Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71         int me;
72         int cpu = vcpu->cpu;
73         wait_queue_head_t *wqp;
74
75         wqp = kvm_arch_vcpu_wq(vcpu);
76         if (waitqueue_active(wqp)) {
77                 wake_up_interruptible(wqp);
78                 ++vcpu->stat.halt_wakeup;
79         }
80
81         me = get_cpu();
82
83         /* CPU points to the first thread of the core */
84         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85                 int real_cpu = cpu + vcpu->arch.ptid;
86                 if (paca[real_cpu].kvm_hstate.xics_phys)
87                         xics_wake_cpu(real_cpu);
88                 else if (cpu_online(cpu))
89                         smp_send_reschedule(cpu);
90         }
91         put_cpu();
92 }
93
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130         struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132         spin_lock(&vcpu->arch.tbacct_lock);
133         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134             vc->preempt_tb != TB_NIL) {
135                 vc->stolen_tb += mftb() - vc->preempt_tb;
136                 vc->preempt_tb = TB_NIL;
137         }
138         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139             vcpu->arch.busy_preempt != TB_NIL) {
140                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141                 vcpu->arch.busy_preempt = TB_NIL;
142         }
143         spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150         spin_lock(&vcpu->arch.tbacct_lock);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152                 vc->preempt_tb = mftb();
153         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154                 vcpu->arch.busy_preempt = mftb();
155         spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160         vcpu->arch.shregs.msr = msr;
161         kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166         vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171         int r;
172
173         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176         for (r = 0; r < 16; ++r)
177                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178                        r, kvmppc_get_gpr(vcpu, r),
179                        r+16, kvmppc_get_gpr(vcpu, r+16));
180         pr_err("ctr = %.16lx  lr  = %.16lx\n",
181                vcpu->arch.ctr, vcpu->arch.lr);
182         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191         pr_err("fault dar = %.16lx dsisr = %.8x\n",
192                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194         for (r = 0; r < vcpu->arch.slb_max; ++r)
195                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
196                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199                vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204         int r;
205         struct kvm_vcpu *v, *ret = NULL;
206
207         mutex_lock(&kvm->lock);
208         kvm_for_each_vcpu(r, v, kvm) {
209                 if (v->vcpu_id == id) {
210                         ret = v;
211                         break;
212                 }
213         }
214         mutex_unlock(&kvm->lock);
215         return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220         vpa->shared_proc = 1;
221         vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225                    unsigned long addr, unsigned long len)
226 {
227         /* check address is cacheline aligned */
228         if (addr & (L1_CACHE_BYTES - 1))
229                 return -EINVAL;
230         spin_lock(&vcpu->arch.vpa_update_lock);
231         if (v->next_gpa != addr || v->len != len) {
232                 v->next_gpa = addr;
233                 v->len = addr ? len : 0;
234                 v->update_pending = 1;
235         }
236         spin_unlock(&vcpu->arch.vpa_update_lock);
237         return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242         u32 dummy;
243         union {
244                 u16 hword;
245                 u32 word;
246         } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251         if (vpap->update_pending)
252                 return vpap->next_gpa != 0;
253         return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257                                        unsigned long flags,
258                                        unsigned long vcpuid, unsigned long vpa)
259 {
260         struct kvm *kvm = vcpu->kvm;
261         unsigned long len, nb;
262         void *va;
263         struct kvm_vcpu *tvcpu;
264         int err;
265         int subfunc;
266         struct kvmppc_vpa *vpap;
267
268         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269         if (!tvcpu)
270                 return H_PARAMETER;
271
272         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274             subfunc == H_VPA_REG_SLB) {
275                 /* Registering new area - address must be cache-line aligned */
276                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277                         return H_PARAMETER;
278
279                 /* convert logical addr to kernel addr and read length */
280                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281                 if (va == NULL)
282                         return H_PARAMETER;
283                 if (subfunc == H_VPA_REG_VPA)
284                         len = ((struct reg_vpa *)va)->length.hword;
285                 else
286                         len = ((struct reg_vpa *)va)->length.word;
287                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289                 /* Check length */
290                 if (len > nb || len < sizeof(struct reg_vpa))
291                         return H_PARAMETER;
292         } else {
293                 vpa = 0;
294                 len = 0;
295         }
296
297         err = H_PARAMETER;
298         vpap = NULL;
299         spin_lock(&tvcpu->arch.vpa_update_lock);
300
301         switch (subfunc) {
302         case H_VPA_REG_VPA:             /* register VPA */
303                 if (len < sizeof(struct lppaca))
304                         break;
305                 vpap = &tvcpu->arch.vpa;
306                 err = 0;
307                 break;
308
309         case H_VPA_REG_DTL:             /* register DTL */
310                 if (len < sizeof(struct dtl_entry))
311                         break;
312                 len -= len % sizeof(struct dtl_entry);
313
314                 /* Check that they have previously registered a VPA */
315                 err = H_RESOURCE;
316                 if (!vpa_is_registered(&tvcpu->arch.vpa))
317                         break;
318
319                 vpap = &tvcpu->arch.dtl;
320                 err = 0;
321                 break;
322
323         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
324                 /* Check that they have previously registered a VPA */
325                 err = H_RESOURCE;
326                 if (!vpa_is_registered(&tvcpu->arch.vpa))
327                         break;
328
329                 vpap = &tvcpu->arch.slb_shadow;
330                 err = 0;
331                 break;
332
333         case H_VPA_DEREG_VPA:           /* deregister VPA */
334                 /* Check they don't still have a DTL or SLB buf registered */
335                 err = H_RESOURCE;
336                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337                     vpa_is_registered(&tvcpu->arch.slb_shadow))
338                         break;
339
340                 vpap = &tvcpu->arch.vpa;
341                 err = 0;
342                 break;
343
344         case H_VPA_DEREG_DTL:           /* deregister DTL */
345                 vpap = &tvcpu->arch.dtl;
346                 err = 0;
347                 break;
348
349         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
350                 vpap = &tvcpu->arch.slb_shadow;
351                 err = 0;
352                 break;
353         }
354
355         if (vpap) {
356                 vpap->next_gpa = vpa;
357                 vpap->len = len;
358                 vpap->update_pending = 1;
359         }
360
361         spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363         return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368         struct kvm *kvm = vcpu->kvm;
369         void *va;
370         unsigned long nb;
371         unsigned long gpa;
372
373         /*
374          * We need to pin the page pointed to by vpap->next_gpa,
375          * but we can't call kvmppc_pin_guest_page under the lock
376          * as it does get_user_pages() and down_read().  So we
377          * have to drop the lock, pin the page, then get the lock
378          * again and check that a new area didn't get registered
379          * in the meantime.
380          */
381         for (;;) {
382                 gpa = vpap->next_gpa;
383                 spin_unlock(&vcpu->arch.vpa_update_lock);
384                 va = NULL;
385                 nb = 0;
386                 if (gpa)
387                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388                 spin_lock(&vcpu->arch.vpa_update_lock);
389                 if (gpa == vpap->next_gpa)
390                         break;
391                 /* sigh... unpin that one and try again */
392                 if (va)
393                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
394         }
395
396         vpap->update_pending = 0;
397         if (va && nb < vpap->len) {
398                 /*
399                  * If it's now too short, it must be that userspace
400                  * has changed the mappings underlying guest memory,
401                  * so unregister the region.
402                  */
403                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404                 va = NULL;
405         }
406         if (vpap->pinned_addr)
407                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408                                         vpap->dirty);
409         vpap->gpa = gpa;
410         vpap->pinned_addr = va;
411         vpap->dirty = false;
412         if (va)
413                 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418         if (!(vcpu->arch.vpa.update_pending ||
419               vcpu->arch.slb_shadow.update_pending ||
420               vcpu->arch.dtl.update_pending))
421                 return;
422
423         spin_lock(&vcpu->arch.vpa_update_lock);
424         if (vcpu->arch.vpa.update_pending) {
425                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426                 if (vcpu->arch.vpa.pinned_addr)
427                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428         }
429         if (vcpu->arch.dtl.update_pending) {
430                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432                 vcpu->arch.dtl_index = 0;
433         }
434         if (vcpu->arch.slb_shadow.update_pending)
435                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436         spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445         u64 p;
446
447         /*
448          * If we are the task running the vcore, then since we hold
449          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450          * can't be updated, so we don't need the tbacct_lock.
451          * If the vcore is inactive, it can't become active (since we
452          * hold the vcore lock), so the vcpu load/put functions won't
453          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454          */
455         if (vc->vcore_state != VCORE_INACTIVE &&
456             vc->runner->arch.run_task != current) {
457                 spin_lock(&vc->runner->arch.tbacct_lock);
458                 p = vc->stolen_tb;
459                 if (vc->preempt_tb != TB_NIL)
460                         p += now - vc->preempt_tb;
461                 spin_unlock(&vc->runner->arch.tbacct_lock);
462         } else {
463                 p = vc->stolen_tb;
464         }
465         return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469                                     struct kvmppc_vcore *vc)
470 {
471         struct dtl_entry *dt;
472         struct lppaca *vpa;
473         unsigned long stolen;
474         unsigned long core_stolen;
475         u64 now;
476
477         dt = vcpu->arch.dtl_ptr;
478         vpa = vcpu->arch.vpa.pinned_addr;
479         now = mftb();
480         core_stolen = vcore_stolen_time(vc, now);
481         stolen = core_stolen - vcpu->arch.stolen_logged;
482         vcpu->arch.stolen_logged = core_stolen;
483         spin_lock(&vcpu->arch.tbacct_lock);
484         stolen += vcpu->arch.busy_stolen;
485         vcpu->arch.busy_stolen = 0;
486         spin_unlock(&vcpu->arch.tbacct_lock);
487         if (!dt || !vpa)
488                 return;
489         memset(dt, 0, sizeof(struct dtl_entry));
490         dt->dispatch_reason = 7;
491         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492         dt->timebase = now;
493         dt->enqueue_to_dispatch_time = stolen;
494         dt->srr0 = kvmppc_get_pc(vcpu);
495         dt->srr1 = vcpu->arch.shregs.msr;
496         ++dt;
497         if (dt == vcpu->arch.dtl.pinned_end)
498                 dt = vcpu->arch.dtl.pinned_addr;
499         vcpu->arch.dtl_ptr = dt;
500         /* order writing *dt vs. writing vpa->dtl_idx */
501         smp_wmb();
502         vpa->dtl_idx = ++vcpu->arch.dtl_index;
503         vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508         unsigned long req = kvmppc_get_gpr(vcpu, 3);
509         unsigned long target, ret = H_SUCCESS;
510         struct kvm_vcpu *tvcpu;
511         int idx, rc;
512
513         switch (req) {
514         case H_ENTER:
515                 idx = srcu_read_lock(&vcpu->kvm->srcu);
516                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517                                               kvmppc_get_gpr(vcpu, 5),
518                                               kvmppc_get_gpr(vcpu, 6),
519                                               kvmppc_get_gpr(vcpu, 7));
520                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521                 break;
522         case H_CEDE:
523                 break;
524         case H_PROD:
525                 target = kvmppc_get_gpr(vcpu, 4);
526                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527                 if (!tvcpu) {
528                         ret = H_PARAMETER;
529                         break;
530                 }
531                 tvcpu->arch.prodded = 1;
532                 smp_mb();
533                 if (vcpu->arch.ceded) {
534                         if (waitqueue_active(&vcpu->wq)) {
535                                 wake_up_interruptible(&vcpu->wq);
536                                 vcpu->stat.halt_wakeup++;
537                         }
538                 }
539                 break;
540         case H_CONFER:
541                 break;
542         case H_REGISTER_VPA:
543                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544                                         kvmppc_get_gpr(vcpu, 5),
545                                         kvmppc_get_gpr(vcpu, 6));
546                 break;
547         case H_RTAS:
548                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549                         return RESUME_HOST;
550
551                 rc = kvmppc_rtas_hcall(vcpu);
552
553                 if (rc == -ENOENT)
554                         return RESUME_HOST;
555                 else if (rc == 0)
556                         break;
557
558                 /* Send the error out to userspace via KVM_RUN */
559                 return rc;
560
561         case H_XIRR:
562         case H_CPPR:
563         case H_EOI:
564         case H_IPI:
565         case H_IPOLL:
566         case H_XIRR_X:
567                 if (kvmppc_xics_enabled(vcpu)) {
568                         ret = kvmppc_xics_hcall(vcpu, req);
569                         break;
570                 } /* fallthrough */
571         default:
572                 return RESUME_HOST;
573         }
574         kvmppc_set_gpr(vcpu, 3, ret);
575         vcpu->arch.hcall_needed = 0;
576         return RESUME_GUEST;
577 }
578
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580                               struct task_struct *tsk)
581 {
582         int r = RESUME_HOST;
583
584         vcpu->stat.sum_exits++;
585
586         run->exit_reason = KVM_EXIT_UNKNOWN;
587         run->ready_for_interrupt_injection = 1;
588         switch (vcpu->arch.trap) {
589         /* We're good on these - the host merely wanted to get our attention */
590         case BOOK3S_INTERRUPT_HV_DECREMENTER:
591                 vcpu->stat.dec_exits++;
592                 r = RESUME_GUEST;
593                 break;
594         case BOOK3S_INTERRUPT_EXTERNAL:
595                 vcpu->stat.ext_intr_exits++;
596                 r = RESUME_GUEST;
597                 break;
598         case BOOK3S_INTERRUPT_PERFMON:
599                 r = RESUME_GUEST;
600                 break;
601         case BOOK3S_INTERRUPT_MACHINE_CHECK:
602                 /*
603                  * Deliver a machine check interrupt to the guest.
604                  * We have to do this, even if the host has handled the
605                  * machine check, because machine checks use SRR0/1 and
606                  * the interrupt might have trashed guest state in them.
607                  */
608                 kvmppc_book3s_queue_irqprio(vcpu,
609                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
610                 r = RESUME_GUEST;
611                 break;
612         case BOOK3S_INTERRUPT_PROGRAM:
613         {
614                 ulong flags;
615                 /*
616                  * Normally program interrupts are delivered directly
617                  * to the guest by the hardware, but we can get here
618                  * as a result of a hypervisor emulation interrupt
619                  * (e40) getting turned into a 700 by BML RTAS.
620                  */
621                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622                 kvmppc_core_queue_program(vcpu, flags);
623                 r = RESUME_GUEST;
624                 break;
625         }
626         case BOOK3S_INTERRUPT_SYSCALL:
627         {
628                 /* hcall - punt to userspace */
629                 int i;
630
631                 if (vcpu->arch.shregs.msr & MSR_PR) {
632                         /* sc 1 from userspace - reflect to guest syscall */
633                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634                         r = RESUME_GUEST;
635                         break;
636                 }
637                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638                 for (i = 0; i < 9; ++i)
639                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
641                 vcpu->arch.hcall_needed = 1;
642                 r = RESUME_HOST;
643                 break;
644         }
645         /*
646          * We get these next two if the guest accesses a page which it thinks
647          * it has mapped but which is not actually present, either because
648          * it is for an emulated I/O device or because the corresonding
649          * host page has been paged out.  Any other HDSI/HISI interrupts
650          * have been handled already.
651          */
652         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653                 r = RESUME_PAGE_FAULT;
654                 break;
655         case BOOK3S_INTERRUPT_H_INST_STORAGE:
656                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657                 vcpu->arch.fault_dsisr = 0;
658                 r = RESUME_PAGE_FAULT;
659                 break;
660         /*
661          * This occurs if the guest executes an illegal instruction.
662          * We just generate a program interrupt to the guest, since
663          * we don't emulate any guest instructions at this stage.
664          */
665         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666                 kvmppc_core_queue_program(vcpu, 0x80000);
667                 r = RESUME_GUEST;
668                 break;
669         default:
670                 kvmppc_dump_regs(vcpu);
671                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
673                         vcpu->arch.shregs.msr);
674                 r = RESUME_HOST;
675                 BUG();
676                 break;
677         }
678
679         return r;
680 }
681
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683                                   struct kvm_sregs *sregs)
684 {
685         int i;
686
687         memset(sregs, 0, sizeof(struct kvm_sregs));
688         sregs->pvr = vcpu->arch.pvr;
689         for (i = 0; i < vcpu->arch.slb_max; i++) {
690                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
691                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
692         }
693
694         return 0;
695 }
696
697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
698                                   struct kvm_sregs *sregs)
699 {
700         int i, j;
701
702         kvmppc_set_pvr(vcpu, sregs->pvr);
703
704         j = 0;
705         for (i = 0; i < vcpu->arch.slb_nr; i++) {
706                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
707                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
708                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
709                         ++j;
710                 }
711         }
712         vcpu->arch.slb_max = j;
713
714         return 0;
715 }
716
717 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
718 {
719         int r = 0;
720         long int i;
721
722         switch (id) {
723         case KVM_REG_PPC_HIOR:
724                 *val = get_reg_val(id, 0);
725                 break;
726         case KVM_REG_PPC_DABR:
727                 *val = get_reg_val(id, vcpu->arch.dabr);
728                 break;
729         case KVM_REG_PPC_DSCR:
730                 *val = get_reg_val(id, vcpu->arch.dscr);
731                 break;
732         case KVM_REG_PPC_PURR:
733                 *val = get_reg_val(id, vcpu->arch.purr);
734                 break;
735         case KVM_REG_PPC_SPURR:
736                 *val = get_reg_val(id, vcpu->arch.spurr);
737                 break;
738         case KVM_REG_PPC_AMR:
739                 *val = get_reg_val(id, vcpu->arch.amr);
740                 break;
741         case KVM_REG_PPC_UAMOR:
742                 *val = get_reg_val(id, vcpu->arch.uamor);
743                 break;
744         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
745                 i = id - KVM_REG_PPC_MMCR0;
746                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
747                 break;
748         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
749                 i = id - KVM_REG_PPC_PMC1;
750                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
751                 break;
752 #ifdef CONFIG_VSX
753         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
754                 if (cpu_has_feature(CPU_FTR_VSX)) {
755                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
756                         long int i = id - KVM_REG_PPC_FPR0;
757                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
758                 } else {
759                         /* let generic code handle it */
760                         r = -EINVAL;
761                 }
762                 break;
763         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
764                 if (cpu_has_feature(CPU_FTR_VSX)) {
765                         long int i = id - KVM_REG_PPC_VSR0;
766                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
767                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
768                 } else {
769                         r = -ENXIO;
770                 }
771                 break;
772 #endif /* CONFIG_VSX */
773         case KVM_REG_PPC_VPA_ADDR:
774                 spin_lock(&vcpu->arch.vpa_update_lock);
775                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
776                 spin_unlock(&vcpu->arch.vpa_update_lock);
777                 break;
778         case KVM_REG_PPC_VPA_SLB:
779                 spin_lock(&vcpu->arch.vpa_update_lock);
780                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
781                 val->vpaval.length = vcpu->arch.slb_shadow.len;
782                 spin_unlock(&vcpu->arch.vpa_update_lock);
783                 break;
784         case KVM_REG_PPC_VPA_DTL:
785                 spin_lock(&vcpu->arch.vpa_update_lock);
786                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
787                 val->vpaval.length = vcpu->arch.dtl.len;
788                 spin_unlock(&vcpu->arch.vpa_update_lock);
789                 break;
790         default:
791                 r = -EINVAL;
792                 break;
793         }
794
795         return r;
796 }
797
798 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
799 {
800         int r = 0;
801         long int i;
802         unsigned long addr, len;
803
804         switch (id) {
805         case KVM_REG_PPC_HIOR:
806                 /* Only allow this to be set to zero */
807                 if (set_reg_val(id, *val))
808                         r = -EINVAL;
809                 break;
810         case KVM_REG_PPC_DABR:
811                 vcpu->arch.dabr = set_reg_val(id, *val);
812                 break;
813         case KVM_REG_PPC_DSCR:
814                 vcpu->arch.dscr = set_reg_val(id, *val);
815                 break;
816         case KVM_REG_PPC_PURR:
817                 vcpu->arch.purr = set_reg_val(id, *val);
818                 break;
819         case KVM_REG_PPC_SPURR:
820                 vcpu->arch.spurr = set_reg_val(id, *val);
821                 break;
822         case KVM_REG_PPC_AMR:
823                 vcpu->arch.amr = set_reg_val(id, *val);
824                 break;
825         case KVM_REG_PPC_UAMOR:
826                 vcpu->arch.uamor = set_reg_val(id, *val);
827                 break;
828         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
829                 i = id - KVM_REG_PPC_MMCR0;
830                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
831                 break;
832         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
833                 i = id - KVM_REG_PPC_PMC1;
834                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
835                 break;
836 #ifdef CONFIG_VSX
837         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
838                 if (cpu_has_feature(CPU_FTR_VSX)) {
839                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
840                         long int i = id - KVM_REG_PPC_FPR0;
841                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
842                 } else {
843                         /* let generic code handle it */
844                         r = -EINVAL;
845                 }
846                 break;
847         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
848                 if (cpu_has_feature(CPU_FTR_VSX)) {
849                         long int i = id - KVM_REG_PPC_VSR0;
850                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
851                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
852                 } else {
853                         r = -ENXIO;
854                 }
855                 break;
856 #endif /* CONFIG_VSX */
857         case KVM_REG_PPC_VPA_ADDR:
858                 addr = set_reg_val(id, *val);
859                 r = -EINVAL;
860                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
861                               vcpu->arch.dtl.next_gpa))
862                         break;
863                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
864                 break;
865         case KVM_REG_PPC_VPA_SLB:
866                 addr = val->vpaval.addr;
867                 len = val->vpaval.length;
868                 r = -EINVAL;
869                 if (addr && !vcpu->arch.vpa.next_gpa)
870                         break;
871                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
872                 break;
873         case KVM_REG_PPC_VPA_DTL:
874                 addr = val->vpaval.addr;
875                 len = val->vpaval.length;
876                 r = -EINVAL;
877                 if (addr && (len < sizeof(struct dtl_entry) ||
878                              !vcpu->arch.vpa.next_gpa))
879                         break;
880                 len -= len % sizeof(struct dtl_entry);
881                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
882                 break;
883         default:
884                 r = -EINVAL;
885                 break;
886         }
887
888         return r;
889 }
890
891 int kvmppc_core_check_processor_compat(void)
892 {
893         if (cpu_has_feature(CPU_FTR_HVMODE))
894                 return 0;
895         return -EIO;
896 }
897
898 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
899 {
900         struct kvm_vcpu *vcpu;
901         int err = -EINVAL;
902         int core;
903         struct kvmppc_vcore *vcore;
904
905         core = id / threads_per_core;
906         if (core >= KVM_MAX_VCORES)
907                 goto out;
908
909         err = -ENOMEM;
910         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
911         if (!vcpu)
912                 goto out;
913
914         err = kvm_vcpu_init(vcpu, kvm, id);
915         if (err)
916                 goto free_vcpu;
917
918         vcpu->arch.shared = &vcpu->arch.shregs;
919         vcpu->arch.mmcr[0] = MMCR0_FC;
920         vcpu->arch.ctrl = CTRL_RUNLATCH;
921         /* default to host PVR, since we can't spoof it */
922         vcpu->arch.pvr = mfspr(SPRN_PVR);
923         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
924         spin_lock_init(&vcpu->arch.vpa_update_lock);
925         spin_lock_init(&vcpu->arch.tbacct_lock);
926         vcpu->arch.busy_preempt = TB_NIL;
927
928         kvmppc_mmu_book3s_hv_init(vcpu);
929
930         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
931
932         init_waitqueue_head(&vcpu->arch.cpu_run);
933
934         mutex_lock(&kvm->lock);
935         vcore = kvm->arch.vcores[core];
936         if (!vcore) {
937                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
938                 if (vcore) {
939                         INIT_LIST_HEAD(&vcore->runnable_threads);
940                         spin_lock_init(&vcore->lock);
941                         init_waitqueue_head(&vcore->wq);
942                         vcore->preempt_tb = TB_NIL;
943                 }
944                 kvm->arch.vcores[core] = vcore;
945                 kvm->arch.online_vcores++;
946         }
947         mutex_unlock(&kvm->lock);
948
949         if (!vcore)
950                 goto free_vcpu;
951
952         spin_lock(&vcore->lock);
953         ++vcore->num_threads;
954         spin_unlock(&vcore->lock);
955         vcpu->arch.vcore = vcore;
956
957         vcpu->arch.cpu_type = KVM_CPU_3S_64;
958         kvmppc_sanity_check(vcpu);
959
960         return vcpu;
961
962 free_vcpu:
963         kmem_cache_free(kvm_vcpu_cache, vcpu);
964 out:
965         return ERR_PTR(err);
966 }
967
968 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
969 {
970         if (vpa->pinned_addr)
971                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
972                                         vpa->dirty);
973 }
974
975 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
976 {
977         spin_lock(&vcpu->arch.vpa_update_lock);
978         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
979         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
980         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
981         spin_unlock(&vcpu->arch.vpa_update_lock);
982         kvm_vcpu_uninit(vcpu);
983         kmem_cache_free(kvm_vcpu_cache, vcpu);
984 }
985
986 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
987 {
988         unsigned long dec_nsec, now;
989
990         now = get_tb();
991         if (now > vcpu->arch.dec_expires) {
992                 /* decrementer has already gone negative */
993                 kvmppc_core_queue_dec(vcpu);
994                 kvmppc_core_prepare_to_enter(vcpu);
995                 return;
996         }
997         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
998                    / tb_ticks_per_sec;
999         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1000                       HRTIMER_MODE_REL);
1001         vcpu->arch.timer_running = 1;
1002 }
1003
1004 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1005 {
1006         vcpu->arch.ceded = 0;
1007         if (vcpu->arch.timer_running) {
1008                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1009                 vcpu->arch.timer_running = 0;
1010         }
1011 }
1012
1013 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1014
1015 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1016                                    struct kvm_vcpu *vcpu)
1017 {
1018         u64 now;
1019
1020         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1021                 return;
1022         spin_lock(&vcpu->arch.tbacct_lock);
1023         now = mftb();
1024         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1025                 vcpu->arch.stolen_logged;
1026         vcpu->arch.busy_preempt = now;
1027         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1028         spin_unlock(&vcpu->arch.tbacct_lock);
1029         --vc->n_runnable;
1030         list_del(&vcpu->arch.run_list);
1031 }
1032
1033 static int kvmppc_grab_hwthread(int cpu)
1034 {
1035         struct paca_struct *tpaca;
1036         long timeout = 1000;
1037
1038         tpaca = &paca[cpu];
1039
1040         /* Ensure the thread won't go into the kernel if it wakes */
1041         tpaca->kvm_hstate.hwthread_req = 1;
1042         tpaca->kvm_hstate.kvm_vcpu = NULL;
1043
1044         /*
1045          * If the thread is already executing in the kernel (e.g. handling
1046          * a stray interrupt), wait for it to get back to nap mode.
1047          * The smp_mb() is to ensure that our setting of hwthread_req
1048          * is visible before we look at hwthread_state, so if this
1049          * races with the code at system_reset_pSeries and the thread
1050          * misses our setting of hwthread_req, we are sure to see its
1051          * setting of hwthread_state, and vice versa.
1052          */
1053         smp_mb();
1054         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1055                 if (--timeout <= 0) {
1056                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1057                         return -EBUSY;
1058                 }
1059                 udelay(1);
1060         }
1061         return 0;
1062 }
1063
1064 static void kvmppc_release_hwthread(int cpu)
1065 {
1066         struct paca_struct *tpaca;
1067
1068         tpaca = &paca[cpu];
1069         tpaca->kvm_hstate.hwthread_req = 0;
1070         tpaca->kvm_hstate.kvm_vcpu = NULL;
1071 }
1072
1073 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1074 {
1075         int cpu;
1076         struct paca_struct *tpaca;
1077         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1078
1079         if (vcpu->arch.timer_running) {
1080                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1081                 vcpu->arch.timer_running = 0;
1082         }
1083         cpu = vc->pcpu + vcpu->arch.ptid;
1084         tpaca = &paca[cpu];
1085         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1086         tpaca->kvm_hstate.kvm_vcore = vc;
1087         tpaca->kvm_hstate.napping = 0;
1088         vcpu->cpu = vc->pcpu;
1089         smp_wmb();
1090 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1091         if (vcpu->arch.ptid) {
1092                 xics_wake_cpu(cpu);
1093                 ++vc->n_woken;
1094         }
1095 #endif
1096 }
1097
1098 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1099 {
1100         int i;
1101
1102         HMT_low();
1103         i = 0;
1104         while (vc->nap_count < vc->n_woken) {
1105                 if (++i >= 1000000) {
1106                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1107                                vc->nap_count, vc->n_woken);
1108                         break;
1109                 }
1110                 cpu_relax();
1111         }
1112         HMT_medium();
1113 }
1114
1115 /*
1116  * Check that we are on thread 0 and that any other threads in
1117  * this core are off-line.  Then grab the threads so they can't
1118  * enter the kernel.
1119  */
1120 static int on_primary_thread(void)
1121 {
1122         int cpu = smp_processor_id();
1123         int thr = cpu_thread_in_core(cpu);
1124
1125         if (thr)
1126                 return 0;
1127         while (++thr < threads_per_core)
1128                 if (cpu_online(cpu + thr))
1129                         return 0;
1130
1131         /* Grab all hw threads so they can't go into the kernel */
1132         for (thr = 1; thr < threads_per_core; ++thr) {
1133                 if (kvmppc_grab_hwthread(cpu + thr)) {
1134                         /* Couldn't grab one; let the others go */
1135                         do {
1136                                 kvmppc_release_hwthread(cpu + thr);
1137                         } while (--thr > 0);
1138                         return 0;
1139                 }
1140         }
1141         return 1;
1142 }
1143
1144 /*
1145  * Run a set of guest threads on a physical core.
1146  * Called with vc->lock held.
1147  */
1148 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1149 {
1150         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1151         long ret;
1152         u64 now;
1153         int ptid, i, need_vpa_update;
1154         int srcu_idx;
1155         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1156
1157         /* don't start if any threads have a signal pending */
1158         need_vpa_update = 0;
1159         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1160                 if (signal_pending(vcpu->arch.run_task))
1161                         return;
1162                 if (vcpu->arch.vpa.update_pending ||
1163                     vcpu->arch.slb_shadow.update_pending ||
1164                     vcpu->arch.dtl.update_pending)
1165                         vcpus_to_update[need_vpa_update++] = vcpu;
1166         }
1167
1168         /*
1169          * Initialize *vc, in particular vc->vcore_state, so we can
1170          * drop the vcore lock if necessary.
1171          */
1172         vc->n_woken = 0;
1173         vc->nap_count = 0;
1174         vc->entry_exit_count = 0;
1175         vc->vcore_state = VCORE_STARTING;
1176         vc->in_guest = 0;
1177         vc->napping_threads = 0;
1178
1179         /*
1180          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1181          * which can't be called with any spinlocks held.
1182          */
1183         if (need_vpa_update) {
1184                 spin_unlock(&vc->lock);
1185                 for (i = 0; i < need_vpa_update; ++i)
1186                         kvmppc_update_vpas(vcpus_to_update[i]);
1187                 spin_lock(&vc->lock);
1188         }
1189
1190         /*
1191          * Assign physical thread IDs, first to non-ceded vcpus
1192          * and then to ceded ones.
1193          */
1194         ptid = 0;
1195         vcpu0 = NULL;
1196         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1197                 if (!vcpu->arch.ceded) {
1198                         if (!ptid)
1199                                 vcpu0 = vcpu;
1200                         vcpu->arch.ptid = ptid++;
1201                 }
1202         }
1203         if (!vcpu0)
1204                 goto out;       /* nothing to run; should never happen */
1205         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1206                 if (vcpu->arch.ceded)
1207                         vcpu->arch.ptid = ptid++;
1208
1209         /*
1210          * Make sure we are running on thread 0, and that
1211          * secondary threads are offline.
1212          */
1213         if (threads_per_core > 1 && !on_primary_thread()) {
1214                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1215                         vcpu->arch.ret = -EBUSY;
1216                 goto out;
1217         }
1218
1219         vc->pcpu = smp_processor_id();
1220         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1221                 kvmppc_start_thread(vcpu);
1222                 kvmppc_create_dtl_entry(vcpu, vc);
1223         }
1224
1225         vc->vcore_state = VCORE_RUNNING;
1226         preempt_disable();
1227         spin_unlock(&vc->lock);
1228
1229         kvm_guest_enter();
1230
1231         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1232
1233         __kvmppc_vcore_entry(NULL, vcpu0);
1234
1235         spin_lock(&vc->lock);
1236         /* disable sending of IPIs on virtual external irqs */
1237         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1238                 vcpu->cpu = -1;
1239         /* wait for secondary threads to finish writing their state to memory */
1240         if (vc->nap_count < vc->n_woken)
1241                 kvmppc_wait_for_nap(vc);
1242         for (i = 0; i < threads_per_core; ++i)
1243                 kvmppc_release_hwthread(vc->pcpu + i);
1244         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1245         vc->vcore_state = VCORE_EXITING;
1246         spin_unlock(&vc->lock);
1247
1248         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1249
1250         /* make sure updates to secondary vcpu structs are visible now */
1251         smp_mb();
1252         kvm_guest_exit();
1253
1254         preempt_enable();
1255         kvm_resched(vcpu);
1256
1257         spin_lock(&vc->lock);
1258         now = get_tb();
1259         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1260                 /* cancel pending dec exception if dec is positive */
1261                 if (now < vcpu->arch.dec_expires &&
1262                     kvmppc_core_pending_dec(vcpu))
1263                         kvmppc_core_dequeue_dec(vcpu);
1264
1265                 ret = RESUME_GUEST;
1266                 if (vcpu->arch.trap)
1267                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1268                                                  vcpu->arch.run_task);
1269
1270                 vcpu->arch.ret = ret;
1271                 vcpu->arch.trap = 0;
1272
1273                 if (vcpu->arch.ceded) {
1274                         if (ret != RESUME_GUEST)
1275                                 kvmppc_end_cede(vcpu);
1276                         else
1277                                 kvmppc_set_timer(vcpu);
1278                 }
1279         }
1280
1281  out:
1282         vc->vcore_state = VCORE_INACTIVE;
1283         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1284                                  arch.run_list) {
1285                 if (vcpu->arch.ret != RESUME_GUEST) {
1286                         kvmppc_remove_runnable(vc, vcpu);
1287                         wake_up(&vcpu->arch.cpu_run);
1288                 }
1289         }
1290 }
1291
1292 /*
1293  * Wait for some other vcpu thread to execute us, and
1294  * wake us up when we need to handle something in the host.
1295  */
1296 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1297 {
1298         DEFINE_WAIT(wait);
1299
1300         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1301         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1302                 schedule();
1303         finish_wait(&vcpu->arch.cpu_run, &wait);
1304 }
1305
1306 /*
1307  * All the vcpus in this vcore are idle, so wait for a decrementer
1308  * or external interrupt to one of the vcpus.  vc->lock is held.
1309  */
1310 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1311 {
1312         DEFINE_WAIT(wait);
1313
1314         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1315         vc->vcore_state = VCORE_SLEEPING;
1316         spin_unlock(&vc->lock);
1317         schedule();
1318         finish_wait(&vc->wq, &wait);
1319         spin_lock(&vc->lock);
1320         vc->vcore_state = VCORE_INACTIVE;
1321 }
1322
1323 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1324 {
1325         int n_ceded;
1326         struct kvmppc_vcore *vc;
1327         struct kvm_vcpu *v, *vn;
1328
1329         kvm_run->exit_reason = 0;
1330         vcpu->arch.ret = RESUME_GUEST;
1331         vcpu->arch.trap = 0;
1332         kvmppc_update_vpas(vcpu);
1333
1334         /*
1335          * Synchronize with other threads in this virtual core
1336          */
1337         vc = vcpu->arch.vcore;
1338         spin_lock(&vc->lock);
1339         vcpu->arch.ceded = 0;
1340         vcpu->arch.run_task = current;
1341         vcpu->arch.kvm_run = kvm_run;
1342         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1343         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1344         vcpu->arch.busy_preempt = TB_NIL;
1345         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1346         ++vc->n_runnable;
1347
1348         /*
1349          * This happens the first time this is called for a vcpu.
1350          * If the vcore is already running, we may be able to start
1351          * this thread straight away and have it join in.
1352          */
1353         if (!signal_pending(current)) {
1354                 if (vc->vcore_state == VCORE_RUNNING &&
1355                     VCORE_EXIT_COUNT(vc) == 0) {
1356                         vcpu->arch.ptid = vc->n_runnable - 1;
1357                         kvmppc_create_dtl_entry(vcpu, vc);
1358                         kvmppc_start_thread(vcpu);
1359                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1360                         wake_up(&vc->wq);
1361                 }
1362
1363         }
1364
1365         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1366                !signal_pending(current)) {
1367                 if (vc->vcore_state != VCORE_INACTIVE) {
1368                         spin_unlock(&vc->lock);
1369                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1370                         spin_lock(&vc->lock);
1371                         continue;
1372                 }
1373                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1374                                          arch.run_list) {
1375                         kvmppc_core_prepare_to_enter(v);
1376                         if (signal_pending(v->arch.run_task)) {
1377                                 kvmppc_remove_runnable(vc, v);
1378                                 v->stat.signal_exits++;
1379                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1380                                 v->arch.ret = -EINTR;
1381                                 wake_up(&v->arch.cpu_run);
1382                         }
1383                 }
1384                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1385                         break;
1386                 vc->runner = vcpu;
1387                 n_ceded = 0;
1388                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1389                         if (!v->arch.pending_exceptions)
1390                                 n_ceded += v->arch.ceded;
1391                         else
1392                                 v->arch.ceded = 0;
1393                 }
1394                 if (n_ceded == vc->n_runnable)
1395                         kvmppc_vcore_blocked(vc);
1396                 else
1397                         kvmppc_run_core(vc);
1398                 vc->runner = NULL;
1399         }
1400
1401         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1402                (vc->vcore_state == VCORE_RUNNING ||
1403                 vc->vcore_state == VCORE_EXITING)) {
1404                 spin_unlock(&vc->lock);
1405                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1406                 spin_lock(&vc->lock);
1407         }
1408
1409         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1410                 kvmppc_remove_runnable(vc, vcpu);
1411                 vcpu->stat.signal_exits++;
1412                 kvm_run->exit_reason = KVM_EXIT_INTR;
1413                 vcpu->arch.ret = -EINTR;
1414         }
1415
1416         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1417                 /* Wake up some vcpu to run the core */
1418                 v = list_first_entry(&vc->runnable_threads,
1419                                      struct kvm_vcpu, arch.run_list);
1420                 wake_up(&v->arch.cpu_run);
1421         }
1422
1423         spin_unlock(&vc->lock);
1424         return vcpu->arch.ret;
1425 }
1426
1427 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1428 {
1429         int r;
1430         int srcu_idx;
1431
1432         if (!vcpu->arch.sane) {
1433                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1434                 return -EINVAL;
1435         }
1436
1437         kvmppc_core_prepare_to_enter(vcpu);
1438
1439         /* No need to go into the guest when all we'll do is come back out */
1440         if (signal_pending(current)) {
1441                 run->exit_reason = KVM_EXIT_INTR;
1442                 return -EINTR;
1443         }
1444
1445         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1446         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1447         smp_mb();
1448
1449         /* On the first time here, set up HTAB and VRMA or RMA */
1450         if (!vcpu->kvm->arch.rma_setup_done) {
1451                 r = kvmppc_hv_setup_htab_rma(vcpu);
1452                 if (r)
1453                         goto out;
1454         }
1455
1456         flush_fp_to_thread(current);
1457         flush_altivec_to_thread(current);
1458         flush_vsx_to_thread(current);
1459         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1460         vcpu->arch.pgdir = current->mm->pgd;
1461         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1462
1463         do {
1464                 r = kvmppc_run_vcpu(run, vcpu);
1465
1466                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1467                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1468                         r = kvmppc_pseries_do_hcall(vcpu);
1469                         kvmppc_core_prepare_to_enter(vcpu);
1470                 } else if (r == RESUME_PAGE_FAULT) {
1471                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1472                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1473                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1474                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1475                 }
1476         } while (r == RESUME_GUEST);
1477
1478  out:
1479         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1480         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1481         return r;
1482 }
1483
1484
1485 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1486    Assumes POWER7 or PPC970. */
1487 static inline int lpcr_rmls(unsigned long rma_size)
1488 {
1489         switch (rma_size) {
1490         case 32ul << 20:        /* 32 MB */
1491                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1492                         return 8;       /* only supported on POWER7 */
1493                 return -1;
1494         case 64ul << 20:        /* 64 MB */
1495                 return 3;
1496         case 128ul << 20:       /* 128 MB */
1497                 return 7;
1498         case 256ul << 20:       /* 256 MB */
1499                 return 4;
1500         case 1ul << 30:         /* 1 GB */
1501                 return 2;
1502         case 16ul << 30:        /* 16 GB */
1503                 return 1;
1504         case 256ul << 30:       /* 256 GB */
1505                 return 0;
1506         default:
1507                 return -1;
1508         }
1509 }
1510
1511 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1512 {
1513         struct page *page;
1514         struct kvm_rma_info *ri = vma->vm_file->private_data;
1515
1516         if (vmf->pgoff >= kvm_rma_pages)
1517                 return VM_FAULT_SIGBUS;
1518
1519         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1520         get_page(page);
1521         vmf->page = page;
1522         return 0;
1523 }
1524
1525 static const struct vm_operations_struct kvm_rma_vm_ops = {
1526         .fault = kvm_rma_fault,
1527 };
1528
1529 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1530 {
1531         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1532         vma->vm_ops = &kvm_rma_vm_ops;
1533         return 0;
1534 }
1535
1536 static int kvm_rma_release(struct inode *inode, struct file *filp)
1537 {
1538         struct kvm_rma_info *ri = filp->private_data;
1539
1540         kvm_release_rma(ri);
1541         return 0;
1542 }
1543
1544 static const struct file_operations kvm_rma_fops = {
1545         .mmap           = kvm_rma_mmap,
1546         .release        = kvm_rma_release,
1547 };
1548
1549 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1550 {
1551         long fd;
1552         struct kvm_rma_info *ri;
1553         /*
1554          * Only do this on PPC970 in HV mode
1555          */
1556         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1557             !cpu_has_feature(CPU_FTR_ARCH_201))
1558                 return -EINVAL;
1559
1560         if (!kvm_rma_pages)
1561                 return -EINVAL;
1562
1563         ri = kvm_alloc_rma();
1564         if (!ri)
1565                 return -ENOMEM;
1566
1567         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1568         if (fd < 0)
1569                 kvm_release_rma(ri);
1570
1571         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1572         return fd;
1573 }
1574
1575 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1576                                      int linux_psize)
1577 {
1578         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1579
1580         if (!def->shift)
1581                 return;
1582         (*sps)->page_shift = def->shift;
1583         (*sps)->slb_enc = def->sllp;
1584         (*sps)->enc[0].page_shift = def->shift;
1585         /*
1586          * Only return base page encoding. We don't want to return
1587          * all the supporting pte_enc, because our H_ENTER doesn't
1588          * support MPSS yet. Once they do, we can start passing all
1589          * support pte_enc here
1590          */
1591         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1592         (*sps)++;
1593 }
1594
1595 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1596 {
1597         struct kvm_ppc_one_seg_page_size *sps;
1598
1599         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1600         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1601                 info->flags |= KVM_PPC_1T_SEGMENTS;
1602         info->slb_size = mmu_slb_size;
1603
1604         /* We only support these sizes for now, and no muti-size segments */
1605         sps = &info->sps[0];
1606         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1607         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1608         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1609
1610         return 0;
1611 }
1612
1613 /*
1614  * Get (and clear) the dirty memory log for a memory slot.
1615  */
1616 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1617 {
1618         struct kvm_memory_slot *memslot;
1619         int r;
1620         unsigned long n;
1621
1622         mutex_lock(&kvm->slots_lock);
1623
1624         r = -EINVAL;
1625         if (log->slot >= KVM_USER_MEM_SLOTS)
1626                 goto out;
1627
1628         memslot = id_to_memslot(kvm->memslots, log->slot);
1629         r = -ENOENT;
1630         if (!memslot->dirty_bitmap)
1631                 goto out;
1632
1633         n = kvm_dirty_bitmap_bytes(memslot);
1634         memset(memslot->dirty_bitmap, 0, n);
1635
1636         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1637         if (r)
1638                 goto out;
1639
1640         r = -EFAULT;
1641         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1642                 goto out;
1643
1644         r = 0;
1645 out:
1646         mutex_unlock(&kvm->slots_lock);
1647         return r;
1648 }
1649
1650 static void unpin_slot(struct kvm_memory_slot *memslot)
1651 {
1652         unsigned long *physp;
1653         unsigned long j, npages, pfn;
1654         struct page *page;
1655
1656         physp = memslot->arch.slot_phys;
1657         npages = memslot->npages;
1658         if (!physp)
1659                 return;
1660         for (j = 0; j < npages; j++) {
1661                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1662                         continue;
1663                 pfn = physp[j] >> PAGE_SHIFT;
1664                 page = pfn_to_page(pfn);
1665                 SetPageDirty(page);
1666                 put_page(page);
1667         }
1668 }
1669
1670 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1671                               struct kvm_memory_slot *dont)
1672 {
1673         if (!dont || free->arch.rmap != dont->arch.rmap) {
1674                 vfree(free->arch.rmap);
1675                 free->arch.rmap = NULL;
1676         }
1677         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1678                 unpin_slot(free);
1679                 vfree(free->arch.slot_phys);
1680                 free->arch.slot_phys = NULL;
1681         }
1682 }
1683
1684 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1685                                unsigned long npages)
1686 {
1687         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1688         if (!slot->arch.rmap)
1689                 return -ENOMEM;
1690         slot->arch.slot_phys = NULL;
1691
1692         return 0;
1693 }
1694
1695 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1696                                       struct kvm_memory_slot *memslot,
1697                                       struct kvm_userspace_memory_region *mem)
1698 {
1699         unsigned long *phys;
1700
1701         /* Allocate a slot_phys array if needed */
1702         phys = memslot->arch.slot_phys;
1703         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1704                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1705                 if (!phys)
1706                         return -ENOMEM;
1707                 memslot->arch.slot_phys = phys;
1708         }
1709
1710         return 0;
1711 }
1712
1713 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1714                                       struct kvm_userspace_memory_region *mem,
1715                                       const struct kvm_memory_slot *old)
1716 {
1717         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1718         struct kvm_memory_slot *memslot;
1719
1720         if (npages && old->npages) {
1721                 /*
1722                  * If modifying a memslot, reset all the rmap dirty bits.
1723                  * If this is a new memslot, we don't need to do anything
1724                  * since the rmap array starts out as all zeroes,
1725                  * i.e. no pages are dirty.
1726                  */
1727                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1728                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1729         }
1730 }
1731
1732 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1733 {
1734         int err = 0;
1735         struct kvm *kvm = vcpu->kvm;
1736         struct kvm_rma_info *ri = NULL;
1737         unsigned long hva;
1738         struct kvm_memory_slot *memslot;
1739         struct vm_area_struct *vma;
1740         unsigned long lpcr, senc;
1741         unsigned long psize, porder;
1742         unsigned long rma_size;
1743         unsigned long rmls;
1744         unsigned long *physp;
1745         unsigned long i, npages;
1746         int srcu_idx;
1747
1748         mutex_lock(&kvm->lock);
1749         if (kvm->arch.rma_setup_done)
1750                 goto out;       /* another vcpu beat us to it */
1751
1752         /* Allocate hashed page table (if not done already) and reset it */
1753         if (!kvm->arch.hpt_virt) {
1754                 err = kvmppc_alloc_hpt(kvm, NULL);
1755                 if (err) {
1756                         pr_err("KVM: Couldn't alloc HPT\n");
1757                         goto out;
1758                 }
1759         }
1760
1761         /* Look up the memslot for guest physical address 0 */
1762         srcu_idx = srcu_read_lock(&kvm->srcu);
1763         memslot = gfn_to_memslot(kvm, 0);
1764
1765         /* We must have some memory at 0 by now */
1766         err = -EINVAL;
1767         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1768                 goto out_srcu;
1769
1770         /* Look up the VMA for the start of this memory slot */
1771         hva = memslot->userspace_addr;
1772         down_read(&current->mm->mmap_sem);
1773         vma = find_vma(current->mm, hva);
1774         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1775                 goto up_out;
1776
1777         psize = vma_kernel_pagesize(vma);
1778         porder = __ilog2(psize);
1779
1780         /* Is this one of our preallocated RMAs? */
1781         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1782             hva == vma->vm_start)
1783                 ri = vma->vm_file->private_data;
1784
1785         up_read(&current->mm->mmap_sem);
1786
1787         if (!ri) {
1788                 /* On POWER7, use VRMA; on PPC970, give up */
1789                 err = -EPERM;
1790                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1791                         pr_err("KVM: CPU requires an RMO\n");
1792                         goto out_srcu;
1793                 }
1794
1795                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1796                 err = -EINVAL;
1797                 if (!(psize == 0x1000 || psize == 0x10000 ||
1798                       psize == 0x1000000))
1799                         goto out_srcu;
1800
1801                 /* Update VRMASD field in the LPCR */
1802                 senc = slb_pgsize_encoding(psize);
1803                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1804                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1805                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1806                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1807                 kvm->arch.lpcr = lpcr;
1808
1809                 /* Create HPTEs in the hash page table for the VRMA */
1810                 kvmppc_map_vrma(vcpu, memslot, porder);
1811
1812         } else {
1813                 /* Set up to use an RMO region */
1814                 rma_size = kvm_rma_pages;
1815                 if (rma_size > memslot->npages)
1816                         rma_size = memslot->npages;
1817                 rma_size <<= PAGE_SHIFT;
1818                 rmls = lpcr_rmls(rma_size);
1819                 err = -EINVAL;
1820                 if ((long)rmls < 0) {
1821                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1822                         goto out_srcu;
1823                 }
1824                 atomic_inc(&ri->use_count);
1825                 kvm->arch.rma = ri;
1826
1827                 /* Update LPCR and RMOR */
1828                 lpcr = kvm->arch.lpcr;
1829                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1830                         /* PPC970; insert RMLS value (split field) in HID4 */
1831                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1832                                   (3ul << HID4_RMLS2_SH));
1833                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1834                                 ((rmls & 3) << HID4_RMLS2_SH);
1835                         /* RMOR is also in HID4 */
1836                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1837                                 << HID4_RMOR_SH;
1838                 } else {
1839                         /* POWER7 */
1840                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1841                         lpcr |= rmls << LPCR_RMLS_SH;
1842                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1843                 }
1844                 kvm->arch.lpcr = lpcr;
1845                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1846                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1847
1848                 /* Initialize phys addrs of pages in RMO */
1849                 npages = kvm_rma_pages;
1850                 porder = __ilog2(npages);
1851                 physp = memslot->arch.slot_phys;
1852                 if (physp) {
1853                         if (npages > memslot->npages)
1854                                 npages = memslot->npages;
1855                         spin_lock(&kvm->arch.slot_phys_lock);
1856                         for (i = 0; i < npages; ++i)
1857                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1858                                         porder;
1859                         spin_unlock(&kvm->arch.slot_phys_lock);
1860                 }
1861         }
1862
1863         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1864         smp_wmb();
1865         kvm->arch.rma_setup_done = 1;
1866         err = 0;
1867  out_srcu:
1868         srcu_read_unlock(&kvm->srcu, srcu_idx);
1869  out:
1870         mutex_unlock(&kvm->lock);
1871         return err;
1872
1873  up_out:
1874         up_read(&current->mm->mmap_sem);
1875         goto out_srcu;
1876 }
1877
1878 int kvmppc_core_init_vm(struct kvm *kvm)
1879 {
1880         unsigned long lpcr, lpid;
1881
1882         /* Allocate the guest's logical partition ID */
1883
1884         lpid = kvmppc_alloc_lpid();
1885         if ((long)lpid < 0)
1886                 return -ENOMEM;
1887         kvm->arch.lpid = lpid;
1888
1889         /*
1890          * Since we don't flush the TLB when tearing down a VM,
1891          * and this lpid might have previously been used,
1892          * make sure we flush on each core before running the new VM.
1893          */
1894         cpumask_setall(&kvm->arch.need_tlb_flush);
1895
1896         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1897         INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1898
1899         kvm->arch.rma = NULL;
1900
1901         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1902
1903         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1904                 /* PPC970; HID4 is effectively the LPCR */
1905                 kvm->arch.host_lpid = 0;
1906                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1907                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1908                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1909                         ((lpid & 0xf) << HID4_LPID5_SH);
1910         } else {
1911                 /* POWER7; init LPCR for virtual RMA mode */
1912                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1913                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1914                 lpcr &= LPCR_PECE | LPCR_LPES;
1915                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1916                         LPCR_VPM0 | LPCR_VPM1;
1917                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1918                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1919         }
1920         kvm->arch.lpcr = lpcr;
1921
1922         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1923         spin_lock_init(&kvm->arch.slot_phys_lock);
1924
1925         /*
1926          * Don't allow secondary CPU threads to come online
1927          * while any KVM VMs exist.
1928          */
1929         inhibit_secondary_onlining();
1930
1931         return 0;
1932 }
1933
1934 void kvmppc_core_destroy_vm(struct kvm *kvm)
1935 {
1936         uninhibit_secondary_onlining();
1937
1938         if (kvm->arch.rma) {
1939                 kvm_release_rma(kvm->arch.rma);
1940                 kvm->arch.rma = NULL;
1941         }
1942
1943         kvmppc_rtas_tokens_free(kvm);
1944
1945         kvmppc_free_hpt(kvm);
1946         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1947 }
1948
1949 /* These are stubs for now */
1950 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1951 {
1952 }
1953
1954 /* We don't need to emulate any privileged instructions or dcbz */
1955 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1956                            unsigned int inst, int *advance)
1957 {
1958         return EMULATE_FAIL;
1959 }
1960
1961 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1962 {
1963         return EMULATE_FAIL;
1964 }
1965
1966 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1967 {
1968         return EMULATE_FAIL;
1969 }
1970
1971 static int kvmppc_book3s_hv_init(void)
1972 {
1973         int r;
1974
1975         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1976
1977         if (r)
1978                 return r;
1979
1980         r = kvmppc_mmu_hv_init();
1981
1982         return r;
1983 }
1984
1985 static void kvmppc_book3s_hv_exit(void)
1986 {
1987         kvm_exit();
1988 }
1989
1990 module_init(kvmppc_book3s_hv_init);
1991 module_exit(kvmppc_book3s_hv_exit);