpuhw->limited_hwidx[i];
799 val = (event->hw.idx == 5) ? pmc5 : pmc6;
800 prev = local64_read(&event->hw.prev_count);
801 if (check_and_compute_delta(prev, val))
802 local64_set(&event->hw.prev_count, val);
803 perf_event_update_userpage(event);
808 * Since limited events don't respect the freeze conditions, we
809 * have to read them immediately after freezing or unfreezing the
810 * other events. We try to keep the values from the limited
811 * events as consistent as possible by keeping the delay (in
812 * cycles and instructions) between freezing/unfreezing and reading
813 * the limited events as small and consistent as possible.
814 * Therefore, if any limited events are in use, we read them
815 * both, and always in the same order, to minimize variability,
816 * and do it inside the same asm that writes MMCR0.
818 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
820 unsigned long pmc5, pmc6;
822 if (!cpuhw->n_limited) {
823 mtspr(SPRN_MMCR0, mmcr0);
828 * Write MMCR0, then read PMC5 and PMC6 immediately.
829 * To ensure we don't get a performance monitor interrupt
830 * between writing MMCR0 and freezing/thawing the limited
831 * events, we first write MMCR0 with the event overflow
832 * interrupt enable bits turned off.
834 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
835 : "=&r" (pmc5), "=&r" (pmc6)
836 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
838 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
840 if (mmcr0 & MMCR0_FC)
841 freeze_limited_counters(cpuhw, pmc5, pmc6);
843 thaw_limited_counters(cpuhw, pmc5, pmc6);
846 * Write the full MMCR0 including the event overflow interrupt
847 * enable bits, if necessary.
849 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
850 mtspr(SPRN_MMCR0, mmcr0);
854 * Disable all events to prevent PMU interrupts and to allow
855 * events to be added or removed.
857 static void power_pmu_disable(struct pmu *pmu)
859 struct cpu_hw_events *cpuhw;
864 local_irq_save(flags);
865 cpuhw = &__get_cpu_var(cpu_hw_events);
867 if (!cpuhw->disabled) {
872 * Check if we ever enabled the PMU on this cpu.
874 if (!cpuhw->pmcs_enabled) {
876 cpuhw->pmcs_enabled = 1;
880 * Disable instruction sampling if it was enabled
882 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
884 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
889 * Set the 'freeze counters' bit.
890 * The barrier is to make sure the mtspr has been
891 * executed and the PMU has frozen the events
894 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
897 local_irq_restore(flags);
901 * Re-enable all events if disable == 0.
902 * If we were previously disabled and events were added, then
903 * put the new config on the PMU.
905 static void power_pmu_enable(struct pmu *pmu)
907 struct perf_event *event;
908 struct cpu_hw_events *cpuhw;
913 unsigned int hwc_index[MAX_HWEVENTS];
919 local_irq_save(flags);
920 cpuhw = &__get_cpu_var(cpu_hw_events);
921 if (!cpuhw->disabled) {
922 local_irq_restore(flags);
928 * If we didn't change anything, or only removed events,
929 * no need to recalculate MMCR* settings and reset the PMCs.
930 * Just reenable the PMU with the current MMCR* settings
931 * (possibly updated for removal of events).
933 if (!cpuhw->n_added) {
934 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
935 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
936 if (cpuhw->n_events == 0)
937 ppc_set_pmu_inuse(0);
942 * Compute MMCR* values for the new set of events
944 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
946 /* shouldn't ever get here */
947 printk(KERN_ERR "oops compute_mmcr failed\n");
952 * Add in MMCR0 freeze bits corresponding to the
953 * attr.exclude_* bits for the first event.
954 * We have already checked that all events have the
955 * same values for these bits as the first event.
957 event = cpuhw->event[0];
958 if (event->attr.exclude_user)
959 cpuhw->mmcr[0] |= MMCR0_FCP;
960 if (event->attr.exclude_kernel)
961 cpuhw->mmcr[0] |= freeze_events_kernel;
962 if (event->attr.exclude_hv)
963 cpuhw->mmcr[0] |= MMCR0_FCHV;
966 * Write the new configuration to MMCR* with the freeze
967 * bit set and set the hardware events to their initial values.
968 * Then unfreeze the events.
970 ppc_set_pmu_inuse(1);
971 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
972 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
973 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
977 * Read off any pre-existing events that need to move
980 for (i = 0; i < cpuhw->n_events; ++i) {
981 event = cpuhw->event[i];
982 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
983 power_pmu_read(event);
984 write_pmc(event->hw.idx, 0);
990 * Initialize the PMCs for all the new and moved events.
992 cpuhw->n_limited = n_lim = 0;
993 for (i = 0; i < cpuhw->n_events; ++i) {
994 event = cpuhw->event[i];
997 idx = hwc_index[i] + 1;
998 if (is_limited_pmc(idx)) {
999 cpuhw->limited_counter[n_lim] = event;
1000 cpuhw->limited_hwidx[n_lim] = idx;
1005 if (event->hw.sample_period) {
1006 left = local64_read(&event->hw.period_left);
1007 if (left < 0x80000000L)
1008 val = 0x80000000L - left;
1010 local64_set(&event->hw.prev_count, val);
1011 event->hw.idx = idx;
1012 if (event->hw.state & PERF_HES_STOPPED)
1014 write_pmc(idx, val);
1015 perf_event_update_userpage(event);
1017 cpuhw->n_limited = n_lim;
1018 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1022 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1025 * Enable instruction sampling if necessary
1027 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1029 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1033 if (cpuhw->bhrb_users)
1034 ppmu->config_bhrb(cpuhw->bhrb_filter);
1036 local_irq_restore(flags);
1039 static int collect_events(struct perf_event *group, int max_count,
1040 struct perf_event *ctrs[], u64 *events,
1041 unsigned int *flags)
1044 struct perf_event *event;
1046 if (!is_software_event(group)) {
1050 flags[n] = group->hw.event_base;
1051 events[n++] = group->hw.config;
1053 list_for_each_entry(event, &group->sibling_list, group_entry) {
1054 if (!is_software_event(event) &&
1055 event->state != PERF_EVENT_STATE_OFF) {
1059 flags[n] = event->hw.event_base;
1060 events[n++] = event->hw.config;
1067 * Add a event to the PMU.
1068 * If all events are not already frozen, then we disable and
1069 * re-enable the PMU in order to get hw_perf_enable to do the
1070 * actual work of reconfiguring the PMU.
1072 static int power_pmu_add(struct perf_event *event, int ef_flags)
1074 struct cpu_hw_events *cpuhw;
1075 unsigned long flags;
1079 local_irq_save(flags);
1080 perf_pmu_disable(event->pmu);
1083 * Add the event to the list (if there is room)
1084 * and check whether the total set is still feasible.
1086 cpuhw = &__get_cpu_var(cpu_hw_events);
1087 n0 = cpuhw->n_events;
1088 if (n0 >= ppmu->n_counter)
1090 cpuhw->event[n0] = event;
1091 cpuhw->events[n0] = event->hw.config;
1092 cpuhw->flags[n0] = event->hw.event_base;
1095 * This event may have been disabled/stopped in record_and_restart()
1096 * because we exceeded the ->event_limit. If re-starting the event,
1097 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1098 * notification is re-enabled.
1100 if (!(ef_flags & PERF_EF_START))
1101 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1103 event->hw.state = 0;
1106 * If group events scheduling transaction was started,
1107 * skip the schedulability test here, it will be performed
1108 * at commit time(->commit_txn) as a whole
1110 if (cpuhw->group_flag & PERF_EVENT_TXN)
1113 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1115 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1117 event->hw.config = cpuhw->events[n0];
1125 if (has_branch_stack(event))
1126 power_pmu_bhrb_enable(event);
1128 perf_pmu_enable(event->pmu);
1129 local_irq_restore(flags);
1134 * Remove a event from the PMU.
1136 static void power_pmu_del(struct perf_event *event, int ef_flags)
1138 struct cpu_hw_events *cpuhw;
1140 unsigned long flags;
1142 local_irq_save(flags);
1143 perf_pmu_disable(event->pmu);
1145 power_pmu_read(event);
1147 cpuhw = &__get_cpu_var(cpu_hw_events);
1148 for (i = 0; i < cpuhw->n_events; ++i) {
1149 if (event == cpuhw->event[i]) {
1150 while (++i < cpuhw->n_events) {
1151 cpuhw->event[i-1] = cpuhw->event[i];
1152 cpuhw->events[i-1] = cpuhw->events[i];
1153 cpuhw->flags[i-1] = cpuhw->flags[i];
1156 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1157 if (event->hw.idx) {
1158 write_pmc(event->hw.idx, 0);
1161 perf_event_update_userpage(event);
1165 for (i = 0; i < cpuhw->n_limited; ++i)
1166 if (event == cpuhw->limited_counter[i])
1168 if (i < cpuhw->n_limited) {
1169 while (++i < cpuhw->n_limited) {
1170 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1171 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1175 if (cpuhw->n_events == 0) {
1176 /* disable exceptions if no events are running */
1177 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1180 if (has_branch_stack(event))
1181 power_pmu_bhrb_disable(event);
1183 perf_pmu_enable(event->pmu);
1184 local_irq_restore(flags);
1188 * POWER-PMU does not support disabling individual counters, hence
1189 * program their cycle counter to their max value and ignore the interrupts.
1192 static void power_pmu_start(struct perf_event *event, int ef_flags)
1194 unsigned long flags;
1198 if (!event->hw.idx || !event->hw.sample_period)
1201 if (!(event->hw.state & PERF_HES_STOPPED))
1204 if (ef_flags & PERF_EF_RELOAD)
1205 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1207 local_irq_save(flags);
1208 perf_pmu_disable(event->pmu);
1210 event->hw.state = 0;
1211 left = local64_read(&event->hw.period_left);
1214 if (left < 0x80000000L)
1215 val = 0x80000000L - left;
1217 write_pmc(event->hw.idx, val);
1219 perf_event_update_userpage(event);
1220 perf_pmu_enable(event->pmu);
1221 local_irq_restore(flags);
1224 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1226 unsigned long flags;
1228 if (!event->hw.idx || !event->hw.sample_period)
1231 if (event->hw.state & PERF_HES_STOPPED)
1234 local_irq_save(flags);
1235 perf_pmu_disable(event->pmu);
1237 power_pmu_read(event);
1238 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1239 write_pmc(event->hw.idx, 0);
1241 perf_event_update_userpage(event);
1242 perf_pmu_enable(event->pmu);
1243 local_irq_restore(flags);
1247 * Start group events scheduling transaction
1248 * Set the flag to make pmu::enable() not perform the
1249 * schedulability test, it will be performed at commit time
1251 void power_pmu_start_txn(struct pmu *pmu)
1253 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1255 perf_pmu_disable(pmu);
1256 cpuhw->group_flag |= PERF_EVENT_TXN;
1257 cpuhw->n_txn_start = cpuhw->n_events;
1261 * Stop group events scheduling transaction
1262 * Clear the flag and pmu::enable() will perform the
1263 * schedulability test.
1265 void power_pmu_cancel_txn(struct pmu *pmu)
1267 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1269 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1270 perf_pmu_enable(pmu);
1274 * Commit group events scheduling transaction
1275 * Perform the group schedulability test as a whole
1276 * Return 0 if success
1278 int power_pmu_commit_txn(struct pmu *pmu)
1280 struct cpu_hw_events *cpuhw;
1285 cpuhw = &__get_cpu_var(cpu_hw_events);
1286 n = cpuhw->n_events;
1287 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1289 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1293 for (i = cpuhw->n_txn_start; i < n; ++i)
1294 cpuhw->event[i]->hw.config = cpuhw->events[i];
1296 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1297 perf_pmu_enable(pmu);
1302 * Return 1 if we might be able to put event on a limited PMC,
1304 * A event can only go on a limited PMC if it counts something
1305 * that a limited PMC can count, doesn't require interrupts, and
1306 * doesn't exclude any processor mode.
1308 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1312 u64 alt[MAX_EVENT_ALTERNATIVES];
1314 if (event->attr.exclude_user
1315 || event->attr.exclude_kernel
1316 || event->attr.exclude_hv
1317 || event->attr.sample_period)
1320 if (ppmu->limited_pmc_event(ev))
1324 * The requested event_id isn't on a limited PMC already;
1325 * see if any alternative code goes on a limited PMC.
1327 if (!ppmu->get_alternatives)
1330 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1331 n = ppmu->get_alternatives(ev, flags, alt);
1337 * Find an alternative event_id that goes on a normal PMC, if possible,
1338 * and return the event_id code, or 0 if there is no such alternative.
1339 * (Note: event_id code 0 is "don't count" on all machines.)
1341 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1343 u64 alt[MAX_EVENT_ALTERNATIVES];
1346 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1347 n = ppmu->get_alternatives(ev, flags, alt);
1353 /* Number of perf_events counting hardware events */
1354 static atomic_t num_events;
1355 /* Used to avoid races in calling reserve/release_pmc_hardware */
1356 static DEFINE_MUTEX(pmc_reserve_mutex);
1359 * Release the PMU if this is the last perf_event.
1361 static void hw_perf_event_destroy(struct perf_event *event)
1363 if (!atomic_add_unless(&num_events, -1, 1)) {
1364 mutex_lock(&pmc_reserve_mutex);
1365 if (atomic_dec_return(&num_events) == 0)
1366 release_pmc_hardware();
1367 mutex_unlock(&pmc_reserve_mutex);
1372 * Translate a generic cache event_id config to a raw event_id code.
1374 static int hw_perf_cache_event(u64 config, u64 *eventp)
1376 unsigned long type, op, result;
1379 if (!ppmu->cache_events)
1383 type = config & 0xff;
1384 op = (config >> 8) & 0xff;
1385 result = (config >> 16) & 0xff;
1387 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1388 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1389 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1392 ev = (*ppmu->cache_events)[type][op][result];
1401 static int power_pmu_event_init(struct perf_event *event)
1404 unsigned long flags;
1405 struct perf_event *ctrs[MAX_HWEVENTS];
1406 u64 events[MAX_HWEVENTS];
1407 unsigned int cflags[MAX_HWEVENTS];
1410 struct cpu_hw_events *cpuhw;
1415 if (has_branch_stack(event)) {
1416 /* PMU has BHRB enabled */
1417 if (!(ppmu->flags & PPMU_BHRB))
1421 switch (event->attr.type) {
1422 case PERF_TYPE_HARDWARE:
1423 ev = event->attr.config;
1424 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1426 ev = ppmu->generic_events[ev];
1428 case PERF_TYPE_HW_CACHE:
1429 err = hw_perf_cache_event(event->attr.config, &ev);
1434 ev = event->attr.config;
1440 event->hw.config_base = ev;
1444 * If we are not running on a hypervisor, force the
1445 * exclude_hv bit to 0 so that we don't care what
1446 * the user set it to.
1448 if (!firmware_has_feature(FW_FEATURE_LPAR))
1449 event->attr.exclude_hv = 0;
1452 * If this is a per-task event, then we can use
1453 * PM_RUN_* events interchangeably with their non RUN_*
1454 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1455 * XXX we should check if the task is an idle task.
1458 if (event->attach_state & PERF_ATTACH_TASK)
1459 flags |= PPMU_ONLY_COUNT_RUN;
1462 * If this machine has limited events, check whether this
1463 * event_id could go on a limited event.
1465 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1466 if (can_go_on_limited_pmc(event, ev, flags)) {
1467 flags |= PPMU_LIMITED_PMC_OK;
1468 } else if (ppmu->limited_pmc_event(ev)) {
1470 * The requested event_id is on a limited PMC,
1471 * but we can't use a limited PMC; see if any
1472 * alternative goes on a normal PMC.
1474 ev = normal_pmc_alternative(ev, flags);
1481 * If this is in a group, check if it can go on with all the
1482 * other hardware events in the group. We assume the event
1483 * hasn't been linked into its leader's sibling list at this point.
1486 if (event->group_leader != event) {
1487 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1488 ctrs, events, cflags);
1495 if (check_excludes(ctrs, cflags, n, 1))
1498 cpuhw = &get_cpu_var(cpu_hw_events);
1499 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1501 if (has_branch_stack(event)) {
1502 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1503 event->attr.branch_sample_type);
1505 if(cpuhw->bhrb_filter == -1)
1509 put_cpu_var(cpu_hw_events);
1513 event->hw.config = events[n];
1514 event->hw.event_base = cflags[n];
1515 event->hw.last_period = event->hw.sample_period;
1516 local64_set(&event->hw.period_left, event->hw.last_period);
1519 * See if we need to reserve the PMU.
1520 * If no events are currently in use, then we have to take a
1521 * mutex to ensure that we don't race with another task doing
1522 * reserve_pmc_hardware or release_pmc_hardware.
1525 if (!atomic_inc_not_zero(&num_events)) {
1526 mutex_lock(&pmc_reserve_mutex);
1527 if (atomic_read(&num_events) == 0 &&
1528 reserve_pmc_hardware(perf_event_interrupt))
1531 atomic_inc(&num_events);
1532 mutex_unlock(&pmc_reserve_mutex);
1534 event->destroy = hw_perf_event_destroy;
1539 static int power_pmu_event_idx(struct perf_event *event)
1541 return event->hw.idx;
1544 ssize_t power_events_sysfs_show(struct device *dev,
1545 struct device_attribute *attr, char *page)
1547 struct perf_pmu_events_attr *pmu_attr;
1549 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1551 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1554 struct pmu power_pmu = {
1555 .pmu_enable = power_pmu_enable,
1556 .pmu_disable = power_pmu_disable,
1557 .event_init = power_pmu_event_init,
1558 .add = power_pmu_add,
1559 .del = power_pmu_del,
1560 .start = power_pmu_start,
1561 .stop = power_pmu_stop,
1562 .read = power_pmu_read,
1563 .start_txn = power_pmu_start_txn,
1564 .cancel_txn = power_pmu_cancel_txn,
1565 .commit_txn = power_pmu_commit_txn,
1566 .event_idx = power_pmu_event_idx,
1567 .flush_branch_stack = power_pmu_flush_branch_stack,
1571 * A counter has overflowed; update its count and record
1572 * things if requested. Note that interrupts are hard-disabled
1573 * here so there is no possibility of being interrupted.
1575 static void record_and_restart(struct perf_event *event, unsigned long val,
1576 struct pt_regs *regs)
1578 u64 period = event->hw.sample_period;
1579 s64 prev, delta, left;
1582 if (event->hw.state & PERF_HES_STOPPED) {
1583 write_pmc(event->hw.idx, 0);
1587 /* we don't have to worry about interrupts here */
1588 prev = local64_read(&event->hw.prev_count);
1589 delta = check_and_compute_delta(prev, val);
1590 local64_add(delta, &event->count);
1593 * See if the total period for this event has expired,
1594 * and update for the next period.
1597 left = local64_read(&event->hw.period_left) - delta;
1605 record = siar_valid(regs);
1606 event->hw.last_period = event->hw.sample_period;
1608 if (left < 0x80000000LL)
1609 val = 0x80000000LL - left;
1612 write_pmc(event->hw.idx, val);
1613 local64_set(&event->hw.prev_count, val);
1614 local64_set(&event->hw.period_left, left);
1615 perf_event_update_userpage(event);
1618 * Finally record data if requested.
1621 struct perf_sample_data data;
1623 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1625 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1626 perf_get_data_addr(regs, &data.addr);
1628 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1629 struct cpu_hw_events *cpuhw;
1630 cpuhw = &__get_cpu_var(cpu_hw_events);
1631 power_pmu_bhrb_read(cpuhw);
1632 data.br_stack = &cpuhw->bhrb_stack;
1635 if (perf_event_overflow(event, &data, regs))
1636 power_pmu_stop(event, 0);
1641 * Called from generic code to get the misc flags (i.e. processor mode)
1644 unsigned long perf_misc_flags(struct pt_regs *regs)
1646 u32 flags = perf_get_misc_flags(regs);
1650 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1651 PERF_RECORD_MISC_KERNEL;
1655 * Called from generic code to get the instruction pointer
1658 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1660 bool use_siar = regs_use_siar(regs);
1662 if (use_siar && siar_valid(regs))
1663 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1665 return 0; // no valid instruction pointer
1670 static bool pmc_overflow_power7(unsigned long val)
1673 * Events on POWER7 can roll back if a speculative event doesn't
1674 * eventually complete. Unfortunately in some rare cases they will
1675 * raise a performance monitor exception. We need to catch this to
1676 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1677 * cycles from overflow.
1679 * We only do this if the first pass fails to find any overflowing
1680 * PMCs because a user might set a period of less than 256 and we
1681 * don't want to mistakenly reset them.
1683 if ((0x80000000 - val) <= 256)
1689 static bool pmc_overflow(unsigned long val)
1698 * Performance monitor interrupt stuff
1700 static void perf_event_interrupt(struct pt_regs *regs)
1703 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1704 struct perf_event *event;
1705 unsigned long val[8];
1709 if (cpuhw->n_limited)
1710 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1713 perf_read_regs(regs);
1715 nmi = perf_intr_is_nmi(regs);
1721 /* Read all the PMCs since we'll need them a bunch of times */
1722 for (i = 0; i < ppmu->n_counter; ++i)
1723 val[i] = read_pmc(i + 1);
1725 /* Try to find what caused the IRQ */
1727 for (i = 0; i < ppmu->n_counter; ++i) {
1728 if (!pmc_overflow(val[i]))
1730 if (is_limited_pmc(i + 1))
1731 continue; /* these won't generate IRQs */
1733 * We've found one that's overflowed. For active
1734 * counters we need to log this. For inactive
1735 * counters, we need to reset it anyway
1739 for (j = 0; j < cpuhw->n_events; ++j) {
1740 event = cpuhw->event[j];
1741 if (event->hw.idx == (i + 1)) {
1743 record_and_restart(event, val[i], regs);
1748 /* reset non active counters that have overflowed */
1749 write_pmc(i + 1, 0);
1751 if (!found && pvr_version_is(PVR_POWER7)) {
1752 /* check active counters for special buggy p7 overflow */
1753 for (i = 0; i < cpuhw->n_events; ++i) {
1754 event = cpuhw->event[i];
1755 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1757 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1758 /* event has overflowed in a buggy way*/
1760 record_and_restart(event,
1761 val[event->hw.idx - 1],
1766 if ((!found) && printk_ratelimit())
1767 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
1770 * Reset MMCR0 to its normal value. This will set PMXE and
1771 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1772 * and thus allow interrupts to occur again.
1773 * XXX might want to use MSR.PM to keep the events frozen until
1774 * we get back out of this interrupt.
1776 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1784 static void power_pmu_setup(int cpu)
1786 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1790 memset(cpuhw, 0, sizeof(*cpuhw));
1791 cpuhw->mmcr[0] = MMCR0_FC;
1794 static int __cpuinit
1795 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1797 unsigned int cpu = (long)hcpu;
1799 switch (action & ~CPU_TASKS_FROZEN) {
1800 case CPU_UP_PREPARE:
1801 power_pmu_setup(cpu);
1811 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1814 return -EBUSY; /* something's already registered */
1817 pr_info("%s performance monitor hardware support registered\n",
1820 power_pmu.attr_groups = ppmu->attr_groups;
1824 * Use FCHV to ignore kernel events if MSR.HV is set.
1826 if (mfmsr() & MSR_HV)
1827 freeze_events_kernel = MMCR0_FCHV;
1828 #endif /* CONFIG_PPC64 */
1830 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1831 perf_cpu_notifier(power_pmu_notifier);