mm: don't include asm/pgtable.h if linux/mm.h is already included
[platform/kernel/linux-starfive.git] / arch / powerpc / mm / book3s64 / hash_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2005, Paul Mackerras, IBM Corporation.
4  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/sections.h>
14 #include <asm/mmu.h>
15 #include <asm/tlb.h>
16
17 #include <mm/mmu_decl.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/thp.h>
21
22 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
23 #warning Limited user VSID range means pagetable space is wasted
24 #endif
25
26 #ifdef CONFIG_SPARSEMEM_VMEMMAP
27 /*
28  * vmemmap is the starting address of the virtual address space where
29  * struct pages are allocated for all possible PFNs present on the system
30  * including holes and bad memory (hence sparse). These virtual struct
31  * pages are stored in sequence in this virtual address space irrespective
32  * of the fact whether the corresponding PFN is valid or not. This achieves
33  * constant relationship between address of struct page and its PFN.
34  *
35  * During boot or memory hotplug operation when a new memory section is
36  * added, physical memory allocation (including hash table bolting) will
37  * be performed for the set of struct pages which are part of the memory
38  * section. This saves memory by not allocating struct pages for PFNs
39  * which are not valid.
40  *
41  *              ----------------------------------------------
42  *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
43  *              ----------------------------------------------
44  *
45  *         f000000000000000                  c000000000000000
46  * vmemmap +--------------+                  +--------------+
47  *  +      |  page struct | +--------------> |  page struct |
48  *  |      +--------------+                  +--------------+
49  *  |      |  page struct | +--------------> |  page struct |
50  *  |      +--------------+ |                +--------------+
51  *  |      |  page struct | +       +------> |  page struct |
52  *  |      +--------------+         |        +--------------+
53  *  |      |  page struct |         |   +--> |  page struct |
54  *  |      +--------------+         |   |    +--------------+
55  *  |      |  page struct |         |   |
56  *  |      +--------------+         |   |
57  *  |      |  page struct |         |   |
58  *  |      +--------------+         |   |
59  *  |      |  page struct |         |   |
60  *  |      +--------------+         |   |
61  *  |      |  page struct |         |   |
62  *  |      +--------------+         |   |
63  *  |      |  page struct | +-------+   |
64  *  |      +--------------+             |
65  *  |      |  page struct | +-----------+
66  *  |      +--------------+
67  *  |      |  page struct | No mapping
68  *  |      +--------------+
69  *  |      |  page struct | No mapping
70  *  v      +--------------+
71  *
72  *              -----------------------------------------
73  *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
74  *              -----------------------------------------
75  *
76  * vmemmap +--------------+                 +---------------+
77  *  +      |  page struct | +-------------> |      PFN      |
78  *  |      +--------------+                 +---------------+
79  *  |      |  page struct | +-------------> |      PFN      |
80  *  |      +--------------+                 +---------------+
81  *  |      |  page struct | +-------------> |      PFN      |
82  *  |      +--------------+                 +---------------+
83  *  |      |  page struct | +-------------> |      PFN      |
84  *  |      +--------------+                 +---------------+
85  *  |      |              |
86  *  |      +--------------+
87  *  |      |              |
88  *  |      +--------------+
89  *  |      |              |
90  *  |      +--------------+                 +---------------+
91  *  |      |  page struct | +-------------> |      PFN      |
92  *  |      +--------------+                 +---------------+
93  *  |      |              |
94  *  |      +--------------+
95  *  |      |              |
96  *  |      +--------------+                 +---------------+
97  *  |      |  page struct | +-------------> |      PFN      |
98  *  |      +--------------+                 +---------------+
99  *  |      |  page struct | +-------------> |      PFN      |
100  *  v      +--------------+                 +---------------+
101  */
102 /*
103  * On hash-based CPUs, the vmemmap is bolted in the hash table.
104  *
105  */
106 int __meminit hash__vmemmap_create_mapping(unsigned long start,
107                                        unsigned long page_size,
108                                        unsigned long phys)
109 {
110         int rc;
111
112         if ((start + page_size) >= H_VMEMMAP_END) {
113                 pr_warn("Outside the supported range\n");
114                 return -1;
115         }
116
117         rc = htab_bolt_mapping(start, start + page_size, phys,
118                                pgprot_val(PAGE_KERNEL),
119                                mmu_vmemmap_psize, mmu_kernel_ssize);
120         if (rc < 0) {
121                 int rc2 = htab_remove_mapping(start, start + page_size,
122                                               mmu_vmemmap_psize,
123                                               mmu_kernel_ssize);
124                 BUG_ON(rc2 && (rc2 != -ENOENT));
125         }
126         return rc;
127 }
128
129 #ifdef CONFIG_MEMORY_HOTPLUG
130 void hash__vmemmap_remove_mapping(unsigned long start,
131                               unsigned long page_size)
132 {
133         int rc = htab_remove_mapping(start, start + page_size,
134                                      mmu_vmemmap_psize,
135                                      mmu_kernel_ssize);
136         BUG_ON((rc < 0) && (rc != -ENOENT));
137         WARN_ON(rc == -ENOENT);
138 }
139 #endif
140 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
141
142 /*
143  * map_kernel_page currently only called by __ioremap
144  * map_kernel_page adds an entry to the ioremap page table
145  * and adds an entry to the HPT, possibly bolting it
146  */
147 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
148 {
149         pgd_t *pgdp;
150         p4d_t *p4dp;
151         pud_t *pudp;
152         pmd_t *pmdp;
153         pte_t *ptep;
154
155         BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156         if (slab_is_available()) {
157                 pgdp = pgd_offset_k(ea);
158                 p4dp = p4d_offset(pgdp, ea);
159                 pudp = pud_alloc(&init_mm, p4dp, ea);
160                 if (!pudp)
161                         return -ENOMEM;
162                 pmdp = pmd_alloc(&init_mm, pudp, ea);
163                 if (!pmdp)
164                         return -ENOMEM;
165                 ptep = pte_alloc_kernel(pmdp, ea);
166                 if (!ptep)
167                         return -ENOMEM;
168                 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
169         } else {
170                 /*
171                  * If the mm subsystem is not fully up, we cannot create a
172                  * linux page table entry for this mapping.  Simply bolt an
173                  * entry in the hardware page table.
174                  *
175                  */
176                 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
177                                       mmu_io_psize, mmu_kernel_ssize)) {
178                         printk(KERN_ERR "Failed to do bolted mapping IO "
179                                "memory at %016lx !\n", pa);
180                         return -ENOMEM;
181                 }
182         }
183
184         smp_wmb();
185         return 0;
186 }
187
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189
190 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
191                                     pmd_t *pmdp, unsigned long clr,
192                                     unsigned long set)
193 {
194         __be64 old_be, tmp;
195         unsigned long old;
196
197 #ifdef CONFIG_DEBUG_VM
198         WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
199         assert_spin_locked(pmd_lockptr(mm, pmdp));
200 #endif
201
202         __asm__ __volatile__(
203         "1:     ldarx   %0,0,%3\n\
204                 and.    %1,%0,%6\n\
205                 bne-    1b \n\
206                 andc    %1,%0,%4 \n\
207                 or      %1,%1,%7\n\
208                 stdcx.  %1,0,%3 \n\
209                 bne-    1b"
210         : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
211         : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
212           "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
213         : "cc" );
214
215         old = be64_to_cpu(old_be);
216
217         trace_hugepage_update(addr, old, clr, set);
218         if (old & H_PAGE_HASHPTE)
219                 hpte_do_hugepage_flush(mm, addr, pmdp, old);
220         return old;
221 }
222
223 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
224                             pmd_t *pmdp)
225 {
226         pmd_t pmd;
227
228         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229         VM_BUG_ON(pmd_trans_huge(*pmdp));
230         VM_BUG_ON(pmd_devmap(*pmdp));
231
232         pmd = *pmdp;
233         pmd_clear(pmdp);
234         /*
235          * Wait for all pending hash_page to finish. This is needed
236          * in case of subpage collapse. When we collapse normal pages
237          * to hugepage, we first clear the pmd, then invalidate all
238          * the PTE entries. The assumption here is that any low level
239          * page fault will see a none pmd and take the slow path that
240          * will wait on mmap_sem. But we could very well be in a
241          * hash_page with local ptep pointer value. Such a hash page
242          * can result in adding new HPTE entries for normal subpages.
243          * That means we could be modifying the page content as we
244          * copy them to a huge page. So wait for parallel hash_page
245          * to finish before invalidating HPTE entries. We can do this
246          * by sending an IPI to all the cpus and executing a dummy
247          * function there.
248          */
249         serialize_against_pte_lookup(vma->vm_mm);
250         /*
251          * Now invalidate the hpte entries in the range
252          * covered by pmd. This make sure we take a
253          * fault and will find the pmd as none, which will
254          * result in a major fault which takes mmap_sem and
255          * hence wait for collapse to complete. Without this
256          * the __collapse_huge_page_copy can result in copying
257          * the old content.
258          */
259         flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
260         return pmd;
261 }
262
263 /*
264  * We want to put the pgtable in pmd and use pgtable for tracking
265  * the base page size hptes
266  */
267 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
268                                   pgtable_t pgtable)
269 {
270         pgtable_t *pgtable_slot;
271
272         assert_spin_locked(pmd_lockptr(mm, pmdp));
273         /*
274          * we store the pgtable in the second half of PMD
275          */
276         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
277         *pgtable_slot = pgtable;
278         /*
279          * expose the deposited pgtable to other cpus.
280          * before we set the hugepage PTE at pmd level
281          * hash fault code looks at the deposted pgtable
282          * to store hash index values.
283          */
284         smp_wmb();
285 }
286
287 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
288 {
289         pgtable_t pgtable;
290         pgtable_t *pgtable_slot;
291
292         assert_spin_locked(pmd_lockptr(mm, pmdp));
293
294         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
295         pgtable = *pgtable_slot;
296         /*
297          * Once we withdraw, mark the entry NULL.
298          */
299         *pgtable_slot = NULL;
300         /*
301          * We store HPTE information in the deposited PTE fragment.
302          * zero out the content on withdraw.
303          */
304         memset(pgtable, 0, PTE_FRAG_SIZE);
305         return pgtable;
306 }
307
308 /*
309  * A linux hugepage PMD was changed and the corresponding hash table entries
310  * neesd to be flushed.
311  */
312 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
313                             pmd_t *pmdp, unsigned long old_pmd)
314 {
315         int ssize;
316         unsigned int psize;
317         unsigned long vsid;
318         unsigned long flags = 0;
319
320         /* get the base page size,vsid and segment size */
321 #ifdef CONFIG_DEBUG_VM
322         psize = get_slice_psize(mm, addr);
323         BUG_ON(psize == MMU_PAGE_16M);
324 #endif
325         if (old_pmd & H_PAGE_COMBO)
326                 psize = MMU_PAGE_4K;
327         else
328                 psize = MMU_PAGE_64K;
329
330         if (!is_kernel_addr(addr)) {
331                 ssize = user_segment_size(addr);
332                 vsid = get_user_vsid(&mm->context, addr, ssize);
333                 WARN_ON(vsid == 0);
334         } else {
335                 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
336                 ssize = mmu_kernel_ssize;
337         }
338
339         if (mm_is_thread_local(mm))
340                 flags |= HPTE_LOCAL_UPDATE;
341
342         return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
343 }
344
345 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
346                                 unsigned long addr, pmd_t *pmdp)
347 {
348         pmd_t old_pmd;
349         pgtable_t pgtable;
350         unsigned long old;
351         pgtable_t *pgtable_slot;
352
353         old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
354         old_pmd = __pmd(old);
355         /*
356          * We have pmd == none and we are holding page_table_lock.
357          * So we can safely go and clear the pgtable hash
358          * index info.
359          */
360         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
361         pgtable = *pgtable_slot;
362         /*
363          * Let's zero out old valid and hash index details
364          * hash fault look at them.
365          */
366         memset(pgtable, 0, PTE_FRAG_SIZE);
367         return old_pmd;
368 }
369
370 int hash__has_transparent_hugepage(void)
371 {
372
373         if (!mmu_has_feature(MMU_FTR_16M_PAGE))
374                 return 0;
375         /*
376          * We support THP only if PMD_SIZE is 16MB.
377          */
378         if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
379                 return 0;
380         /*
381          * We need to make sure that we support 16MB hugepage in a segement
382          * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
383          * of 64K.
384          */
385         /*
386          * If we have 64K HPTE, we will be using that by default
387          */
388         if (mmu_psize_defs[MMU_PAGE_64K].shift &&
389             (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
390                 return 0;
391         /*
392          * Ok we only have 4K HPTE
393          */
394         if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
395                 return 0;
396
397         return 1;
398 }
399 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
400
401 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
402
403 #ifdef CONFIG_STRICT_KERNEL_RWX
404 static bool hash__change_memory_range(unsigned long start, unsigned long end,
405                                       unsigned long newpp)
406 {
407         unsigned long idx;
408         unsigned int step, shift;
409
410         shift = mmu_psize_defs[mmu_linear_psize].shift;
411         step = 1 << shift;
412
413         start = ALIGN_DOWN(start, step);
414         end = ALIGN(end, step); // aligns up
415
416         if (start >= end)
417                 return false;
418
419         pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
420                  start, end, newpp, step);
421
422         for (idx = start; idx < end; idx += step)
423                 /* Not sure if we can do much with the return value */
424                 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
425                                                         mmu_kernel_ssize);
426
427         return true;
428 }
429
430 void hash__mark_rodata_ro(void)
431 {
432         unsigned long start, end;
433
434         start = (unsigned long)_stext;
435         end = (unsigned long)__init_begin;
436
437         WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
438 }
439
440 void hash__mark_initmem_nx(void)
441 {
442         unsigned long start, end, pp;
443
444         start = (unsigned long)__init_begin;
445         end = (unsigned long)__init_end;
446
447         pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
448
449         WARN_ON(!hash__change_memory_range(start, end, pp));
450 }
451 #endif