powerpc/sstep: Fix issues with set_cr0()
[platform/kernel/linux-exynos.git] / arch / powerpc / lib / sstep.c
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20
21 extern char system_call_common[];
22
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK        0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK        0x87c0ffff
28 #endif
29
30 /* Bits in XER */
31 #define XER_SO          0x80000000U
32 #define XER_OV          0x40000000U
33 #define XER_CA          0x20000000U
34
35 #ifdef CONFIG_PPC_FPU
36 /*
37  * Functions in ldstfp.S
38  */
39 extern void get_fpr(int rn, double *p);
40 extern void put_fpr(int rn, const double *p);
41 extern void get_vr(int rn, __vector128 *p);
42 extern void put_vr(int rn, __vector128 *p);
43 extern void load_vsrn(int vsr, const void *p);
44 extern void store_vsrn(int vsr, void *p);
45 extern void conv_sp_to_dp(const float *sp, double *dp);
46 extern void conv_dp_to_sp(const double *dp, float *sp);
47 #endif
48
49 #ifdef __powerpc64__
50 /*
51  * Functions in quad.S
52  */
53 extern int do_lq(unsigned long ea, unsigned long *regs);
54 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
55 extern int do_lqarx(unsigned long ea, unsigned long *regs);
56 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
57                     unsigned int *crp);
58 #endif
59
60 #ifdef __LITTLE_ENDIAN__
61 #define IS_LE   1
62 #define IS_BE   0
63 #else
64 #define IS_LE   0
65 #define IS_BE   1
66 #endif
67
68 /*
69  * Emulate the truncation of 64 bit values in 32-bit mode.
70  */
71 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
72                                                         unsigned long val)
73 {
74 #ifdef __powerpc64__
75         if ((msr & MSR_64BIT) == 0)
76                 val &= 0xffffffffUL;
77 #endif
78         return val;
79 }
80
81 /*
82  * Determine whether a conditional branch instruction would branch.
83  */
84 static nokprobe_inline int branch_taken(unsigned int instr,
85                                         const struct pt_regs *regs,
86                                         struct instruction_op *op)
87 {
88         unsigned int bo = (instr >> 21) & 0x1f;
89         unsigned int bi;
90
91         if ((bo & 4) == 0) {
92                 /* decrement counter */
93                 op->type |= DECCTR;
94                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
95                         return 0;
96         }
97         if ((bo & 0x10) == 0) {
98                 /* check bit from CR */
99                 bi = (instr >> 16) & 0x1f;
100                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
101                         return 0;
102         }
103         return 1;
104 }
105
106 static nokprobe_inline long address_ok(struct pt_regs *regs,
107                                        unsigned long ea, int nb)
108 {
109         if (!user_mode(regs))
110                 return 1;
111         if (__access_ok(ea, nb, USER_DS))
112                 return 1;
113         if (__access_ok(ea, 1, USER_DS))
114                 /* Access overlaps the end of the user region */
115                 regs->dar = USER_DS.seg;
116         else
117                 regs->dar = ea;
118         return 0;
119 }
120
121 /*
122  * Calculate effective address for a D-form instruction
123  */
124 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
125                                               const struct pt_regs *regs)
126 {
127         int ra;
128         unsigned long ea;
129
130         ra = (instr >> 16) & 0x1f;
131         ea = (signed short) instr;              /* sign-extend */
132         if (ra)
133                 ea += regs->gpr[ra];
134
135         return ea;
136 }
137
138 #ifdef __powerpc64__
139 /*
140  * Calculate effective address for a DS-form instruction
141  */
142 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
143                                                const struct pt_regs *regs)
144 {
145         int ra;
146         unsigned long ea;
147
148         ra = (instr >> 16) & 0x1f;
149         ea = (signed short) (instr & ~3);       /* sign-extend */
150         if (ra)
151                 ea += regs->gpr[ra];
152
153         return ea;
154 }
155
156 /*
157  * Calculate effective address for a DQ-form instruction
158  */
159 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
160                                                const struct pt_regs *regs)
161 {
162         int ra;
163         unsigned long ea;
164
165         ra = (instr >> 16) & 0x1f;
166         ea = (signed short) (instr & ~0xf);     /* sign-extend */
167         if (ra)
168                 ea += regs->gpr[ra];
169
170         return ea;
171 }
172 #endif /* __powerpc64 */
173
174 /*
175  * Calculate effective address for an X-form instruction
176  */
177 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
178                                               const struct pt_regs *regs)
179 {
180         int ra, rb;
181         unsigned long ea;
182
183         ra = (instr >> 16) & 0x1f;
184         rb = (instr >> 11) & 0x1f;
185         ea = regs->gpr[rb];
186         if (ra)
187                 ea += regs->gpr[ra];
188
189         return ea;
190 }
191
192 /*
193  * Return the largest power of 2, not greater than sizeof(unsigned long),
194  * such that x is a multiple of it.
195  */
196 static nokprobe_inline unsigned long max_align(unsigned long x)
197 {
198         x |= sizeof(unsigned long);
199         return x & -x;          /* isolates rightmost bit */
200 }
201
202 static nokprobe_inline unsigned long byterev_2(unsigned long x)
203 {
204         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
205 }
206
207 static nokprobe_inline unsigned long byterev_4(unsigned long x)
208 {
209         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
210                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
211 }
212
213 #ifdef __powerpc64__
214 static nokprobe_inline unsigned long byterev_8(unsigned long x)
215 {
216         return (byterev_4(x) << 32) | byterev_4(x >> 32);
217 }
218 #endif
219
220 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
221 {
222         switch (nb) {
223         case 2:
224                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
225                 break;
226         case 4:
227                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
228                 break;
229 #ifdef __powerpc64__
230         case 8:
231                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
232                 break;
233         case 16: {
234                 unsigned long *up = (unsigned long *)ptr;
235                 unsigned long tmp;
236                 tmp = byterev_8(up[0]);
237                 up[0] = byterev_8(up[1]);
238                 up[1] = tmp;
239                 break;
240         }
241 #endif
242         default:
243                 WARN_ON_ONCE(1);
244         }
245 }
246
247 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
248                                             unsigned long ea, int nb,
249                                             struct pt_regs *regs)
250 {
251         int err = 0;
252         unsigned long x = 0;
253
254         switch (nb) {
255         case 1:
256                 err = __get_user(x, (unsigned char __user *) ea);
257                 break;
258         case 2:
259                 err = __get_user(x, (unsigned short __user *) ea);
260                 break;
261         case 4:
262                 err = __get_user(x, (unsigned int __user *) ea);
263                 break;
264 #ifdef __powerpc64__
265         case 8:
266                 err = __get_user(x, (unsigned long __user *) ea);
267                 break;
268 #endif
269         }
270         if (!err)
271                 *dest = x;
272         else
273                 regs->dar = ea;
274         return err;
275 }
276
277 /*
278  * Copy from userspace to a buffer, using the largest possible
279  * aligned accesses, up to sizeof(long).
280  */
281 static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
282                                        struct pt_regs *regs)
283 {
284         int err = 0;
285         int c;
286
287         for (; nb > 0; nb -= c) {
288                 c = max_align(ea);
289                 if (c > nb)
290                         c = max_align(nb);
291                 switch (c) {
292                 case 1:
293                         err = __get_user(*dest, (unsigned char __user *) ea);
294                         break;
295                 case 2:
296                         err = __get_user(*(u16 *)dest,
297                                          (unsigned short __user *) ea);
298                         break;
299                 case 4:
300                         err = __get_user(*(u32 *)dest,
301                                          (unsigned int __user *) ea);
302                         break;
303 #ifdef __powerpc64__
304                 case 8:
305                         err = __get_user(*(unsigned long *)dest,
306                                          (unsigned long __user *) ea);
307                         break;
308 #endif
309                 }
310                 if (err) {
311                         regs->dar = ea;
312                         return err;
313                 }
314                 dest += c;
315                 ea += c;
316         }
317         return 0;
318 }
319
320 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
321                                               unsigned long ea, int nb,
322                                               struct pt_regs *regs)
323 {
324         union {
325                 unsigned long ul;
326                 u8 b[sizeof(unsigned long)];
327         } u;
328         int i;
329         int err;
330
331         u.ul = 0;
332         i = IS_BE ? sizeof(unsigned long) - nb : 0;
333         err = copy_mem_in(&u.b[i], ea, nb, regs);
334         if (!err)
335                 *dest = u.ul;
336         return err;
337 }
338
339 /*
340  * Read memory at address ea for nb bytes, return 0 for success
341  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
342  * If nb < sizeof(long), the result is right-justified on BE systems.
343  */
344 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
345                               struct pt_regs *regs)
346 {
347         if (!address_ok(regs, ea, nb))
348                 return -EFAULT;
349         if ((ea & (nb - 1)) == 0)
350                 return read_mem_aligned(dest, ea, nb, regs);
351         return read_mem_unaligned(dest, ea, nb, regs);
352 }
353 NOKPROBE_SYMBOL(read_mem);
354
355 static nokprobe_inline int write_mem_aligned(unsigned long val,
356                                              unsigned long ea, int nb,
357                                              struct pt_regs *regs)
358 {
359         int err = 0;
360
361         switch (nb) {
362         case 1:
363                 err = __put_user(val, (unsigned char __user *) ea);
364                 break;
365         case 2:
366                 err = __put_user(val, (unsigned short __user *) ea);
367                 break;
368         case 4:
369                 err = __put_user(val, (unsigned int __user *) ea);
370                 break;
371 #ifdef __powerpc64__
372         case 8:
373                 err = __put_user(val, (unsigned long __user *) ea);
374                 break;
375 #endif
376         }
377         if (err)
378                 regs->dar = ea;
379         return err;
380 }
381
382 /*
383  * Copy from a buffer to userspace, using the largest possible
384  * aligned accesses, up to sizeof(long).
385  */
386 static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
387                                         struct pt_regs *regs)
388 {
389         int err = 0;
390         int c;
391
392         for (; nb > 0; nb -= c) {
393                 c = max_align(ea);
394                 if (c > nb)
395                         c = max_align(nb);
396                 switch (c) {
397                 case 1:
398                         err = __put_user(*dest, (unsigned char __user *) ea);
399                         break;
400                 case 2:
401                         err = __put_user(*(u16 *)dest,
402                                          (unsigned short __user *) ea);
403                         break;
404                 case 4:
405                         err = __put_user(*(u32 *)dest,
406                                          (unsigned int __user *) ea);
407                         break;
408 #ifdef __powerpc64__
409                 case 8:
410                         err = __put_user(*(unsigned long *)dest,
411                                          (unsigned long __user *) ea);
412                         break;
413 #endif
414                 }
415                 if (err) {
416                         regs->dar = ea;
417                         return err;
418                 }
419                 dest += c;
420                 ea += c;
421         }
422         return 0;
423 }
424
425 static nokprobe_inline int write_mem_unaligned(unsigned long val,
426                                                unsigned long ea, int nb,
427                                                struct pt_regs *regs)
428 {
429         union {
430                 unsigned long ul;
431                 u8 b[sizeof(unsigned long)];
432         } u;
433         int i;
434
435         u.ul = val;
436         i = IS_BE ? sizeof(unsigned long) - nb : 0;
437         return copy_mem_out(&u.b[i], ea, nb, regs);
438 }
439
440 /*
441  * Write memory at address ea for nb bytes, return 0 for success
442  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
443  */
444 static int write_mem(unsigned long val, unsigned long ea, int nb,
445                                struct pt_regs *regs)
446 {
447         if (!address_ok(regs, ea, nb))
448                 return -EFAULT;
449         if ((ea & (nb - 1)) == 0)
450                 return write_mem_aligned(val, ea, nb, regs);
451         return write_mem_unaligned(val, ea, nb, regs);
452 }
453 NOKPROBE_SYMBOL(write_mem);
454
455 #ifdef CONFIG_PPC_FPU
456 /*
457  * These access either the real FP register or the image in the
458  * thread_struct, depending on regs->msr & MSR_FP.
459  */
460 static int do_fp_load(struct instruction_op *op, unsigned long ea,
461                       struct pt_regs *regs, bool cross_endian)
462 {
463         int err, rn, nb;
464         union {
465                 int i;
466                 unsigned int u;
467                 float f;
468                 double d[2];
469                 unsigned long l[2];
470                 u8 b[2 * sizeof(double)];
471         } u;
472
473         nb = GETSIZE(op->type);
474         if (!address_ok(regs, ea, nb))
475                 return -EFAULT;
476         rn = op->reg;
477         err = copy_mem_in(u.b, ea, nb, regs);
478         if (err)
479                 return err;
480         if (unlikely(cross_endian)) {
481                 do_byte_reverse(u.b, min(nb, 8));
482                 if (nb == 16)
483                         do_byte_reverse(&u.b[8], 8);
484         }
485         preempt_disable();
486         if (nb == 4) {
487                 if (op->type & FPCONV)
488                         conv_sp_to_dp(&u.f, &u.d[0]);
489                 else if (op->type & SIGNEXT)
490                         u.l[0] = u.i;
491                 else
492                         u.l[0] = u.u;
493         }
494         if (regs->msr & MSR_FP)
495                 put_fpr(rn, &u.d[0]);
496         else
497                 current->thread.TS_FPR(rn) = u.l[0];
498         if (nb == 16) {
499                 /* lfdp */
500                 rn |= 1;
501                 if (regs->msr & MSR_FP)
502                         put_fpr(rn, &u.d[1]);
503                 else
504                         current->thread.TS_FPR(rn) = u.l[1];
505         }
506         preempt_enable();
507         return 0;
508 }
509 NOKPROBE_SYMBOL(do_fp_load);
510
511 static int do_fp_store(struct instruction_op *op, unsigned long ea,
512                        struct pt_regs *regs, bool cross_endian)
513 {
514         int rn, nb;
515         union {
516                 unsigned int u;
517                 float f;
518                 double d[2];
519                 unsigned long l[2];
520                 u8 b[2 * sizeof(double)];
521         } u;
522
523         nb = GETSIZE(op->type);
524         if (!address_ok(regs, ea, nb))
525                 return -EFAULT;
526         rn = op->reg;
527         preempt_disable();
528         if (regs->msr & MSR_FP)
529                 get_fpr(rn, &u.d[0]);
530         else
531                 u.l[0] = current->thread.TS_FPR(rn);
532         if (nb == 4) {
533                 if (op->type & FPCONV)
534                         conv_dp_to_sp(&u.d[0], &u.f);
535                 else
536                         u.u = u.l[0];
537         }
538         if (nb == 16) {
539                 rn |= 1;
540                 if (regs->msr & MSR_FP)
541                         get_fpr(rn, &u.d[1]);
542                 else
543                         u.l[1] = current->thread.TS_FPR(rn);
544         }
545         preempt_enable();
546         if (unlikely(cross_endian)) {
547                 do_byte_reverse(u.b, min(nb, 8));
548                 if (nb == 16)
549                         do_byte_reverse(&u.b[8], 8);
550         }
551         return copy_mem_out(u.b, ea, nb, regs);
552 }
553 NOKPROBE_SYMBOL(do_fp_store);
554 #endif
555
556 #ifdef CONFIG_ALTIVEC
557 /* For Altivec/VMX, no need to worry about alignment */
558 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
559                                        int size, struct pt_regs *regs,
560                                        bool cross_endian)
561 {
562         int err;
563         union {
564                 __vector128 v;
565                 u8 b[sizeof(__vector128)];
566         } u = {};
567
568         if (!address_ok(regs, ea & ~0xfUL, 16))
569                 return -EFAULT;
570         /* align to multiple of size */
571         ea &= ~(size - 1);
572         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
573         if (err)
574                 return err;
575         if (unlikely(cross_endian))
576                 do_byte_reverse(&u.b[ea & 0xf], size);
577         preempt_disable();
578         if (regs->msr & MSR_VEC)
579                 put_vr(rn, &u.v);
580         else
581                 current->thread.vr_state.vr[rn] = u.v;
582         preempt_enable();
583         return 0;
584 }
585
586 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
587                                         int size, struct pt_regs *regs,
588                                         bool cross_endian)
589 {
590         union {
591                 __vector128 v;
592                 u8 b[sizeof(__vector128)];
593         } u;
594
595         if (!address_ok(regs, ea & ~0xfUL, 16))
596                 return -EFAULT;
597         /* align to multiple of size */
598         ea &= ~(size - 1);
599
600         preempt_disable();
601         if (regs->msr & MSR_VEC)
602                 get_vr(rn, &u.v);
603         else
604                 u.v = current->thread.vr_state.vr[rn];
605         preempt_enable();
606         if (unlikely(cross_endian))
607                 do_byte_reverse(&u.b[ea & 0xf], size);
608         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
609 }
610 #endif /* CONFIG_ALTIVEC */
611
612 #ifdef __powerpc64__
613 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
614                                       int reg, bool cross_endian)
615 {
616         int err;
617
618         if (!address_ok(regs, ea, 16))
619                 return -EFAULT;
620         /* if aligned, should be atomic */
621         if ((ea & 0xf) == 0) {
622                 err = do_lq(ea, &regs->gpr[reg]);
623         } else {
624                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
625                 if (!err)
626                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
627         }
628         if (!err && unlikely(cross_endian))
629                 do_byte_reverse(&regs->gpr[reg], 16);
630         return err;
631 }
632
633 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
634                                        int reg, bool cross_endian)
635 {
636         int err;
637         unsigned long vals[2];
638
639         if (!address_ok(regs, ea, 16))
640                 return -EFAULT;
641         vals[0] = regs->gpr[reg];
642         vals[1] = regs->gpr[reg + 1];
643         if (unlikely(cross_endian))
644                 do_byte_reverse(vals, 16);
645
646         /* if aligned, should be atomic */
647         if ((ea & 0xf) == 0)
648                 return do_stq(ea, vals[0], vals[1]);
649
650         err = write_mem(vals[IS_LE], ea, 8, regs);
651         if (!err)
652                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
653         return err;
654 }
655 #endif /* __powerpc64 */
656
657 #ifdef CONFIG_VSX
658 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
659                       const void *mem, bool rev)
660 {
661         int size, read_size;
662         int i, j;
663         const unsigned int *wp;
664         const unsigned short *hp;
665         const unsigned char *bp;
666
667         size = GETSIZE(op->type);
668         reg->d[0] = reg->d[1] = 0;
669
670         switch (op->element_size) {
671         case 16:
672                 /* whole vector; lxv[x] or lxvl[l] */
673                 if (size == 0)
674                         break;
675                 memcpy(reg, mem, size);
676                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
677                         rev = !rev;
678                 if (rev)
679                         do_byte_reverse(reg, 16);
680                 break;
681         case 8:
682                 /* scalar loads, lxvd2x, lxvdsx */
683                 read_size = (size >= 8) ? 8 : size;
684                 i = IS_LE ? 8 : 8 - read_size;
685                 memcpy(&reg->b[i], mem, read_size);
686                 if (rev)
687                         do_byte_reverse(&reg->b[i], 8);
688                 if (size < 8) {
689                         if (op->type & SIGNEXT) {
690                                 /* size == 4 is the only case here */
691                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
692                         } else if (op->vsx_flags & VSX_FPCONV) {
693                                 preempt_disable();
694                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
695                                               &reg->dp[IS_LE]);
696                                 preempt_enable();
697                         }
698                 } else {
699                         if (size == 16) {
700                                 unsigned long v = *(unsigned long *)(mem + 8);
701                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
702                         } else if (op->vsx_flags & VSX_SPLAT)
703                                 reg->d[IS_BE] = reg->d[IS_LE];
704                 }
705                 break;
706         case 4:
707                 /* lxvw4x, lxvwsx */
708                 wp = mem;
709                 for (j = 0; j < size / 4; ++j) {
710                         i = IS_LE ? 3 - j : j;
711                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
712                 }
713                 if (op->vsx_flags & VSX_SPLAT) {
714                         u32 val = reg->w[IS_LE ? 3 : 0];
715                         for (; j < 4; ++j) {
716                                 i = IS_LE ? 3 - j : j;
717                                 reg->w[i] = val;
718                         }
719                 }
720                 break;
721         case 2:
722                 /* lxvh8x */
723                 hp = mem;
724                 for (j = 0; j < size / 2; ++j) {
725                         i = IS_LE ? 7 - j : j;
726                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
727                 }
728                 break;
729         case 1:
730                 /* lxvb16x */
731                 bp = mem;
732                 for (j = 0; j < size; ++j) {
733                         i = IS_LE ? 15 - j : j;
734                         reg->b[i] = *bp++;
735                 }
736                 break;
737         }
738 }
739 EXPORT_SYMBOL_GPL(emulate_vsx_load);
740 NOKPROBE_SYMBOL(emulate_vsx_load);
741
742 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
743                        void *mem, bool rev)
744 {
745         int size, write_size;
746         int i, j;
747         union vsx_reg buf;
748         unsigned int *wp;
749         unsigned short *hp;
750         unsigned char *bp;
751
752         size = GETSIZE(op->type);
753
754         switch (op->element_size) {
755         case 16:
756                 /* stxv, stxvx, stxvl, stxvll */
757                 if (size == 0)
758                         break;
759                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
760                         rev = !rev;
761                 if (rev) {
762                         /* reverse 16 bytes */
763                         buf.d[0] = byterev_8(reg->d[1]);
764                         buf.d[1] = byterev_8(reg->d[0]);
765                         reg = &buf;
766                 }
767                 memcpy(mem, reg, size);
768                 break;
769         case 8:
770                 /* scalar stores, stxvd2x */
771                 write_size = (size >= 8) ? 8 : size;
772                 i = IS_LE ? 8 : 8 - write_size;
773                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
774                         buf.d[0] = buf.d[1] = 0;
775                         preempt_disable();
776                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
777                         preempt_enable();
778                         reg = &buf;
779                 }
780                 memcpy(mem, &reg->b[i], write_size);
781                 if (size == 16)
782                         memcpy(mem + 8, &reg->d[IS_BE], 8);
783                 if (unlikely(rev)) {
784                         do_byte_reverse(mem, write_size);
785                         if (size == 16)
786                                 do_byte_reverse(mem + 8, 8);
787                 }
788                 break;
789         case 4:
790                 /* stxvw4x */
791                 wp = mem;
792                 for (j = 0; j < size / 4; ++j) {
793                         i = IS_LE ? 3 - j : j;
794                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
795                 }
796                 break;
797         case 2:
798                 /* stxvh8x */
799                 hp = mem;
800                 for (j = 0; j < size / 2; ++j) {
801                         i = IS_LE ? 7 - j : j;
802                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
803                 }
804                 break;
805         case 1:
806                 /* stvxb16x */
807                 bp = mem;
808                 for (j = 0; j < size; ++j) {
809                         i = IS_LE ? 15 - j : j;
810                         *bp++ = reg->b[i];
811                 }
812                 break;
813         }
814 }
815 EXPORT_SYMBOL_GPL(emulate_vsx_store);
816 NOKPROBE_SYMBOL(emulate_vsx_store);
817
818 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
819                                        unsigned long ea, struct pt_regs *regs,
820                                        bool cross_endian)
821 {
822         int reg = op->reg;
823         u8 mem[16];
824         union vsx_reg buf;
825         int size = GETSIZE(op->type);
826
827         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
828                 return -EFAULT;
829
830         emulate_vsx_load(op, &buf, mem, cross_endian);
831         preempt_disable();
832         if (reg < 32) {
833                 /* FP regs + extensions */
834                 if (regs->msr & MSR_FP) {
835                         load_vsrn(reg, &buf);
836                 } else {
837                         current->thread.fp_state.fpr[reg][0] = buf.d[0];
838                         current->thread.fp_state.fpr[reg][1] = buf.d[1];
839                 }
840         } else {
841                 if (regs->msr & MSR_VEC)
842                         load_vsrn(reg, &buf);
843                 else
844                         current->thread.vr_state.vr[reg - 32] = buf.v;
845         }
846         preempt_enable();
847         return 0;
848 }
849
850 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
851                                         unsigned long ea, struct pt_regs *regs,
852                                         bool cross_endian)
853 {
854         int reg = op->reg;
855         u8 mem[16];
856         union vsx_reg buf;
857         int size = GETSIZE(op->type);
858
859         if (!address_ok(regs, ea, size))
860                 return -EFAULT;
861
862         preempt_disable();
863         if (reg < 32) {
864                 /* FP regs + extensions */
865                 if (regs->msr & MSR_FP) {
866                         store_vsrn(reg, &buf);
867                 } else {
868                         buf.d[0] = current->thread.fp_state.fpr[reg][0];
869                         buf.d[1] = current->thread.fp_state.fpr[reg][1];
870                 }
871         } else {
872                 if (regs->msr & MSR_VEC)
873                         store_vsrn(reg, &buf);
874                 else
875                         buf.v = current->thread.vr_state.vr[reg - 32];
876         }
877         preempt_enable();
878         emulate_vsx_store(op, &buf, mem, cross_endian);
879         return  copy_mem_out(mem, ea, size, regs);
880 }
881 #endif /* CONFIG_VSX */
882
883 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
884 {
885         int err;
886         unsigned long i, size;
887
888 #ifdef __powerpc64__
889         size = ppc64_caches.l1d.block_size;
890         if (!(regs->msr & MSR_64BIT))
891                 ea &= 0xffffffffUL;
892 #else
893         size = L1_CACHE_BYTES;
894 #endif
895         ea &= ~(size - 1);
896         if (!address_ok(regs, ea, size))
897                 return -EFAULT;
898         for (i = 0; i < size; i += sizeof(long)) {
899                 err = __put_user(0, (unsigned long __user *) (ea + i));
900                 if (err) {
901                         regs->dar = ea;
902                         return err;
903                 }
904         }
905         return 0;
906 }
907 NOKPROBE_SYMBOL(emulate_dcbz);
908
909 #define __put_user_asmx(x, addr, err, op, cr)           \
910         __asm__ __volatile__(                           \
911                 "1:     " op " %2,0,%3\n"               \
912                 "       mfcr    %1\n"                   \
913                 "2:\n"                                  \
914                 ".section .fixup,\"ax\"\n"              \
915                 "3:     li      %0,%4\n"                \
916                 "       b       2b\n"                   \
917                 ".previous\n"                           \
918                 EX_TABLE(1b, 3b)                        \
919                 : "=r" (err), "=r" (cr)                 \
920                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
921
922 #define __get_user_asmx(x, addr, err, op)               \
923         __asm__ __volatile__(                           \
924                 "1:     "op" %1,0,%2\n"                 \
925                 "2:\n"                                  \
926                 ".section .fixup,\"ax\"\n"              \
927                 "3:     li      %0,%3\n"                \
928                 "       b       2b\n"                   \
929                 ".previous\n"                           \
930                 EX_TABLE(1b, 3b)                        \
931                 : "=r" (err), "=r" (x)                  \
932                 : "r" (addr), "i" (-EFAULT), "0" (err))
933
934 #define __cacheop_user_asmx(addr, err, op)              \
935         __asm__ __volatile__(                           \
936                 "1:     "op" 0,%1\n"                    \
937                 "2:\n"                                  \
938                 ".section .fixup,\"ax\"\n"              \
939                 "3:     li      %0,%3\n"                \
940                 "       b       2b\n"                   \
941                 ".previous\n"                           \
942                 EX_TABLE(1b, 3b)                        \
943                 : "=r" (err)                            \
944                 : "r" (addr), "i" (-EFAULT), "0" (err))
945
946 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
947                                     struct instruction_op *op)
948 {
949         long val = op->val;
950
951         op->type |= SETCC;
952         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
953 #ifdef __powerpc64__
954         if (!(regs->msr & MSR_64BIT))
955                 val = (int) val;
956 #endif
957         if (val < 0)
958                 op->ccval |= 0x80000000;
959         else if (val > 0)
960                 op->ccval |= 0x40000000;
961         else
962                 op->ccval |= 0x20000000;
963 }
964
965 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
966                                      struct instruction_op *op, int rd,
967                                      unsigned long val1, unsigned long val2,
968                                      unsigned long carry_in)
969 {
970         unsigned long val = val1 + val2;
971
972         if (carry_in)
973                 ++val;
974         op->type = COMPUTE + SETREG + SETXER;
975         op->reg = rd;
976         op->val = val;
977 #ifdef __powerpc64__
978         if (!(regs->msr & MSR_64BIT)) {
979                 val = (unsigned int) val;
980                 val1 = (unsigned int) val1;
981         }
982 #endif
983         op->xerval = regs->xer;
984         if (val < val1 || (carry_in && val == val1))
985                 op->xerval |= XER_CA;
986         else
987                 op->xerval &= ~XER_CA;
988 }
989
990 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
991                                           struct instruction_op *op,
992                                           long v1, long v2, int crfld)
993 {
994         unsigned int crval, shift;
995
996         op->type = COMPUTE + SETCC;
997         crval = (regs->xer >> 31) & 1;          /* get SO bit */
998         if (v1 < v2)
999                 crval |= 8;
1000         else if (v1 > v2)
1001                 crval |= 4;
1002         else
1003                 crval |= 2;
1004         shift = (7 - crfld) * 4;
1005         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1006 }
1007
1008 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1009                                             struct instruction_op *op,
1010                                             unsigned long v1,
1011                                             unsigned long v2, int crfld)
1012 {
1013         unsigned int crval, shift;
1014
1015         op->type = COMPUTE + SETCC;
1016         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1017         if (v1 < v2)
1018                 crval |= 8;
1019         else if (v1 > v2)
1020                 crval |= 4;
1021         else
1022                 crval |= 2;
1023         shift = (7 - crfld) * 4;
1024         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1025 }
1026
1027 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1028                                     struct instruction_op *op,
1029                                     unsigned long v1, unsigned long v2)
1030 {
1031         unsigned long long out_val, mask;
1032         int i;
1033
1034         out_val = 0;
1035         for (i = 0; i < 8; i++) {
1036                 mask = 0xffUL << (i * 8);
1037                 if ((v1 & mask) == (v2 & mask))
1038                         out_val |= mask;
1039         }
1040         op->val = out_val;
1041 }
1042
1043 /*
1044  * The size parameter is used to adjust the equivalent popcnt instruction.
1045  * popcntb = 8, popcntw = 32, popcntd = 64
1046  */
1047 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1048                                       struct instruction_op *op,
1049                                       unsigned long v1, int size)
1050 {
1051         unsigned long long out = v1;
1052
1053         out -= (out >> 1) & 0x5555555555555555;
1054         out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1055         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1056
1057         if (size == 8) {        /* popcntb */
1058                 op->val = out;
1059                 return;
1060         }
1061         out += out >> 8;
1062         out += out >> 16;
1063         if (size == 32) {       /* popcntw */
1064                 op->val = out & 0x0000003f0000003f;
1065                 return;
1066         }
1067
1068         out = (out + (out >> 32)) & 0x7f;
1069         op->val = out;  /* popcntd */
1070 }
1071
1072 #ifdef CONFIG_PPC64
1073 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1074                                       struct instruction_op *op,
1075                                       unsigned long v1, unsigned long v2)
1076 {
1077         unsigned char perm, idx;
1078         unsigned int i;
1079
1080         perm = 0;
1081         for (i = 0; i < 8; i++) {
1082                 idx = (v1 >> (i * 8)) & 0xff;
1083                 if (idx < 64)
1084                         if (v2 & PPC_BIT(idx))
1085                                 perm |= 1 << i;
1086         }
1087         op->val = perm;
1088 }
1089 #endif /* CONFIG_PPC64 */
1090 /*
1091  * The size parameter adjusts the equivalent prty instruction.
1092  * prtyw = 32, prtyd = 64
1093  */
1094 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1095                                     struct instruction_op *op,
1096                                     unsigned long v, int size)
1097 {
1098         unsigned long long res = v ^ (v >> 8);
1099
1100         res ^= res >> 16;
1101         if (size == 32) {               /* prtyw */
1102                 op->val = res & 0x0000000100000001;
1103                 return;
1104         }
1105
1106         res ^= res >> 32;
1107         op->val = res & 1;      /*prtyd */
1108 }
1109
1110 static nokprobe_inline int trap_compare(long v1, long v2)
1111 {
1112         int ret = 0;
1113
1114         if (v1 < v2)
1115                 ret |= 0x10;
1116         else if (v1 > v2)
1117                 ret |= 0x08;
1118         else
1119                 ret |= 0x04;
1120         if ((unsigned long)v1 < (unsigned long)v2)
1121                 ret |= 0x02;
1122         else if ((unsigned long)v1 > (unsigned long)v2)
1123                 ret |= 0x01;
1124         return ret;
1125 }
1126
1127 /*
1128  * Elements of 32-bit rotate and mask instructions.
1129  */
1130 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1131                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1132 #ifdef __powerpc64__
1133 #define MASK64_L(mb)    (~0UL >> (mb))
1134 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1135 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1136 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1137 #else
1138 #define DATA32(x)       (x)
1139 #endif
1140 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1141
1142 /*
1143  * Decode an instruction, and return information about it in *op
1144  * without changing *regs.
1145  * Integer arithmetic and logical instructions, branches, and barrier
1146  * instructions can be emulated just using the information in *op.
1147  *
1148  * Return value is 1 if the instruction can be emulated just by
1149  * updating *regs with the information in *op, -1 if we need the
1150  * GPRs but *regs doesn't contain the full register set, or 0
1151  * otherwise.
1152  */
1153 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1154                   unsigned int instr)
1155 {
1156         unsigned int opcode, ra, rb, rd, spr, u;
1157         unsigned long int imm;
1158         unsigned long int val, val2;
1159         unsigned int mb, me, sh;
1160         long ival;
1161
1162         op->type = COMPUTE;
1163
1164         opcode = instr >> 26;
1165         switch (opcode) {
1166         case 16:        /* bc */
1167                 op->type = BRANCH;
1168                 imm = (signed short)(instr & 0xfffc);
1169                 if ((instr & 2) == 0)
1170                         imm += regs->nip;
1171                 op->val = truncate_if_32bit(regs->msr, imm);
1172                 if (instr & 1)
1173                         op->type |= SETLK;
1174                 if (branch_taken(instr, regs, op))
1175                         op->type |= BRTAKEN;
1176                 return 1;
1177 #ifdef CONFIG_PPC64
1178         case 17:        /* sc */
1179                 if ((instr & 0xfe2) == 2)
1180                         op->type = SYSCALL;
1181                 else
1182                         op->type = UNKNOWN;
1183                 return 0;
1184 #endif
1185         case 18:        /* b */
1186                 op->type = BRANCH | BRTAKEN;
1187                 imm = instr & 0x03fffffc;
1188                 if (imm & 0x02000000)
1189                         imm -= 0x04000000;
1190                 if ((instr & 2) == 0)
1191                         imm += regs->nip;
1192                 op->val = truncate_if_32bit(regs->msr, imm);
1193                 if (instr & 1)
1194                         op->type |= SETLK;
1195                 return 1;
1196         case 19:
1197                 switch ((instr >> 1) & 0x3ff) {
1198                 case 0:         /* mcrf */
1199                         op->type = COMPUTE + SETCC;
1200                         rd = 7 - ((instr >> 23) & 0x7);
1201                         ra = 7 - ((instr >> 18) & 0x7);
1202                         rd *= 4;
1203                         ra *= 4;
1204                         val = (regs->ccr >> ra) & 0xf;
1205                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1206                         return 1;
1207
1208                 case 16:        /* bclr */
1209                 case 528:       /* bcctr */
1210                         op->type = BRANCH;
1211                         imm = (instr & 0x400)? regs->ctr: regs->link;
1212                         op->val = truncate_if_32bit(regs->msr, imm);
1213                         if (instr & 1)
1214                                 op->type |= SETLK;
1215                         if (branch_taken(instr, regs, op))
1216                                 op->type |= BRTAKEN;
1217                         return 1;
1218
1219                 case 18:        /* rfid, scary */
1220                         if (regs->msr & MSR_PR)
1221                                 goto priv;
1222                         op->type = RFI;
1223                         return 0;
1224
1225                 case 150:       /* isync */
1226                         op->type = BARRIER | BARRIER_ISYNC;
1227                         return 1;
1228
1229                 case 33:        /* crnor */
1230                 case 129:       /* crandc */
1231                 case 193:       /* crxor */
1232                 case 225:       /* crnand */
1233                 case 257:       /* crand */
1234                 case 289:       /* creqv */
1235                 case 417:       /* crorc */
1236                 case 449:       /* cror */
1237                         op->type = COMPUTE + SETCC;
1238                         ra = (instr >> 16) & 0x1f;
1239                         rb = (instr >> 11) & 0x1f;
1240                         rd = (instr >> 21) & 0x1f;
1241                         ra = (regs->ccr >> (31 - ra)) & 1;
1242                         rb = (regs->ccr >> (31 - rb)) & 1;
1243                         val = (instr >> (6 + ra * 2 + rb)) & 1;
1244                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1245                                 (val << (31 - rd));
1246                         return 1;
1247                 }
1248                 break;
1249         case 31:
1250                 switch ((instr >> 1) & 0x3ff) {
1251                 case 598:       /* sync */
1252                         op->type = BARRIER + BARRIER_SYNC;
1253 #ifdef __powerpc64__
1254                         switch ((instr >> 21) & 3) {
1255                         case 1:         /* lwsync */
1256                                 op->type = BARRIER + BARRIER_LWSYNC;
1257                                 break;
1258                         case 2:         /* ptesync */
1259                                 op->type = BARRIER + BARRIER_PTESYNC;
1260                                 break;
1261                         }
1262 #endif
1263                         return 1;
1264
1265                 case 854:       /* eieio */
1266                         op->type = BARRIER + BARRIER_EIEIO;
1267                         return 1;
1268                 }
1269                 break;
1270         }
1271
1272         /* Following cases refer to regs->gpr[], so we need all regs */
1273         if (!FULL_REGS(regs))
1274                 return -1;
1275
1276         rd = (instr >> 21) & 0x1f;
1277         ra = (instr >> 16) & 0x1f;
1278         rb = (instr >> 11) & 0x1f;
1279
1280         switch (opcode) {
1281 #ifdef __powerpc64__
1282         case 2:         /* tdi */
1283                 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1284                         goto trap;
1285                 return 1;
1286 #endif
1287         case 3:         /* twi */
1288                 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1289                         goto trap;
1290                 return 1;
1291
1292         case 7:         /* mulli */
1293                 op->val = regs->gpr[ra] * (short) instr;
1294                 goto compute_done;
1295
1296         case 8:         /* subfic */
1297                 imm = (short) instr;
1298                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1299                 return 1;
1300
1301         case 10:        /* cmpli */
1302                 imm = (unsigned short) instr;
1303                 val = regs->gpr[ra];
1304 #ifdef __powerpc64__
1305                 if ((rd & 1) == 0)
1306                         val = (unsigned int) val;
1307 #endif
1308                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1309                 return 1;
1310
1311         case 11:        /* cmpi */
1312                 imm = (short) instr;
1313                 val = regs->gpr[ra];
1314 #ifdef __powerpc64__
1315                 if ((rd & 1) == 0)
1316                         val = (int) val;
1317 #endif
1318                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1319                 return 1;
1320
1321         case 12:        /* addic */
1322                 imm = (short) instr;
1323                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1324                 return 1;
1325
1326         case 13:        /* addic. */
1327                 imm = (short) instr;
1328                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1329                 set_cr0(regs, op);
1330                 return 1;
1331
1332         case 14:        /* addi */
1333                 imm = (short) instr;
1334                 if (ra)
1335                         imm += regs->gpr[ra];
1336                 op->val = imm;
1337                 goto compute_done;
1338
1339         case 15:        /* addis */
1340                 imm = ((short) instr) << 16;
1341                 if (ra)
1342                         imm += regs->gpr[ra];
1343                 op->val = imm;
1344                 goto compute_done;
1345
1346         case 19:
1347                 if (((instr >> 1) & 0x1f) == 2) {
1348                         /* addpcis */
1349                         imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1350                         imm |= (instr >> 15) & 0x3e;    /* d1 field */
1351                         op->val = regs->nip + (imm << 16) + 4;
1352                         goto compute_done;
1353                 }
1354                 op->type = UNKNOWN;
1355                 return 0;
1356
1357         case 20:        /* rlwimi */
1358                 mb = (instr >> 6) & 0x1f;
1359                 me = (instr >> 1) & 0x1f;
1360                 val = DATA32(regs->gpr[rd]);
1361                 imm = MASK32(mb, me);
1362                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1363                 goto logical_done;
1364
1365         case 21:        /* rlwinm */
1366                 mb = (instr >> 6) & 0x1f;
1367                 me = (instr >> 1) & 0x1f;
1368                 val = DATA32(regs->gpr[rd]);
1369                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1370                 goto logical_done;
1371
1372         case 23:        /* rlwnm */
1373                 mb = (instr >> 6) & 0x1f;
1374                 me = (instr >> 1) & 0x1f;
1375                 rb = regs->gpr[rb] & 0x1f;
1376                 val = DATA32(regs->gpr[rd]);
1377                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1378                 goto logical_done;
1379
1380         case 24:        /* ori */
1381                 op->val = regs->gpr[rd] | (unsigned short) instr;
1382                 goto logical_done_nocc;
1383
1384         case 25:        /* oris */
1385                 imm = (unsigned short) instr;
1386                 op->val = regs->gpr[rd] | (imm << 16);
1387                 goto logical_done_nocc;
1388
1389         case 26:        /* xori */
1390                 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1391                 goto logical_done_nocc;
1392
1393         case 27:        /* xoris */
1394                 imm = (unsigned short) instr;
1395                 op->val = regs->gpr[rd] ^ (imm << 16);
1396                 goto logical_done_nocc;
1397
1398         case 28:        /* andi. */
1399                 op->val = regs->gpr[rd] & (unsigned short) instr;
1400                 set_cr0(regs, op);
1401                 goto logical_done_nocc;
1402
1403         case 29:        /* andis. */
1404                 imm = (unsigned short) instr;
1405                 op->val = regs->gpr[rd] & (imm << 16);
1406                 set_cr0(regs, op);
1407                 goto logical_done_nocc;
1408
1409 #ifdef __powerpc64__
1410         case 30:        /* rld* */
1411                 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1412                 val = regs->gpr[rd];
1413                 if ((instr & 0x10) == 0) {
1414                         sh = rb | ((instr & 2) << 4);
1415                         val = ROTATE(val, sh);
1416                         switch ((instr >> 2) & 3) {
1417                         case 0:         /* rldicl */
1418                                 val &= MASK64_L(mb);
1419                                 break;
1420                         case 1:         /* rldicr */
1421                                 val &= MASK64_R(mb);
1422                                 break;
1423                         case 2:         /* rldic */
1424                                 val &= MASK64(mb, 63 - sh);
1425                                 break;
1426                         case 3:         /* rldimi */
1427                                 imm = MASK64(mb, 63 - sh);
1428                                 val = (regs->gpr[ra] & ~imm) |
1429                                         (val & imm);
1430                         }
1431                         op->val = val;
1432                         goto logical_done;
1433                 } else {
1434                         sh = regs->gpr[rb] & 0x3f;
1435                         val = ROTATE(val, sh);
1436                         switch ((instr >> 1) & 7) {
1437                         case 0:         /* rldcl */
1438                                 op->val = val & MASK64_L(mb);
1439                                 goto logical_done;
1440                         case 1:         /* rldcr */
1441                                 op->val = val & MASK64_R(mb);
1442                                 goto logical_done;
1443                         }
1444                 }
1445 #endif
1446                 op->type = UNKNOWN;     /* illegal instruction */
1447                 return 0;
1448
1449         case 31:
1450                 /* isel occupies 32 minor opcodes */
1451                 if (((instr >> 1) & 0x1f) == 15) {
1452                         mb = (instr >> 6) & 0x1f; /* bc field */
1453                         val = (regs->ccr >> (31 - mb)) & 1;
1454                         val2 = (ra) ? regs->gpr[ra] : 0;
1455
1456                         op->val = (val) ? val2 : regs->gpr[rb];
1457                         goto compute_done;
1458                 }
1459
1460                 switch ((instr >> 1) & 0x3ff) {
1461                 case 4:         /* tw */
1462                         if (rd == 0x1f ||
1463                             (rd & trap_compare((int)regs->gpr[ra],
1464                                                (int)regs->gpr[rb])))
1465                                 goto trap;
1466                         return 1;
1467 #ifdef __powerpc64__
1468                 case 68:        /* td */
1469                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1470                                 goto trap;
1471                         return 1;
1472 #endif
1473                 case 83:        /* mfmsr */
1474                         if (regs->msr & MSR_PR)
1475                                 goto priv;
1476                         op->type = MFMSR;
1477                         op->reg = rd;
1478                         return 0;
1479                 case 146:       /* mtmsr */
1480                         if (regs->msr & MSR_PR)
1481                                 goto priv;
1482                         op->type = MTMSR;
1483                         op->reg = rd;
1484                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1485                         return 0;
1486 #ifdef CONFIG_PPC64
1487                 case 178:       /* mtmsrd */
1488                         if (regs->msr & MSR_PR)
1489                                 goto priv;
1490                         op->type = MTMSR;
1491                         op->reg = rd;
1492                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1493                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1494                         imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1495                         op->val = imm;
1496                         return 0;
1497 #endif
1498
1499                 case 19:        /* mfcr */
1500                         imm = 0xffffffffUL;
1501                         if ((instr >> 20) & 1) {
1502                                 imm = 0xf0000000UL;
1503                                 for (sh = 0; sh < 8; ++sh) {
1504                                         if (instr & (0x80000 >> sh))
1505                                                 break;
1506                                         imm >>= 4;
1507                                 }
1508                         }
1509                         op->val = regs->ccr & imm;
1510                         goto compute_done;
1511
1512                 case 144:       /* mtcrf */
1513                         op->type = COMPUTE + SETCC;
1514                         imm = 0xf0000000UL;
1515                         val = regs->gpr[rd];
1516                         op->val = regs->ccr;
1517                         for (sh = 0; sh < 8; ++sh) {
1518                                 if (instr & (0x80000 >> sh))
1519                                         op->val = (op->val & ~imm) |
1520                                                 (val & imm);
1521                                 imm >>= 4;
1522                         }
1523                         return 1;
1524
1525                 case 339:       /* mfspr */
1526                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1527                         op->type = MFSPR;
1528                         op->reg = rd;
1529                         op->spr = spr;
1530                         if (spr == SPRN_XER || spr == SPRN_LR ||
1531                             spr == SPRN_CTR)
1532                                 return 1;
1533                         return 0;
1534
1535                 case 467:       /* mtspr */
1536                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1537                         op->type = MTSPR;
1538                         op->val = regs->gpr[rd];
1539                         op->spr = spr;
1540                         if (spr == SPRN_XER || spr == SPRN_LR ||
1541                             spr == SPRN_CTR)
1542                                 return 1;
1543                         return 0;
1544
1545 /*
1546  * Compare instructions
1547  */
1548                 case 0: /* cmp */
1549                         val = regs->gpr[ra];
1550                         val2 = regs->gpr[rb];
1551 #ifdef __powerpc64__
1552                         if ((rd & 1) == 0) {
1553                                 /* word (32-bit) compare */
1554                                 val = (int) val;
1555                                 val2 = (int) val2;
1556                         }
1557 #endif
1558                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1559                         return 1;
1560
1561                 case 32:        /* cmpl */
1562                         val = regs->gpr[ra];
1563                         val2 = regs->gpr[rb];
1564 #ifdef __powerpc64__
1565                         if ((rd & 1) == 0) {
1566                                 /* word (32-bit) compare */
1567                                 val = (unsigned int) val;
1568                                 val2 = (unsigned int) val2;
1569                         }
1570 #endif
1571                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1572                         return 1;
1573
1574                 case 508: /* cmpb */
1575                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1576                         goto logical_done_nocc;
1577
1578 /*
1579  * Arithmetic instructions
1580  */
1581                 case 8: /* subfc */
1582                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1583                                        regs->gpr[rb], 1);
1584                         goto arith_done;
1585 #ifdef __powerpc64__
1586                 case 9: /* mulhdu */
1587                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1588                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1589                         goto arith_done;
1590 #endif
1591                 case 10:        /* addc */
1592                         add_with_carry(regs, op, rd, regs->gpr[ra],
1593                                        regs->gpr[rb], 0);
1594                         goto arith_done;
1595
1596                 case 11:        /* mulhwu */
1597                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1598                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1599                         goto arith_done;
1600
1601                 case 40:        /* subf */
1602                         op->val = regs->gpr[rb] - regs->gpr[ra];
1603                         goto arith_done;
1604 #ifdef __powerpc64__
1605                 case 73:        /* mulhd */
1606                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1607                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1608                         goto arith_done;
1609 #endif
1610                 case 75:        /* mulhw */
1611                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1612                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1613                         goto arith_done;
1614
1615                 case 104:       /* neg */
1616                         op->val = -regs->gpr[ra];
1617                         goto arith_done;
1618
1619                 case 136:       /* subfe */
1620                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1621                                        regs->gpr[rb], regs->xer & XER_CA);
1622                         goto arith_done;
1623
1624                 case 138:       /* adde */
1625                         add_with_carry(regs, op, rd, regs->gpr[ra],
1626                                        regs->gpr[rb], regs->xer & XER_CA);
1627                         goto arith_done;
1628
1629                 case 200:       /* subfze */
1630                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1631                                        regs->xer & XER_CA);
1632                         goto arith_done;
1633
1634                 case 202:       /* addze */
1635                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1636                                        regs->xer & XER_CA);
1637                         goto arith_done;
1638
1639                 case 232:       /* subfme */
1640                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1641                                        regs->xer & XER_CA);
1642                         goto arith_done;
1643 #ifdef __powerpc64__
1644                 case 233:       /* mulld */
1645                         op->val = regs->gpr[ra] * regs->gpr[rb];
1646                         goto arith_done;
1647 #endif
1648                 case 234:       /* addme */
1649                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1650                                        regs->xer & XER_CA);
1651                         goto arith_done;
1652
1653                 case 235:       /* mullw */
1654                         op->val = (unsigned int) regs->gpr[ra] *
1655                                 (unsigned int) regs->gpr[rb];
1656                         goto arith_done;
1657
1658                 case 266:       /* add */
1659                         op->val = regs->gpr[ra] + regs->gpr[rb];
1660                         goto arith_done;
1661 #ifdef __powerpc64__
1662                 case 457:       /* divdu */
1663                         op->val = regs->gpr[ra] / regs->gpr[rb];
1664                         goto arith_done;
1665 #endif
1666                 case 459:       /* divwu */
1667                         op->val = (unsigned int) regs->gpr[ra] /
1668                                 (unsigned int) regs->gpr[rb];
1669                         goto arith_done;
1670 #ifdef __powerpc64__
1671                 case 489:       /* divd */
1672                         op->val = (long int) regs->gpr[ra] /
1673                                 (long int) regs->gpr[rb];
1674                         goto arith_done;
1675 #endif
1676                 case 491:       /* divw */
1677                         op->val = (int) regs->gpr[ra] /
1678                                 (int) regs->gpr[rb];
1679                         goto arith_done;
1680
1681
1682 /*
1683  * Logical instructions
1684  */
1685                 case 26:        /* cntlzw */
1686                         op->val = __builtin_clz((unsigned int) regs->gpr[rd]);
1687                         goto logical_done;
1688 #ifdef __powerpc64__
1689                 case 58:        /* cntlzd */
1690                         op->val = __builtin_clzl(regs->gpr[rd]);
1691                         goto logical_done;
1692 #endif
1693                 case 28:        /* and */
1694                         op->val = regs->gpr[rd] & regs->gpr[rb];
1695                         goto logical_done;
1696
1697                 case 60:        /* andc */
1698                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1699                         goto logical_done;
1700
1701                 case 122:       /* popcntb */
1702                         do_popcnt(regs, op, regs->gpr[rd], 8);
1703                         goto logical_done_nocc;
1704
1705                 case 124:       /* nor */
1706                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1707                         goto logical_done;
1708
1709                 case 154:       /* prtyw */
1710                         do_prty(regs, op, regs->gpr[rd], 32);
1711                         goto logical_done_nocc;
1712
1713                 case 186:       /* prtyd */
1714                         do_prty(regs, op, regs->gpr[rd], 64);
1715                         goto logical_done_nocc;
1716 #ifdef CONFIG_PPC64
1717                 case 252:       /* bpermd */
1718                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1719                         goto logical_done_nocc;
1720 #endif
1721                 case 284:       /* xor */
1722                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1723                         goto logical_done;
1724
1725                 case 316:       /* xor */
1726                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1727                         goto logical_done;
1728
1729                 case 378:       /* popcntw */
1730                         do_popcnt(regs, op, regs->gpr[rd], 32);
1731                         goto logical_done_nocc;
1732
1733                 case 412:       /* orc */
1734                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1735                         goto logical_done;
1736
1737                 case 444:       /* or */
1738                         op->val = regs->gpr[rd] | regs->gpr[rb];
1739                         goto logical_done;
1740
1741                 case 476:       /* nand */
1742                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1743                         goto logical_done;
1744 #ifdef CONFIG_PPC64
1745                 case 506:       /* popcntd */
1746                         do_popcnt(regs, op, regs->gpr[rd], 64);
1747                         goto logical_done_nocc;
1748 #endif
1749                 case 922:       /* extsh */
1750                         op->val = (signed short) regs->gpr[rd];
1751                         goto logical_done;
1752
1753                 case 954:       /* extsb */
1754                         op->val = (signed char) regs->gpr[rd];
1755                         goto logical_done;
1756 #ifdef __powerpc64__
1757                 case 986:       /* extsw */
1758                         op->val = (signed int) regs->gpr[rd];
1759                         goto logical_done;
1760 #endif
1761
1762 /*
1763  * Shift instructions
1764  */
1765                 case 24:        /* slw */
1766                         sh = regs->gpr[rb] & 0x3f;
1767                         if (sh < 32)
1768                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1769                         else
1770                                 op->val = 0;
1771                         goto logical_done;
1772
1773                 case 536:       /* srw */
1774                         sh = regs->gpr[rb] & 0x3f;
1775                         if (sh < 32)
1776                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1777                         else
1778                                 op->val = 0;
1779                         goto logical_done;
1780
1781                 case 792:       /* sraw */
1782                         op->type = COMPUTE + SETREG + SETXER;
1783                         sh = regs->gpr[rb] & 0x3f;
1784                         ival = (signed int) regs->gpr[rd];
1785                         op->val = ival >> (sh < 32 ? sh : 31);
1786                         op->xerval = regs->xer;
1787                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1788                                 op->xerval |= XER_CA;
1789                         else
1790                                 op->xerval &= ~XER_CA;
1791                         goto logical_done;
1792
1793                 case 824:       /* srawi */
1794                         op->type = COMPUTE + SETREG + SETXER;
1795                         sh = rb;
1796                         ival = (signed int) regs->gpr[rd];
1797                         op->val = ival >> sh;
1798                         op->xerval = regs->xer;
1799                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1800                                 op->xerval |= XER_CA;
1801                         else
1802                                 op->xerval &= ~XER_CA;
1803                         goto logical_done;
1804
1805 #ifdef __powerpc64__
1806                 case 27:        /* sld */
1807                         sh = regs->gpr[rb] & 0x7f;
1808                         if (sh < 64)
1809                                 op->val = regs->gpr[rd] << sh;
1810                         else
1811                                 op->val = 0;
1812                         goto logical_done;
1813
1814                 case 539:       /* srd */
1815                         sh = regs->gpr[rb] & 0x7f;
1816                         if (sh < 64)
1817                                 op->val = regs->gpr[rd] >> sh;
1818                         else
1819                                 op->val = 0;
1820                         goto logical_done;
1821
1822                 case 794:       /* srad */
1823                         op->type = COMPUTE + SETREG + SETXER;
1824                         sh = regs->gpr[rb] & 0x7f;
1825                         ival = (signed long int) regs->gpr[rd];
1826                         op->val = ival >> (sh < 64 ? sh : 63);
1827                         op->xerval = regs->xer;
1828                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1829                                 op->xerval |= XER_CA;
1830                         else
1831                                 op->xerval &= ~XER_CA;
1832                         goto logical_done;
1833
1834                 case 826:       /* sradi with sh_5 = 0 */
1835                 case 827:       /* sradi with sh_5 = 1 */
1836                         op->type = COMPUTE + SETREG + SETXER;
1837                         sh = rb | ((instr & 2) << 4);
1838                         ival = (signed long int) regs->gpr[rd];
1839                         op->val = ival >> sh;
1840                         op->xerval = regs->xer;
1841                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1842                                 op->xerval |= XER_CA;
1843                         else
1844                                 op->xerval &= ~XER_CA;
1845                         goto logical_done;
1846 #endif /* __powerpc64__ */
1847
1848 /*
1849  * Cache instructions
1850  */
1851                 case 54:        /* dcbst */
1852                         op->type = MKOP(CACHEOP, DCBST, 0);
1853                         op->ea = xform_ea(instr, regs);
1854                         return 0;
1855
1856                 case 86:        /* dcbf */
1857                         op->type = MKOP(CACHEOP, DCBF, 0);
1858                         op->ea = xform_ea(instr, regs);
1859                         return 0;
1860
1861                 case 246:       /* dcbtst */
1862                         op->type = MKOP(CACHEOP, DCBTST, 0);
1863                         op->ea = xform_ea(instr, regs);
1864                         op->reg = rd;
1865                         return 0;
1866
1867                 case 278:       /* dcbt */
1868                         op->type = MKOP(CACHEOP, DCBTST, 0);
1869                         op->ea = xform_ea(instr, regs);
1870                         op->reg = rd;
1871                         return 0;
1872
1873                 case 982:       /* icbi */
1874                         op->type = MKOP(CACHEOP, ICBI, 0);
1875                         op->ea = xform_ea(instr, regs);
1876                         return 0;
1877
1878                 case 1014:      /* dcbz */
1879                         op->type = MKOP(CACHEOP, DCBZ, 0);
1880                         op->ea = xform_ea(instr, regs);
1881                         return 0;
1882                 }
1883                 break;
1884         }
1885
1886 /*
1887  * Loads and stores.
1888  */
1889         op->type = UNKNOWN;
1890         op->update_reg = ra;
1891         op->reg = rd;
1892         op->val = regs->gpr[rd];
1893         u = (instr >> 20) & UPDATE;
1894         op->vsx_flags = 0;
1895
1896         switch (opcode) {
1897         case 31:
1898                 u = instr & UPDATE;
1899                 op->ea = xform_ea(instr, regs);
1900                 switch ((instr >> 1) & 0x3ff) {
1901                 case 20:        /* lwarx */
1902                         op->type = MKOP(LARX, 0, 4);
1903                         break;
1904
1905                 case 150:       /* stwcx. */
1906                         op->type = MKOP(STCX, 0, 4);
1907                         break;
1908
1909 #ifdef __powerpc64__
1910                 case 84:        /* ldarx */
1911                         op->type = MKOP(LARX, 0, 8);
1912                         break;
1913
1914                 case 214:       /* stdcx. */
1915                         op->type = MKOP(STCX, 0, 8);
1916                         break;
1917
1918                 case 52:        /* lbarx */
1919                         op->type = MKOP(LARX, 0, 1);
1920                         break;
1921
1922                 case 694:       /* stbcx. */
1923                         op->type = MKOP(STCX, 0, 1);
1924                         break;
1925
1926                 case 116:       /* lharx */
1927                         op->type = MKOP(LARX, 0, 2);
1928                         break;
1929
1930                 case 726:       /* sthcx. */
1931                         op->type = MKOP(STCX, 0, 2);
1932                         break;
1933
1934                 case 276:       /* lqarx */
1935                         if (!((rd & 1) || rd == ra || rd == rb))
1936                                 op->type = MKOP(LARX, 0, 16);
1937                         break;
1938
1939                 case 182:       /* stqcx. */
1940                         if (!(rd & 1))
1941                                 op->type = MKOP(STCX, 0, 16);
1942                         break;
1943 #endif
1944
1945                 case 23:        /* lwzx */
1946                 case 55:        /* lwzux */
1947                         op->type = MKOP(LOAD, u, 4);
1948                         break;
1949
1950                 case 87:        /* lbzx */
1951                 case 119:       /* lbzux */
1952                         op->type = MKOP(LOAD, u, 1);
1953                         break;
1954
1955 #ifdef CONFIG_ALTIVEC
1956                 /*
1957                  * Note: for the load/store vector element instructions,
1958                  * bits of the EA say which field of the VMX register to use.
1959                  */
1960                 case 7:         /* lvebx */
1961                         op->type = MKOP(LOAD_VMX, 0, 1);
1962                         op->element_size = 1;
1963                         break;
1964
1965                 case 39:        /* lvehx */
1966                         op->type = MKOP(LOAD_VMX, 0, 2);
1967                         op->element_size = 2;
1968                         break;
1969
1970                 case 71:        /* lvewx */
1971                         op->type = MKOP(LOAD_VMX, 0, 4);
1972                         op->element_size = 4;
1973                         break;
1974
1975                 case 103:       /* lvx */
1976                 case 359:       /* lvxl */
1977                         op->type = MKOP(LOAD_VMX, 0, 16);
1978                         op->element_size = 16;
1979                         break;
1980
1981                 case 135:       /* stvebx */
1982                         op->type = MKOP(STORE_VMX, 0, 1);
1983                         op->element_size = 1;
1984                         break;
1985
1986                 case 167:       /* stvehx */
1987                         op->type = MKOP(STORE_VMX, 0, 2);
1988                         op->element_size = 2;
1989                         break;
1990
1991                 case 199:       /* stvewx */
1992                         op->type = MKOP(STORE_VMX, 0, 4);
1993                         op->element_size = 4;
1994                         break;
1995
1996                 case 231:       /* stvx */
1997                 case 487:       /* stvxl */
1998                         op->type = MKOP(STORE_VMX, 0, 16);
1999                         break;
2000 #endif /* CONFIG_ALTIVEC */
2001
2002 #ifdef __powerpc64__
2003                 case 21:        /* ldx */
2004                 case 53:        /* ldux */
2005                         op->type = MKOP(LOAD, u, 8);
2006                         break;
2007
2008                 case 149:       /* stdx */
2009                 case 181:       /* stdux */
2010                         op->type = MKOP(STORE, u, 8);
2011                         break;
2012 #endif
2013
2014                 case 151:       /* stwx */
2015                 case 183:       /* stwux */
2016                         op->type = MKOP(STORE, u, 4);
2017                         break;
2018
2019                 case 215:       /* stbx */
2020                 case 247:       /* stbux */
2021                         op->type = MKOP(STORE, u, 1);
2022                         break;
2023
2024                 case 279:       /* lhzx */
2025                 case 311:       /* lhzux */
2026                         op->type = MKOP(LOAD, u, 2);
2027                         break;
2028
2029 #ifdef __powerpc64__
2030                 case 341:       /* lwax */
2031                 case 373:       /* lwaux */
2032                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2033                         break;
2034 #endif
2035
2036                 case 343:       /* lhax */
2037                 case 375:       /* lhaux */
2038                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2039                         break;
2040
2041                 case 407:       /* sthx */
2042                 case 439:       /* sthux */
2043                         op->type = MKOP(STORE, u, 2);
2044                         break;
2045
2046 #ifdef __powerpc64__
2047                 case 532:       /* ldbrx */
2048                         op->type = MKOP(LOAD, BYTEREV, 8);
2049                         break;
2050
2051 #endif
2052                 case 533:       /* lswx */
2053                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2054                         break;
2055
2056                 case 534:       /* lwbrx */
2057                         op->type = MKOP(LOAD, BYTEREV, 4);
2058                         break;
2059
2060                 case 597:       /* lswi */
2061                         if (rb == 0)
2062                                 rb = 32;        /* # bytes to load */
2063                         op->type = MKOP(LOAD_MULTI, 0, rb);
2064                         op->ea = ra ? regs->gpr[ra] : 0;
2065                         break;
2066
2067 #ifdef CONFIG_PPC_FPU
2068                 case 535:       /* lfsx */
2069                 case 567:       /* lfsux */
2070                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2071                         break;
2072
2073                 case 599:       /* lfdx */
2074                 case 631:       /* lfdux */
2075                         op->type = MKOP(LOAD_FP, u, 8);
2076                         break;
2077
2078                 case 663:       /* stfsx */
2079                 case 695:       /* stfsux */
2080                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2081                         break;
2082
2083                 case 727:       /* stfdx */
2084                 case 759:       /* stfdux */
2085                         op->type = MKOP(STORE_FP, u, 8);
2086                         break;
2087
2088 #ifdef __powerpc64__
2089                 case 791:       /* lfdpx */
2090                         op->type = MKOP(LOAD_FP, 0, 16);
2091                         break;
2092
2093                 case 855:       /* lfiwax */
2094                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2095                         break;
2096
2097                 case 887:       /* lfiwzx */
2098                         op->type = MKOP(LOAD_FP, 0, 4);
2099                         break;
2100
2101                 case 919:       /* stfdpx */
2102                         op->type = MKOP(STORE_FP, 0, 16);
2103                         break;
2104
2105                 case 983:       /* stfiwx */
2106                         op->type = MKOP(STORE_FP, 0, 4);
2107                         break;
2108 #endif /* __powerpc64 */
2109 #endif /* CONFIG_PPC_FPU */
2110
2111 #ifdef __powerpc64__
2112                 case 660:       /* stdbrx */
2113                         op->type = MKOP(STORE, BYTEREV, 8);
2114                         op->val = byterev_8(regs->gpr[rd]);
2115                         break;
2116
2117 #endif
2118                 case 661:       /* stswx */
2119                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2120                         break;
2121
2122                 case 662:       /* stwbrx */
2123                         op->type = MKOP(STORE, BYTEREV, 4);
2124                         op->val = byterev_4(regs->gpr[rd]);
2125                         break;
2126
2127                 case 725:       /* stswi */
2128                         if (rb == 0)
2129                                 rb = 32;        /* # bytes to store */
2130                         op->type = MKOP(STORE_MULTI, 0, rb);
2131                         op->ea = ra ? regs->gpr[ra] : 0;
2132                         break;
2133
2134                 case 790:       /* lhbrx */
2135                         op->type = MKOP(LOAD, BYTEREV, 2);
2136                         break;
2137
2138                 case 918:       /* sthbrx */
2139                         op->type = MKOP(STORE, BYTEREV, 2);
2140                         op->val = byterev_2(regs->gpr[rd]);
2141                         break;
2142
2143 #ifdef CONFIG_VSX
2144                 case 12:        /* lxsiwzx */
2145                         op->reg = rd | ((instr & 1) << 5);
2146                         op->type = MKOP(LOAD_VSX, 0, 4);
2147                         op->element_size = 8;
2148                         break;
2149
2150                 case 76:        /* lxsiwax */
2151                         op->reg = rd | ((instr & 1) << 5);
2152                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2153                         op->element_size = 8;
2154                         break;
2155
2156                 case 140:       /* stxsiwx */
2157                         op->reg = rd | ((instr & 1) << 5);
2158                         op->type = MKOP(STORE_VSX, 0, 4);
2159                         op->element_size = 8;
2160                         break;
2161
2162                 case 268:       /* lxvx */
2163                         op->reg = rd | ((instr & 1) << 5);
2164                         op->type = MKOP(LOAD_VSX, 0, 16);
2165                         op->element_size = 16;
2166                         op->vsx_flags = VSX_CHECK_VEC;
2167                         break;
2168
2169                 case 269:       /* lxvl */
2170                 case 301: {     /* lxvll */
2171                         int nb;
2172                         op->reg = rd | ((instr & 1) << 5);
2173                         op->ea = ra ? regs->gpr[ra] : 0;
2174                         nb = regs->gpr[rb] & 0xff;
2175                         if (nb > 16)
2176                                 nb = 16;
2177                         op->type = MKOP(LOAD_VSX, 0, nb);
2178                         op->element_size = 16;
2179                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2180                                 VSX_CHECK_VEC;
2181                         break;
2182                 }
2183                 case 332:       /* lxvdsx */
2184                         op->reg = rd | ((instr & 1) << 5);
2185                         op->type = MKOP(LOAD_VSX, 0, 8);
2186                         op->element_size = 8;
2187                         op->vsx_flags = VSX_SPLAT;
2188                         break;
2189
2190                 case 364:       /* lxvwsx */
2191                         op->reg = rd | ((instr & 1) << 5);
2192                         op->type = MKOP(LOAD_VSX, 0, 4);
2193                         op->element_size = 4;
2194                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2195                         break;
2196
2197                 case 396:       /* stxvx */
2198                         op->reg = rd | ((instr & 1) << 5);
2199                         op->type = MKOP(STORE_VSX, 0, 16);
2200                         op->element_size = 16;
2201                         op->vsx_flags = VSX_CHECK_VEC;
2202                         break;
2203
2204                 case 397:       /* stxvl */
2205                 case 429: {     /* stxvll */
2206                         int nb;
2207                         op->reg = rd | ((instr & 1) << 5);
2208                         op->ea = ra ? regs->gpr[ra] : 0;
2209                         nb = regs->gpr[rb] & 0xff;
2210                         if (nb > 16)
2211                                 nb = 16;
2212                         op->type = MKOP(STORE_VSX, 0, nb);
2213                         op->element_size = 16;
2214                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2215                                 VSX_CHECK_VEC;
2216                         break;
2217                 }
2218                 case 524:       /* lxsspx */
2219                         op->reg = rd | ((instr & 1) << 5);
2220                         op->type = MKOP(LOAD_VSX, 0, 4);
2221                         op->element_size = 8;
2222                         op->vsx_flags = VSX_FPCONV;
2223                         break;
2224
2225                 case 588:       /* lxsdx */
2226                         op->reg = rd | ((instr & 1) << 5);
2227                         op->type = MKOP(LOAD_VSX, 0, 8);
2228                         op->element_size = 8;
2229                         break;
2230
2231                 case 652:       /* stxsspx */
2232                         op->reg = rd | ((instr & 1) << 5);
2233                         op->type = MKOP(STORE_VSX, 0, 4);
2234                         op->element_size = 8;
2235                         op->vsx_flags = VSX_FPCONV;
2236                         break;
2237
2238                 case 716:       /* stxsdx */
2239                         op->reg = rd | ((instr & 1) << 5);
2240                         op->type = MKOP(STORE_VSX, 0, 8);
2241                         op->element_size = 8;
2242                         break;
2243
2244                 case 780:       /* lxvw4x */
2245                         op->reg = rd | ((instr & 1) << 5);
2246                         op->type = MKOP(LOAD_VSX, 0, 16);
2247                         op->element_size = 4;
2248                         break;
2249
2250                 case 781:       /* lxsibzx */
2251                         op->reg = rd | ((instr & 1) << 5);
2252                         op->type = MKOP(LOAD_VSX, 0, 1);
2253                         op->element_size = 8;
2254                         op->vsx_flags = VSX_CHECK_VEC;
2255                         break;
2256
2257                 case 812:       /* lxvh8x */
2258                         op->reg = rd | ((instr & 1) << 5);
2259                         op->type = MKOP(LOAD_VSX, 0, 16);
2260                         op->element_size = 2;
2261                         op->vsx_flags = VSX_CHECK_VEC;
2262                         break;
2263
2264                 case 813:       /* lxsihzx */
2265                         op->reg = rd | ((instr & 1) << 5);
2266                         op->type = MKOP(LOAD_VSX, 0, 2);
2267                         op->element_size = 8;
2268                         op->vsx_flags = VSX_CHECK_VEC;
2269                         break;
2270
2271                 case 844:       /* lxvd2x */
2272                         op->reg = rd | ((instr & 1) << 5);
2273                         op->type = MKOP(LOAD_VSX, 0, 16);
2274                         op->element_size = 8;
2275                         break;
2276
2277                 case 876:       /* lxvb16x */
2278                         op->reg = rd | ((instr & 1) << 5);
2279                         op->type = MKOP(LOAD_VSX, 0, 16);
2280                         op->element_size = 1;
2281                         op->vsx_flags = VSX_CHECK_VEC;
2282                         break;
2283
2284                 case 908:       /* stxvw4x */
2285                         op->reg = rd | ((instr & 1) << 5);
2286                         op->type = MKOP(STORE_VSX, 0, 16);
2287                         op->element_size = 4;
2288                         break;
2289
2290                 case 909:       /* stxsibx */
2291                         op->reg = rd | ((instr & 1) << 5);
2292                         op->type = MKOP(STORE_VSX, 0, 1);
2293                         op->element_size = 8;
2294                         op->vsx_flags = VSX_CHECK_VEC;
2295                         break;
2296
2297                 case 940:       /* stxvh8x */
2298                         op->reg = rd | ((instr & 1) << 5);
2299                         op->type = MKOP(STORE_VSX, 0, 16);
2300                         op->element_size = 2;
2301                         op->vsx_flags = VSX_CHECK_VEC;
2302                         break;
2303
2304                 case 941:       /* stxsihx */
2305                         op->reg = rd | ((instr & 1) << 5);
2306                         op->type = MKOP(STORE_VSX, 0, 2);
2307                         op->element_size = 8;
2308                         op->vsx_flags = VSX_CHECK_VEC;
2309                         break;
2310
2311                 case 972:       /* stxvd2x */
2312                         op->reg = rd | ((instr & 1) << 5);
2313                         op->type = MKOP(STORE_VSX, 0, 16);
2314                         op->element_size = 8;
2315                         break;
2316
2317                 case 1004:      /* stxvb16x */
2318                         op->reg = rd | ((instr & 1) << 5);
2319                         op->type = MKOP(STORE_VSX, 0, 16);
2320                         op->element_size = 1;
2321                         op->vsx_flags = VSX_CHECK_VEC;
2322                         break;
2323
2324 #endif /* CONFIG_VSX */
2325                 }
2326                 break;
2327
2328         case 32:        /* lwz */
2329         case 33:        /* lwzu */
2330                 op->type = MKOP(LOAD, u, 4);
2331                 op->ea = dform_ea(instr, regs);
2332                 break;
2333
2334         case 34:        /* lbz */
2335         case 35:        /* lbzu */
2336                 op->type = MKOP(LOAD, u, 1);
2337                 op->ea = dform_ea(instr, regs);
2338                 break;
2339
2340         case 36:        /* stw */
2341         case 37:        /* stwu */
2342                 op->type = MKOP(STORE, u, 4);
2343                 op->ea = dform_ea(instr, regs);
2344                 break;
2345
2346         case 38:        /* stb */
2347         case 39:        /* stbu */
2348                 op->type = MKOP(STORE, u, 1);
2349                 op->ea = dform_ea(instr, regs);
2350                 break;
2351
2352         case 40:        /* lhz */
2353         case 41:        /* lhzu */
2354                 op->type = MKOP(LOAD, u, 2);
2355                 op->ea = dform_ea(instr, regs);
2356                 break;
2357
2358         case 42:        /* lha */
2359         case 43:        /* lhau */
2360                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2361                 op->ea = dform_ea(instr, regs);
2362                 break;
2363
2364         case 44:        /* sth */
2365         case 45:        /* sthu */
2366                 op->type = MKOP(STORE, u, 2);
2367                 op->ea = dform_ea(instr, regs);
2368                 break;
2369
2370         case 46:        /* lmw */
2371                 if (ra >= rd)
2372                         break;          /* invalid form, ra in range to load */
2373                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2374                 op->ea = dform_ea(instr, regs);
2375                 break;
2376
2377         case 47:        /* stmw */
2378                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2379                 op->ea = dform_ea(instr, regs);
2380                 break;
2381
2382 #ifdef CONFIG_PPC_FPU
2383         case 48:        /* lfs */
2384         case 49:        /* lfsu */
2385                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2386                 op->ea = dform_ea(instr, regs);
2387                 break;
2388
2389         case 50:        /* lfd */
2390         case 51:        /* lfdu */
2391                 op->type = MKOP(LOAD_FP, u, 8);
2392                 op->ea = dform_ea(instr, regs);
2393                 break;
2394
2395         case 52:        /* stfs */
2396         case 53:        /* stfsu */
2397                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2398                 op->ea = dform_ea(instr, regs);
2399                 break;
2400
2401         case 54:        /* stfd */
2402         case 55:        /* stfdu */
2403                 op->type = MKOP(STORE_FP, u, 8);
2404                 op->ea = dform_ea(instr, regs);
2405                 break;
2406 #endif
2407
2408 #ifdef __powerpc64__
2409         case 56:        /* lq */
2410                 if (!((rd & 1) || (rd == ra)))
2411                         op->type = MKOP(LOAD, 0, 16);
2412                 op->ea = dqform_ea(instr, regs);
2413                 break;
2414 #endif
2415
2416 #ifdef CONFIG_VSX
2417         case 57:        /* lfdp, lxsd, lxssp */
2418                 op->ea = dsform_ea(instr, regs);
2419                 switch (instr & 3) {
2420                 case 0:         /* lfdp */
2421                         if (rd & 1)
2422                                 break;          /* reg must be even */
2423                         op->type = MKOP(LOAD_FP, 0, 16);
2424                         break;
2425                 case 2:         /* lxsd */
2426                         op->reg = rd + 32;
2427                         op->type = MKOP(LOAD_VSX, 0, 8);
2428                         op->element_size = 8;
2429                         op->vsx_flags = VSX_CHECK_VEC;
2430                         break;
2431                 case 3:         /* lxssp */
2432                         op->reg = rd + 32;
2433                         op->type = MKOP(LOAD_VSX, 0, 4);
2434                         op->element_size = 8;
2435                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2436                         break;
2437                 }
2438                 break;
2439 #endif /* CONFIG_VSX */
2440
2441 #ifdef __powerpc64__
2442         case 58:        /* ld[u], lwa */
2443                 op->ea = dsform_ea(instr, regs);
2444                 switch (instr & 3) {
2445                 case 0:         /* ld */
2446                         op->type = MKOP(LOAD, 0, 8);
2447                         break;
2448                 case 1:         /* ldu */
2449                         op->type = MKOP(LOAD, UPDATE, 8);
2450                         break;
2451                 case 2:         /* lwa */
2452                         op->type = MKOP(LOAD, SIGNEXT, 4);
2453                         break;
2454                 }
2455                 break;
2456 #endif
2457
2458 #ifdef CONFIG_VSX
2459         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2460                 switch (instr & 7) {
2461                 case 0:         /* stfdp with LSB of DS field = 0 */
2462                 case 4:         /* stfdp with LSB of DS field = 1 */
2463                         op->ea = dsform_ea(instr, regs);
2464                         op->type = MKOP(STORE_FP, 0, 16);
2465                         break;
2466
2467                 case 1:         /* lxv */
2468                         op->ea = dqform_ea(instr, regs);
2469                         if (instr & 8)
2470                                 op->reg = rd + 32;
2471                         op->type = MKOP(LOAD_VSX, 0, 16);
2472                         op->element_size = 16;
2473                         op->vsx_flags = VSX_CHECK_VEC;
2474                         break;
2475
2476                 case 2:         /* stxsd with LSB of DS field = 0 */
2477                 case 6:         /* stxsd with LSB of DS field = 1 */
2478                         op->ea = dsform_ea(instr, regs);
2479                         op->reg = rd + 32;
2480                         op->type = MKOP(STORE_VSX, 0, 8);
2481                         op->element_size = 8;
2482                         op->vsx_flags = VSX_CHECK_VEC;
2483                         break;
2484
2485                 case 3:         /* stxssp with LSB of DS field = 0 */
2486                 case 7:         /* stxssp with LSB of DS field = 1 */
2487                         op->ea = dsform_ea(instr, regs);
2488                         op->reg = rd + 32;
2489                         op->type = MKOP(STORE_VSX, 0, 4);
2490                         op->element_size = 8;
2491                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2492                         break;
2493
2494                 case 5:         /* stxv */
2495                         op->ea = dqform_ea(instr, regs);
2496                         if (instr & 8)
2497                                 op->reg = rd + 32;
2498                         op->type = MKOP(STORE_VSX, 0, 16);
2499                         op->element_size = 16;
2500                         op->vsx_flags = VSX_CHECK_VEC;
2501                         break;
2502                 }
2503                 break;
2504 #endif /* CONFIG_VSX */
2505
2506 #ifdef __powerpc64__
2507         case 62:        /* std[u] */
2508                 op->ea = dsform_ea(instr, regs);
2509                 switch (instr & 3) {
2510                 case 0:         /* std */
2511                         op->type = MKOP(STORE, 0, 8);
2512                         break;
2513                 case 1:         /* stdu */
2514                         op->type = MKOP(STORE, UPDATE, 8);
2515                         break;
2516                 case 2:         /* stq */
2517                         if (!(rd & 1))
2518                                 op->type = MKOP(STORE, 0, 16);
2519                         break;
2520                 }
2521                 break;
2522 #endif /* __powerpc64__ */
2523
2524         }
2525         return 0;
2526
2527  logical_done:
2528         if (instr & 1)
2529                 set_cr0(regs, op);
2530  logical_done_nocc:
2531         op->reg = ra;
2532         op->type |= SETREG;
2533         return 1;
2534
2535  arith_done:
2536         if (instr & 1)
2537                 set_cr0(regs, op);
2538  compute_done:
2539         op->reg = rd;
2540         op->type |= SETREG;
2541         return 1;
2542
2543  priv:
2544         op->type = INTERRUPT | 0x700;
2545         op->val = SRR1_PROGPRIV;
2546         return 0;
2547
2548  trap:
2549         op->type = INTERRUPT | 0x700;
2550         op->val = SRR1_PROGTRAP;
2551         return 0;
2552 }
2553 EXPORT_SYMBOL_GPL(analyse_instr);
2554 NOKPROBE_SYMBOL(analyse_instr);
2555
2556 /*
2557  * For PPC32 we always use stwu with r1 to change the stack pointer.
2558  * So this emulated store may corrupt the exception frame, now we
2559  * have to provide the exception frame trampoline, which is pushed
2560  * below the kprobed function stack. So we only update gpr[1] but
2561  * don't emulate the real store operation. We will do real store
2562  * operation safely in exception return code by checking this flag.
2563  */
2564 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2565 {
2566 #ifdef CONFIG_PPC32
2567         /*
2568          * Check if we will touch kernel stack overflow
2569          */
2570         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2571                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2572                 return -EINVAL;
2573         }
2574 #endif /* CONFIG_PPC32 */
2575         /*
2576          * Check if we already set since that means we'll
2577          * lose the previous value.
2578          */
2579         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2580         set_thread_flag(TIF_EMULATE_STACK_STORE);
2581         return 0;
2582 }
2583
2584 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2585 {
2586         switch (size) {
2587         case 2:
2588                 *valp = (signed short) *valp;
2589                 break;
2590         case 4:
2591                 *valp = (signed int) *valp;
2592                 break;
2593         }
2594 }
2595
2596 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2597 {
2598         switch (size) {
2599         case 2:
2600                 *valp = byterev_2(*valp);
2601                 break;
2602         case 4:
2603                 *valp = byterev_4(*valp);
2604                 break;
2605 #ifdef __powerpc64__
2606         case 8:
2607                 *valp = byterev_8(*valp);
2608                 break;
2609 #endif
2610         }
2611 }
2612
2613 /*
2614  * Emulate an instruction that can be executed just by updating
2615  * fields in *regs.
2616  */
2617 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2618 {
2619         unsigned long next_pc;
2620
2621         next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2622         switch (op->type & INSTR_TYPE_MASK) {
2623         case COMPUTE:
2624                 if (op->type & SETREG)
2625                         regs->gpr[op->reg] = op->val;
2626                 if (op->type & SETCC)
2627                         regs->ccr = op->ccval;
2628                 if (op->type & SETXER)
2629                         regs->xer = op->xerval;
2630                 break;
2631
2632         case BRANCH:
2633                 if (op->type & SETLK)
2634                         regs->link = next_pc;
2635                 if (op->type & BRTAKEN)
2636                         next_pc = op->val;
2637                 if (op->type & DECCTR)
2638                         --regs->ctr;
2639                 break;
2640
2641         case BARRIER:
2642                 switch (op->type & BARRIER_MASK) {
2643                 case BARRIER_SYNC:
2644                         mb();
2645                         break;
2646                 case BARRIER_ISYNC:
2647                         isync();
2648                         break;
2649                 case BARRIER_EIEIO:
2650                         eieio();
2651                         break;
2652                 case BARRIER_LWSYNC:
2653                         asm volatile("lwsync" : : : "memory");
2654                         break;
2655                 case BARRIER_PTESYNC:
2656                         asm volatile("ptesync" : : : "memory");
2657                         break;
2658                 }
2659                 break;
2660
2661         case MFSPR:
2662                 switch (op->spr) {
2663                 case SPRN_XER:
2664                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2665                         break;
2666                 case SPRN_LR:
2667                         regs->gpr[op->reg] = regs->link;
2668                         break;
2669                 case SPRN_CTR:
2670                         regs->gpr[op->reg] = regs->ctr;
2671                         break;
2672                 default:
2673                         WARN_ON_ONCE(1);
2674                 }
2675                 break;
2676
2677         case MTSPR:
2678                 switch (op->spr) {
2679                 case SPRN_XER:
2680                         regs->xer = op->val & 0xffffffffUL;
2681                         break;
2682                 case SPRN_LR:
2683                         regs->link = op->val;
2684                         break;
2685                 case SPRN_CTR:
2686                         regs->ctr = op->val;
2687                         break;
2688                 default:
2689                         WARN_ON_ONCE(1);
2690                 }
2691                 break;
2692
2693         default:
2694                 WARN_ON_ONCE(1);
2695         }
2696         regs->nip = next_pc;
2697 }
2698
2699 /*
2700  * Emulate a previously-analysed load or store instruction.
2701  * Return values are:
2702  * 0 = instruction emulated successfully
2703  * -EFAULT = address out of range or access faulted (regs->dar
2704  *           contains the faulting address)
2705  * -EACCES = misaligned access, instruction requires alignment
2706  * -EINVAL = unknown operation in *op
2707  */
2708 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2709 {
2710         int err, size, type;
2711         int i, rd, nb;
2712         unsigned int cr;
2713         unsigned long val;
2714         unsigned long ea;
2715         bool cross_endian;
2716
2717         err = 0;
2718         size = GETSIZE(op->type);
2719         type = op->type & INSTR_TYPE_MASK;
2720         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2721         ea = truncate_if_32bit(regs->msr, op->ea);
2722
2723         switch (type) {
2724         case LARX:
2725                 if (ea & (size - 1))
2726                         return -EACCES;         /* can't handle misaligned */
2727                 if (!address_ok(regs, ea, size))
2728                         return -EFAULT;
2729                 err = 0;
2730                 val = 0;
2731                 switch (size) {
2732 #ifdef __powerpc64__
2733                 case 1:
2734                         __get_user_asmx(val, ea, err, "lbarx");
2735                         break;
2736                 case 2:
2737                         __get_user_asmx(val, ea, err, "lharx");
2738                         break;
2739 #endif
2740                 case 4:
2741                         __get_user_asmx(val, ea, err, "lwarx");
2742                         break;
2743 #ifdef __powerpc64__
2744                 case 8:
2745                         __get_user_asmx(val, ea, err, "ldarx");
2746                         break;
2747                 case 16:
2748                         err = do_lqarx(ea, &regs->gpr[op->reg]);
2749                         break;
2750 #endif
2751                 default:
2752                         return -EINVAL;
2753                 }
2754                 if (err) {
2755                         regs->dar = ea;
2756                         break;
2757                 }
2758                 if (size < 16)
2759                         regs->gpr[op->reg] = val;
2760                 break;
2761
2762         case STCX:
2763                 if (ea & (size - 1))
2764                         return -EACCES;         /* can't handle misaligned */
2765                 if (!address_ok(regs, ea, size))
2766                         return -EFAULT;
2767                 err = 0;
2768                 switch (size) {
2769 #ifdef __powerpc64__
2770                 case 1:
2771                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2772                         break;
2773                 case 2:
2774                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2775                         break;
2776 #endif
2777                 case 4:
2778                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2779                         break;
2780 #ifdef __powerpc64__
2781                 case 8:
2782                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2783                         break;
2784                 case 16:
2785                         err = do_stqcx(ea, regs->gpr[op->reg],
2786                                        regs->gpr[op->reg + 1], &cr);
2787                         break;
2788 #endif
2789                 default:
2790                         return -EINVAL;
2791                 }
2792                 if (!err)
2793                         regs->ccr = (regs->ccr & 0x0fffffff) |
2794                                 (cr & 0xe0000000) |
2795                                 ((regs->xer >> 3) & 0x10000000);
2796                 else
2797                         regs->dar = ea;
2798                 break;
2799
2800         case LOAD:
2801 #ifdef __powerpc64__
2802                 if (size == 16) {
2803                         err = emulate_lq(regs, ea, op->reg, cross_endian);
2804                         break;
2805                 }
2806 #endif
2807                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2808                 if (!err) {
2809                         if (op->type & SIGNEXT)
2810                                 do_signext(&regs->gpr[op->reg], size);
2811                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2812                                 do_byterev(&regs->gpr[op->reg], size);
2813                 }
2814                 break;
2815
2816 #ifdef CONFIG_PPC_FPU
2817         case LOAD_FP:
2818                 /*
2819                  * If the instruction is in userspace, we can emulate it even
2820                  * if the VMX state is not live, because we have the state
2821                  * stored in the thread_struct.  If the instruction is in
2822                  * the kernel, we must not touch the state in the thread_struct.
2823                  */
2824                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2825                         return 0;
2826                 err = do_fp_load(op, ea, regs, cross_endian);
2827                 break;
2828 #endif
2829 #ifdef CONFIG_ALTIVEC
2830         case LOAD_VMX:
2831                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2832                         return 0;
2833                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2834                 break;
2835 #endif
2836 #ifdef CONFIG_VSX
2837         case LOAD_VSX: {
2838                 unsigned long msrbit = MSR_VSX;
2839
2840                 /*
2841                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2842                  * when the target of the instruction is a vector register.
2843                  */
2844                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2845                         msrbit = MSR_VEC;
2846                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2847                         return 0;
2848                 err = do_vsx_load(op, ea, regs, cross_endian);
2849                 break;
2850         }
2851 #endif
2852         case LOAD_MULTI:
2853                 if (!address_ok(regs, ea, size))
2854                         return -EFAULT;
2855                 rd = op->reg;
2856                 for (i = 0; i < size; i += 4) {
2857                         unsigned int v32 = 0;
2858
2859                         nb = size - i;
2860                         if (nb > 4)
2861                                 nb = 4;
2862                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2863                         if (err)
2864                                 break;
2865                         if (unlikely(cross_endian))
2866                                 v32 = byterev_4(v32);
2867                         regs->gpr[rd] = v32;
2868                         ea += 4;
2869                         /* reg number wraps from 31 to 0 for lsw[ix] */
2870                         rd = (rd + 1) & 0x1f;
2871                 }
2872                 break;
2873
2874         case STORE:
2875 #ifdef __powerpc64__
2876                 if (size == 16) {
2877                         err = emulate_stq(regs, ea, op->reg, cross_endian);
2878                         break;
2879                 }
2880 #endif
2881                 if ((op->type & UPDATE) && size == sizeof(long) &&
2882                     op->reg == 1 && op->update_reg == 1 &&
2883                     !(regs->msr & MSR_PR) &&
2884                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2885                         err = handle_stack_update(ea, regs);
2886                         break;
2887                 }
2888                 if (unlikely(cross_endian))
2889                         do_byterev(&op->val, size);
2890                 err = write_mem(op->val, ea, size, regs);
2891                 break;
2892
2893 #ifdef CONFIG_PPC_FPU
2894         case STORE_FP:
2895                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2896                         return 0;
2897                 err = do_fp_store(op, ea, regs, cross_endian);
2898                 break;
2899 #endif
2900 #ifdef CONFIG_ALTIVEC
2901         case STORE_VMX:
2902                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2903                         return 0;
2904                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2905                 break;
2906 #endif
2907 #ifdef CONFIG_VSX
2908         case STORE_VSX: {
2909                 unsigned long msrbit = MSR_VSX;
2910
2911                 /*
2912                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2913                  * when the target of the instruction is a vector register.
2914                  */
2915                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2916                         msrbit = MSR_VEC;
2917                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2918                         return 0;
2919                 err = do_vsx_store(op, ea, regs, cross_endian);
2920                 break;
2921         }
2922 #endif
2923         case STORE_MULTI:
2924                 if (!address_ok(regs, ea, size))
2925                         return -EFAULT;
2926                 rd = op->reg;
2927                 for (i = 0; i < size; i += 4) {
2928                         unsigned int v32 = regs->gpr[rd];
2929
2930                         nb = size - i;
2931                         if (nb > 4)
2932                                 nb = 4;
2933                         if (unlikely(cross_endian))
2934                                 v32 = byterev_4(v32);
2935                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2936                         if (err)
2937                                 break;
2938                         ea += 4;
2939                         /* reg number wraps from 31 to 0 for stsw[ix] */
2940                         rd = (rd + 1) & 0x1f;
2941                 }
2942                 break;
2943
2944         default:
2945                 return -EINVAL;
2946         }
2947
2948         if (err)
2949                 return err;
2950
2951         if (op->type & UPDATE)
2952                 regs->gpr[op->update_reg] = op->ea;
2953
2954         return 0;
2955 }
2956 NOKPROBE_SYMBOL(emulate_loadstore);
2957
2958 /*
2959  * Emulate instructions that cause a transfer of control,
2960  * loads and stores, and a few other instructions.
2961  * Returns 1 if the step was emulated, 0 if not,
2962  * or -1 if the instruction is one that should not be stepped,
2963  * such as an rfid, or a mtmsrd that would clear MSR_RI.
2964  */
2965 int emulate_step(struct pt_regs *regs, unsigned int instr)
2966 {
2967         struct instruction_op op;
2968         int r, err, type;
2969         unsigned long val;
2970         unsigned long ea;
2971
2972         r = analyse_instr(&op, regs, instr);
2973         if (r < 0)
2974                 return r;
2975         if (r > 0) {
2976                 emulate_update_regs(regs, &op);
2977                 return 1;
2978         }
2979
2980         err = 0;
2981         type = op.type & INSTR_TYPE_MASK;
2982
2983         if (OP_IS_LOAD_STORE(type)) {
2984                 err = emulate_loadstore(regs, &op);
2985                 if (err)
2986                         return 0;
2987                 goto instr_done;
2988         }
2989
2990         switch (type) {
2991         case CACHEOP:
2992                 ea = truncate_if_32bit(regs->msr, op.ea);
2993                 if (!address_ok(regs, ea, 8))
2994                         return 0;
2995                 switch (op.type & CACHEOP_MASK) {
2996                 case DCBST:
2997                         __cacheop_user_asmx(ea, err, "dcbst");
2998                         break;
2999                 case DCBF:
3000                         __cacheop_user_asmx(ea, err, "dcbf");
3001                         break;
3002                 case DCBTST:
3003                         if (op.reg == 0)
3004                                 prefetchw((void *) ea);
3005                         break;
3006                 case DCBT:
3007                         if (op.reg == 0)
3008                                 prefetch((void *) ea);
3009                         break;
3010                 case ICBI:
3011                         __cacheop_user_asmx(ea, err, "icbi");
3012                         break;
3013                 case DCBZ:
3014                         err = emulate_dcbz(ea, regs);
3015                         break;
3016                 }
3017                 if (err) {
3018                         regs->dar = ea;
3019                         return 0;
3020                 }
3021                 goto instr_done;
3022
3023         case MFMSR:
3024                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3025                 goto instr_done;
3026
3027         case MTMSR:
3028                 val = regs->gpr[op.reg];
3029                 if ((val & MSR_RI) == 0)
3030                         /* can't step mtmsr[d] that would clear MSR_RI */
3031                         return -1;
3032                 /* here op.val is the mask of bits to change */
3033                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3034                 goto instr_done;
3035
3036 #ifdef CONFIG_PPC64
3037         case SYSCALL:   /* sc */
3038                 /*
3039                  * N.B. this uses knowledge about how the syscall
3040                  * entry code works.  If that is changed, this will
3041                  * need to be changed also.
3042                  */
3043                 if (regs->gpr[0] == 0x1ebe &&
3044                     cpu_has_feature(CPU_FTR_REAL_LE)) {
3045                         regs->msr ^= MSR_LE;
3046                         goto instr_done;
3047                 }
3048                 regs->gpr[9] = regs->gpr[13];
3049                 regs->gpr[10] = MSR_KERNEL;
3050                 regs->gpr[11] = regs->nip + 4;
3051                 regs->gpr[12] = regs->msr & MSR_MASK;
3052                 regs->gpr[13] = (unsigned long) get_paca();
3053                 regs->nip = (unsigned long) &system_call_common;
3054                 regs->msr = MSR_KERNEL;
3055                 return 1;
3056
3057         case RFI:
3058                 return -1;
3059 #endif
3060         }
3061         return 0;
3062
3063  instr_done:
3064         regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3065         return 1;
3066 }
3067 NOKPROBE_SYMBOL(emulate_step);