mm: don't include asm/pgtable.h if linux/mm.h is already included
[platform/kernel/linux-starfive.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27
28 bool hugetlb_disabled = false;
29
30 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
31
32 #define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_basic_t)) - \
33                          __builtin_ffs(sizeof(void *)))
34
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37         /*
38          * Only called for hugetlbfs pages, hence can ignore THP and the
39          * irq disabled walk.
40          */
41         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45                            unsigned long address, unsigned int pdshift,
46                            unsigned int pshift, spinlock_t *ptl)
47 {
48         struct kmem_cache *cachep;
49         pte_t *new;
50         int i;
51         int num_hugepd;
52
53         if (pshift >= pdshift) {
54                 cachep = PGT_CACHE(PTE_T_ORDER);
55                 num_hugepd = 1 << (pshift - pdshift);
56         } else {
57                 cachep = PGT_CACHE(pdshift - pshift);
58                 num_hugepd = 1;
59         }
60
61         if (!cachep) {
62                 WARN_ONCE(1, "No page table cache created for hugetlb tables");
63                 return -ENOMEM;
64         }
65
66         new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67
68         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70
71         if (!new)
72                 return -ENOMEM;
73
74         /*
75          * Make sure other cpus find the hugepd set only after a
76          * properly initialized page table is visible to them.
77          * For more details look for comment in __pte_alloc().
78          */
79         smp_wmb();
80
81         spin_lock(ptl);
82         /*
83          * We have multiple higher-level entries that point to the same
84          * actual pte location.  Fill in each as we go and backtrack on error.
85          * We need all of these so the DTLB pgtable walk code can find the
86          * right higher-level entry without knowing if it's a hugepage or not.
87          */
88         for (i = 0; i < num_hugepd; i++, hpdp++) {
89                 if (unlikely(!hugepd_none(*hpdp)))
90                         break;
91                 hugepd_populate(hpdp, new, pshift);
92         }
93         /* If we bailed from the for loop early, an error occurred, clean up */
94         if (i < num_hugepd) {
95                 for (i = i - 1 ; i >= 0; i--, hpdp--)
96                         *hpdp = __hugepd(0);
97                 kmem_cache_free(cachep, new);
98         } else {
99                 kmemleak_ignore(new);
100         }
101         spin_unlock(ptl);
102         return 0;
103 }
104
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
110 {
111         pgd_t *pg;
112         p4d_t *p4;
113         pud_t *pu;
114         pmd_t *pm;
115         hugepd_t *hpdp = NULL;
116         unsigned pshift = __ffs(sz);
117         unsigned pdshift = PGDIR_SHIFT;
118         spinlock_t *ptl;
119
120         addr &= ~(sz-1);
121         pg = pgd_offset(mm, addr);
122         p4 = p4d_offset(pg, addr);
123
124 #ifdef CONFIG_PPC_BOOK3S_64
125         if (pshift == PGDIR_SHIFT)
126                 /* 16GB huge page */
127                 return (pte_t *) p4;
128         else if (pshift > PUD_SHIFT) {
129                 /*
130                  * We need to use hugepd table
131                  */
132                 ptl = &mm->page_table_lock;
133                 hpdp = (hugepd_t *)p4;
134         } else {
135                 pdshift = PUD_SHIFT;
136                 pu = pud_alloc(mm, p4, addr);
137                 if (!pu)
138                         return NULL;
139                 if (pshift == PUD_SHIFT)
140                         return (pte_t *)pu;
141                 else if (pshift > PMD_SHIFT) {
142                         ptl = pud_lockptr(mm, pu);
143                         hpdp = (hugepd_t *)pu;
144                 } else {
145                         pdshift = PMD_SHIFT;
146                         pm = pmd_alloc(mm, pu, addr);
147                         if (!pm)
148                                 return NULL;
149                         if (pshift == PMD_SHIFT)
150                                 /* 16MB hugepage */
151                                 return (pte_t *)pm;
152                         else {
153                                 ptl = pmd_lockptr(mm, pm);
154                                 hpdp = (hugepd_t *)pm;
155                         }
156                 }
157         }
158 #else
159         if (pshift >= PGDIR_SHIFT) {
160                 ptl = &mm->page_table_lock;
161                 hpdp = (hugepd_t *)p4;
162         } else {
163                 pdshift = PUD_SHIFT;
164                 pu = pud_alloc(mm, p4, addr);
165                 if (!pu)
166                         return NULL;
167                 if (pshift >= PUD_SHIFT) {
168                         ptl = pud_lockptr(mm, pu);
169                         hpdp = (hugepd_t *)pu;
170                 } else {
171                         pdshift = PMD_SHIFT;
172                         pm = pmd_alloc(mm, pu, addr);
173                         if (!pm)
174                                 return NULL;
175                         ptl = pmd_lockptr(mm, pm);
176                         hpdp = (hugepd_t *)pm;
177                 }
178         }
179 #endif
180         if (!hpdp)
181                 return NULL;
182
183         if (IS_ENABLED(CONFIG_PPC_8xx) && sz == SZ_512K)
184                 return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
185
186         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
187
188         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189                                                   pdshift, pshift, ptl))
190                 return NULL;
191
192         return hugepte_offset(*hpdp, addr, pdshift);
193 }
194
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197  * Tracks gpages after the device tree is scanned and before the
198  * huge_boot_pages list is ready on pseries.
199  */
200 #define MAX_NUMBER_GPAGES       1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203
204 /*
205  * Build list of addresses of gigantic pages.  This function is used in early
206  * boot before the buddy allocator is setup.
207  */
208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210         if (!addr)
211                 return;
212         while (number_of_pages > 0) {
213                 gpage_freearray[nr_gpages] = addr;
214                 nr_gpages++;
215                 number_of_pages--;
216                 addr += page_size;
217         }
218 }
219
220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222         struct huge_bootmem_page *m;
223         if (nr_gpages == 0)
224                 return 0;
225         m = phys_to_virt(gpage_freearray[--nr_gpages]);
226         gpage_freearray[nr_gpages] = 0;
227         list_add(&m->list, &huge_boot_pages);
228         m->hstate = hstate;
229         return 1;
230 }
231 #endif
232
233
234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236
237 #ifdef CONFIG_PPC_BOOK3S_64
238         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239                 return pseries_alloc_bootmem_huge_page(h);
240 #endif
241         return __alloc_bootmem_huge_page(h);
242 }
243
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247
248 struct hugepd_freelist {
249         struct rcu_head rcu;
250         unsigned int index;
251         void *ptes[];
252 };
253
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255
256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258         struct hugepd_freelist *batch =
259                 container_of(head, struct hugepd_freelist, rcu);
260         unsigned int i;
261
262         for (i = 0; i < batch->index; i++)
263                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
264
265         free_page((unsigned long)batch);
266 }
267
268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270         struct hugepd_freelist **batchp;
271
272         batchp = &get_cpu_var(hugepd_freelist_cur);
273
274         if (atomic_read(&tlb->mm->mm_users) < 2 ||
275             mm_is_thread_local(tlb->mm)) {
276                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277                 put_cpu_var(hugepd_freelist_cur);
278                 return;
279         }
280
281         if (*batchp == NULL) {
282                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283                 (*batchp)->index = 0;
284         }
285
286         (*batchp)->ptes[(*batchp)->index++] = hugepte;
287         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288                 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289                 *batchp = NULL;
290         }
291         put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296
297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298                               unsigned long start, unsigned long end,
299                               unsigned long floor, unsigned long ceiling)
300 {
301         pte_t *hugepte = hugepd_page(*hpdp);
302         int i;
303
304         unsigned long pdmask = ~((1UL << pdshift) - 1);
305         unsigned int num_hugepd = 1;
306         unsigned int shift = hugepd_shift(*hpdp);
307
308         /* Note: On fsl the hpdp may be the first of several */
309         if (shift > pdshift)
310                 num_hugepd = 1 << (shift - pdshift);
311
312         start &= pdmask;
313         if (start < floor)
314                 return;
315         if (ceiling) {
316                 ceiling &= pdmask;
317                 if (! ceiling)
318                         return;
319         }
320         if (end - 1 > ceiling - 1)
321                 return;
322
323         for (i = 0; i < num_hugepd; i++, hpdp++)
324                 *hpdp = __hugepd(0);
325
326         if (shift >= pdshift)
327                 hugepd_free(tlb, hugepte);
328         else
329                 pgtable_free_tlb(tlb, hugepte,
330                                  get_hugepd_cache_index(pdshift - shift));
331 }
332
333 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr)
334 {
335         pgtable_t token = pmd_pgtable(*pmd);
336
337         pmd_clear(pmd);
338         pte_free_tlb(tlb, token, addr);
339         mm_dec_nr_ptes(tlb->mm);
340 }
341
342 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
343                                    unsigned long addr, unsigned long end,
344                                    unsigned long floor, unsigned long ceiling)
345 {
346         pmd_t *pmd;
347         unsigned long next;
348         unsigned long start;
349
350         start = addr;
351         do {
352                 unsigned long more;
353
354                 pmd = pmd_offset(pud, addr);
355                 next = pmd_addr_end(addr, end);
356                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
357                         if (pmd_none_or_clear_bad(pmd))
358                                 continue;
359
360                         /*
361                          * if it is not hugepd pointer, we should already find
362                          * it cleared.
363                          */
364                         WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
365
366                         hugetlb_free_pte_range(tlb, pmd, addr);
367
368                         continue;
369                 }
370                 /*
371                  * Increment next by the size of the huge mapping since
372                  * there may be more than one entry at this level for a
373                  * single hugepage, but all of them point to
374                  * the same kmem cache that holds the hugepte.
375                  */
376                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
377                 if (more > next)
378                         next = more;
379
380                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
381                                   addr, next, floor, ceiling);
382         } while (addr = next, addr != end);
383
384         start &= PUD_MASK;
385         if (start < floor)
386                 return;
387         if (ceiling) {
388                 ceiling &= PUD_MASK;
389                 if (!ceiling)
390                         return;
391         }
392         if (end - 1 > ceiling - 1)
393                 return;
394
395         pmd = pmd_offset(pud, start);
396         pud_clear(pud);
397         pmd_free_tlb(tlb, pmd, start);
398         mm_dec_nr_pmds(tlb->mm);
399 }
400
401 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
402                                    unsigned long addr, unsigned long end,
403                                    unsigned long floor, unsigned long ceiling)
404 {
405         pud_t *pud;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         do {
411                 pud = pud_offset(p4d, addr);
412                 next = pud_addr_end(addr, end);
413                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
414                         if (pud_none_or_clear_bad(pud))
415                                 continue;
416                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
417                                                ceiling);
418                 } else {
419                         unsigned long more;
420                         /*
421                          * Increment next by the size of the huge mapping since
422                          * there may be more than one entry at this level for a
423                          * single hugepage, but all of them point to
424                          * the same kmem cache that holds the hugepte.
425                          */
426                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
427                         if (more > next)
428                                 next = more;
429
430                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
431                                           addr, next, floor, ceiling);
432                 }
433         } while (addr = next, addr != end);
434
435         start &= PGDIR_MASK;
436         if (start < floor)
437                 return;
438         if (ceiling) {
439                 ceiling &= PGDIR_MASK;
440                 if (!ceiling)
441                         return;
442         }
443         if (end - 1 > ceiling - 1)
444                 return;
445
446         pud = pud_offset(p4d, start);
447         p4d_clear(p4d);
448         pud_free_tlb(tlb, pud, start);
449         mm_dec_nr_puds(tlb->mm);
450 }
451
452 /*
453  * This function frees user-level page tables of a process.
454  */
455 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
456                             unsigned long addr, unsigned long end,
457                             unsigned long floor, unsigned long ceiling)
458 {
459         pgd_t *pgd;
460         p4d_t *p4d;
461         unsigned long next;
462
463         /*
464          * Because there are a number of different possible pagetable
465          * layouts for hugepage ranges, we limit knowledge of how
466          * things should be laid out to the allocation path
467          * (huge_pte_alloc(), above).  Everything else works out the
468          * structure as it goes from information in the hugepd
469          * pointers.  That means that we can't here use the
470          * optimization used in the normal page free_pgd_range(), of
471          * checking whether we're actually covering a large enough
472          * range to have to do anything at the top level of the walk
473          * instead of at the bottom.
474          *
475          * To make sense of this, you should probably go read the big
476          * block comment at the top of the normal free_pgd_range(),
477          * too.
478          */
479
480         do {
481                 next = pgd_addr_end(addr, end);
482                 pgd = pgd_offset(tlb->mm, addr);
483                 p4d = p4d_offset(pgd, addr);
484                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
485                         if (p4d_none_or_clear_bad(p4d))
486                                 continue;
487                         hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
488                 } else {
489                         unsigned long more;
490                         /*
491                          * Increment next by the size of the huge mapping since
492                          * there may be more than one entry at the pgd level
493                          * for a single hugepage, but all of them point to the
494                          * same kmem cache that holds the hugepte.
495                          */
496                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
497                         if (more > next)
498                                 next = more;
499
500                         free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
501                                           addr, next, floor, ceiling);
502                 }
503         } while (addr = next, addr != end);
504 }
505
506 struct page *follow_huge_pd(struct vm_area_struct *vma,
507                             unsigned long address, hugepd_t hpd,
508                             int flags, int pdshift)
509 {
510         pte_t *ptep;
511         spinlock_t *ptl;
512         struct page *page = NULL;
513         unsigned long mask;
514         int shift = hugepd_shift(hpd);
515         struct mm_struct *mm = vma->vm_mm;
516
517 retry:
518         /*
519          * hugepage directory entries are protected by mm->page_table_lock
520          * Use this instead of huge_pte_lockptr
521          */
522         ptl = &mm->page_table_lock;
523         spin_lock(ptl);
524
525         ptep = hugepte_offset(hpd, address, pdshift);
526         if (pte_present(*ptep)) {
527                 mask = (1UL << shift) - 1;
528                 page = pte_page(*ptep);
529                 page += ((address & mask) >> PAGE_SHIFT);
530                 if (flags & FOLL_GET)
531                         get_page(page);
532         } else {
533                 if (is_hugetlb_entry_migration(*ptep)) {
534                         spin_unlock(ptl);
535                         __migration_entry_wait(mm, ptep, ptl);
536                         goto retry;
537                 }
538         }
539         spin_unlock(ptl);
540         return page;
541 }
542
543 #ifdef CONFIG_PPC_MM_SLICES
544 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
545                                         unsigned long len, unsigned long pgoff,
546                                         unsigned long flags)
547 {
548         struct hstate *hstate = hstate_file(file);
549         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
550
551 #ifdef CONFIG_PPC_RADIX_MMU
552         if (radix_enabled())
553                 return radix__hugetlb_get_unmapped_area(file, addr, len,
554                                                        pgoff, flags);
555 #endif
556         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
557 }
558 #endif
559
560 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
561 {
562         /* With radix we don't use slice, so derive it from vma*/
563         if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
564                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
565
566                 return 1UL << mmu_psize_to_shift(psize);
567         }
568         return vma_kernel_pagesize(vma);
569 }
570
571 bool __init arch_hugetlb_valid_size(unsigned long size)
572 {
573         int shift = __ffs(size);
574         int mmu_psize;
575
576         /* Check that it is a page size supported by the hardware and
577          * that it fits within pagetable and slice limits. */
578         if (size <= PAGE_SIZE || !is_power_of_2(size))
579                 return false;
580
581         mmu_psize = check_and_get_huge_psize(shift);
582         if (mmu_psize < 0)
583                 return false;
584
585         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
586
587         return true;
588 }
589
590 static int __init add_huge_page_size(unsigned long long size)
591 {
592         int shift = __ffs(size);
593
594         if (!arch_hugetlb_valid_size((unsigned long)size))
595                 return -EINVAL;
596
597         hugetlb_add_hstate(shift - PAGE_SHIFT);
598         return 0;
599 }
600
601 static int __init hugetlbpage_init(void)
602 {
603         bool configured = false;
604         int psize;
605
606         if (hugetlb_disabled) {
607                 pr_info("HugeTLB support is disabled!\n");
608                 return 0;
609         }
610
611         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
612             !mmu_has_feature(MMU_FTR_16M_PAGE))
613                 return -ENODEV;
614
615         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
616                 unsigned shift;
617                 unsigned pdshift;
618
619                 if (!mmu_psize_defs[psize].shift)
620                         continue;
621
622                 shift = mmu_psize_to_shift(psize);
623
624 #ifdef CONFIG_PPC_BOOK3S_64
625                 if (shift > PGDIR_SHIFT)
626                         continue;
627                 else if (shift > PUD_SHIFT)
628                         pdshift = PGDIR_SHIFT;
629                 else if (shift > PMD_SHIFT)
630                         pdshift = PUD_SHIFT;
631                 else
632                         pdshift = PMD_SHIFT;
633 #else
634                 if (shift < PUD_SHIFT)
635                         pdshift = PMD_SHIFT;
636                 else if (shift < PGDIR_SHIFT)
637                         pdshift = PUD_SHIFT;
638                 else
639                         pdshift = PGDIR_SHIFT;
640 #endif
641
642                 if (add_huge_page_size(1ULL << shift) < 0)
643                         continue;
644                 /*
645                  * if we have pdshift and shift value same, we don't
646                  * use pgt cache for hugepd.
647                  */
648                 if (pdshift > shift) {
649                         if (!IS_ENABLED(CONFIG_PPC_8xx))
650                                 pgtable_cache_add(pdshift - shift);
651                 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
652                            IS_ENABLED(CONFIG_PPC_8xx)) {
653                         pgtable_cache_add(PTE_T_ORDER);
654                 }
655
656                 configured = true;
657         }
658
659         if (configured) {
660                 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
661                         hugetlbpage_init_default();
662         } else
663                 pr_info("Failed to initialize. Disabling HugeTLB");
664
665         return 0;
666 }
667
668 arch_initcall(hugetlbpage_init);
669
670 void flush_dcache_icache_hugepage(struct page *page)
671 {
672         int i;
673         void *start;
674
675         BUG_ON(!PageCompound(page));
676
677         for (i = 0; i < compound_nr(page); i++) {
678                 if (!PageHighMem(page)) {
679                         __flush_dcache_icache(page_address(page+i));
680                 } else {
681                         start = kmap_atomic(page+i);
682                         __flush_dcache_icache(start);
683                         kunmap_atomic(start);
684                 }
685         }
686 }