Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71         int me;
72         int cpu = vcpu->cpu;
73         wait_queue_head_t *wqp;
74
75         wqp = kvm_arch_vcpu_wq(vcpu);
76         if (waitqueue_active(wqp)) {
77                 wake_up_interruptible(wqp);
78                 ++vcpu->stat.halt_wakeup;
79         }
80
81         me = get_cpu();
82
83         /* CPU points to the first thread of the core */
84         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85                 int real_cpu = cpu + vcpu->arch.ptid;
86                 if (paca[real_cpu].kvm_hstate.xics_phys)
87                         xics_wake_cpu(real_cpu);
88                 else if (cpu_online(cpu))
89                         smp_send_reschedule(cpu);
90         }
91         put_cpu();
92 }
93
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130         struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132         spin_lock(&vcpu->arch.tbacct_lock);
133         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134             vc->preempt_tb != TB_NIL) {
135                 vc->stolen_tb += mftb() - vc->preempt_tb;
136                 vc->preempt_tb = TB_NIL;
137         }
138         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139             vcpu->arch.busy_preempt != TB_NIL) {
140                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141                 vcpu->arch.busy_preempt = TB_NIL;
142         }
143         spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150         spin_lock(&vcpu->arch.tbacct_lock);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152                 vc->preempt_tb = mftb();
153         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154                 vcpu->arch.busy_preempt = mftb();
155         spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160         vcpu->arch.shregs.msr = msr;
161         kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166         vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171         int r;
172
173         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176         for (r = 0; r < 16; ++r)
177                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178                        r, kvmppc_get_gpr(vcpu, r),
179                        r+16, kvmppc_get_gpr(vcpu, r+16));
180         pr_err("ctr = %.16lx  lr  = %.16lx\n",
181                vcpu->arch.ctr, vcpu->arch.lr);
182         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191         pr_err("fault dar = %.16lx dsisr = %.8x\n",
192                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194         for (r = 0; r < vcpu->arch.slb_max; ++r)
195                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
196                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199                vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204         int r;
205         struct kvm_vcpu *v, *ret = NULL;
206
207         mutex_lock(&kvm->lock);
208         kvm_for_each_vcpu(r, v, kvm) {
209                 if (v->vcpu_id == id) {
210                         ret = v;
211                         break;
212                 }
213         }
214         mutex_unlock(&kvm->lock);
215         return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220         vpa->shared_proc = 1;
221         vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225                    unsigned long addr, unsigned long len)
226 {
227         /* check address is cacheline aligned */
228         if (addr & (L1_CACHE_BYTES - 1))
229                 return -EINVAL;
230         spin_lock(&vcpu->arch.vpa_update_lock);
231         if (v->next_gpa != addr || v->len != len) {
232                 v->next_gpa = addr;
233                 v->len = addr ? len : 0;
234                 v->update_pending = 1;
235         }
236         spin_unlock(&vcpu->arch.vpa_update_lock);
237         return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242         u32 dummy;
243         union {
244                 u16 hword;
245                 u32 word;
246         } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251         if (vpap->update_pending)
252                 return vpap->next_gpa != 0;
253         return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257                                        unsigned long flags,
258                                        unsigned long vcpuid, unsigned long vpa)
259 {
260         struct kvm *kvm = vcpu->kvm;
261         unsigned long len, nb;
262         void *va;
263         struct kvm_vcpu *tvcpu;
264         int err;
265         int subfunc;
266         struct kvmppc_vpa *vpap;
267
268         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269         if (!tvcpu)
270                 return H_PARAMETER;
271
272         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274             subfunc == H_VPA_REG_SLB) {
275                 /* Registering new area - address must be cache-line aligned */
276                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277                         return H_PARAMETER;
278
279                 /* convert logical addr to kernel addr and read length */
280                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281                 if (va == NULL)
282                         return H_PARAMETER;
283                 if (subfunc == H_VPA_REG_VPA)
284                         len = ((struct reg_vpa *)va)->length.hword;
285                 else
286                         len = ((struct reg_vpa *)va)->length.word;
287                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289                 /* Check length */
290                 if (len > nb || len < sizeof(struct reg_vpa))
291                         return H_PARAMETER;
292         } else {
293                 vpa = 0;
294                 len = 0;
295         }
296
297         err = H_PARAMETER;
298         vpap = NULL;
299         spin_lock(&tvcpu->arch.vpa_update_lock);
300
301         switch (subfunc) {
302         case H_VPA_REG_VPA:             /* register VPA */
303                 if (len < sizeof(struct lppaca))
304                         break;
305                 vpap = &tvcpu->arch.vpa;
306                 err = 0;
307                 break;
308
309         case H_VPA_REG_DTL:             /* register DTL */
310                 if (len < sizeof(struct dtl_entry))
311                         break;
312                 len -= len % sizeof(struct dtl_entry);
313
314                 /* Check that they have previously registered a VPA */
315                 err = H_RESOURCE;
316                 if (!vpa_is_registered(&tvcpu->arch.vpa))
317                         break;
318
319                 vpap = &tvcpu->arch.dtl;
320                 err = 0;
321                 break;
322
323         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
324                 /* Check that they have previously registered a VPA */
325                 err = H_RESOURCE;
326                 if (!vpa_is_registered(&tvcpu->arch.vpa))
327                         break;
328
329                 vpap = &tvcpu->arch.slb_shadow;
330                 err = 0;
331                 break;
332
333         case H_VPA_DEREG_VPA:           /* deregister VPA */
334                 /* Check they don't still have a DTL or SLB buf registered */
335                 err = H_RESOURCE;
336                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337                     vpa_is_registered(&tvcpu->arch.slb_shadow))
338                         break;
339
340                 vpap = &tvcpu->arch.vpa;
341                 err = 0;
342                 break;
343
344         case H_VPA_DEREG_DTL:           /* deregister DTL */
345                 vpap = &tvcpu->arch.dtl;
346                 err = 0;
347                 break;
348
349         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
350                 vpap = &tvcpu->arch.slb_shadow;
351                 err = 0;
352                 break;
353         }
354
355         if (vpap) {
356                 vpap->next_gpa = vpa;
357                 vpap->len = len;
358                 vpap->update_pending = 1;
359         }
360
361         spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363         return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368         struct kvm *kvm = vcpu->kvm;
369         void *va;
370         unsigned long nb;
371         unsigned long gpa;
372
373         /*
374          * We need to pin the page pointed to by vpap->next_gpa,
375          * but we can't call kvmppc_pin_guest_page under the lock
376          * as it does get_user_pages() and down_read().  So we
377          * have to drop the lock, pin the page, then get the lock
378          * again and check that a new area didn't get registered
379          * in the meantime.
380          */
381         for (;;) {
382                 gpa = vpap->next_gpa;
383                 spin_unlock(&vcpu->arch.vpa_update_lock);
384                 va = NULL;
385                 nb = 0;
386                 if (gpa)
387                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388                 spin_lock(&vcpu->arch.vpa_update_lock);
389                 if (gpa == vpap->next_gpa)
390                         break;
391                 /* sigh... unpin that one and try again */
392                 if (va)
393                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
394         }
395
396         vpap->update_pending = 0;
397         if (va && nb < vpap->len) {
398                 /*
399                  * If it's now too short, it must be that userspace
400                  * has changed the mappings underlying guest memory,
401                  * so unregister the region.
402                  */
403                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404                 va = NULL;
405         }
406         if (vpap->pinned_addr)
407                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408                                         vpap->dirty);
409         vpap->gpa = gpa;
410         vpap->pinned_addr = va;
411         vpap->dirty = false;
412         if (va)
413                 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418         if (!(vcpu->arch.vpa.update_pending ||
419               vcpu->arch.slb_shadow.update_pending ||
420               vcpu->arch.dtl.update_pending))
421                 return;
422
423         spin_lock(&vcpu->arch.vpa_update_lock);
424         if (vcpu->arch.vpa.update_pending) {
425                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426                 if (vcpu->arch.vpa.pinned_addr)
427                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428         }
429         if (vcpu->arch.dtl.update_pending) {
430                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432                 vcpu->arch.dtl_index = 0;
433         }
434         if (vcpu->arch.slb_shadow.update_pending)
435                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436         spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445         u64 p;
446
447         /*
448          * If we are the task running the vcore, then since we hold
449          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450          * can't be updated, so we don't need the tbacct_lock.
451          * If the vcore is inactive, it can't become active (since we
452          * hold the vcore lock), so the vcpu load/put functions won't
453          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454          */
455         if (vc->vcore_state != VCORE_INACTIVE &&
456             vc->runner->arch.run_task != current) {
457                 spin_lock(&vc->runner->arch.tbacct_lock);
458                 p = vc->stolen_tb;
459                 if (vc->preempt_tb != TB_NIL)
460                         p += now - vc->preempt_tb;
461                 spin_unlock(&vc->runner->arch.tbacct_lock);
462         } else {
463                 p = vc->stolen_tb;
464         }
465         return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469                                     struct kvmppc_vcore *vc)
470 {
471         struct dtl_entry *dt;
472         struct lppaca *vpa;
473         unsigned long stolen;
474         unsigned long core_stolen;
475         u64 now;
476
477         dt = vcpu->arch.dtl_ptr;
478         vpa = vcpu->arch.vpa.pinned_addr;
479         now = mftb();
480         core_stolen = vcore_stolen_time(vc, now);
481         stolen = core_stolen - vcpu->arch.stolen_logged;
482         vcpu->arch.stolen_logged = core_stolen;
483         spin_lock(&vcpu->arch.tbacct_lock);
484         stolen += vcpu->arch.busy_stolen;
485         vcpu->arch.busy_stolen = 0;
486         spin_unlock(&vcpu->arch.tbacct_lock);
487         if (!dt || !vpa)
488                 return;
489         memset(dt, 0, sizeof(struct dtl_entry));
490         dt->dispatch_reason = 7;
491         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492         dt->timebase = now;
493         dt->enqueue_to_dispatch_time = stolen;
494         dt->srr0 = kvmppc_get_pc(vcpu);
495         dt->srr1 = vcpu->arch.shregs.msr;
496         ++dt;
497         if (dt == vcpu->arch.dtl.pinned_end)
498                 dt = vcpu->arch.dtl.pinned_addr;
499         vcpu->arch.dtl_ptr = dt;
500         /* order writing *dt vs. writing vpa->dtl_idx */
501         smp_wmb();
502         vpa->dtl_idx = ++vcpu->arch.dtl_index;
503         vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508         unsigned long req = kvmppc_get_gpr(vcpu, 3);
509         unsigned long target, ret = H_SUCCESS;
510         struct kvm_vcpu *tvcpu;
511         int idx, rc;
512
513         switch (req) {
514         case H_ENTER:
515                 idx = srcu_read_lock(&vcpu->kvm->srcu);
516                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517                                               kvmppc_get_gpr(vcpu, 5),
518                                               kvmppc_get_gpr(vcpu, 6),
519                                               kvmppc_get_gpr(vcpu, 7));
520                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521                 break;
522         case H_CEDE:
523                 break;
524         case H_PROD:
525                 target = kvmppc_get_gpr(vcpu, 4);
526                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527                 if (!tvcpu) {
528                         ret = H_PARAMETER;
529                         break;
530                 }
531                 tvcpu->arch.prodded = 1;
532                 smp_mb();
533                 if (vcpu->arch.ceded) {
534                         if (waitqueue_active(&vcpu->wq)) {
535                                 wake_up_interruptible(&vcpu->wq);
536                                 vcpu->stat.halt_wakeup++;
537                         }
538                 }
539                 break;
540         case H_CONFER:
541                 break;
542         case H_REGISTER_VPA:
543                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544                                         kvmppc_get_gpr(vcpu, 5),
545                                         kvmppc_get_gpr(vcpu, 6));
546                 break;
547         case H_RTAS:
548                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549                         return RESUME_HOST;
550
551                 rc = kvmppc_rtas_hcall(vcpu);
552
553                 if (rc == -ENOENT)
554                         return RESUME_HOST;
555                 else if (rc == 0)
556                         break;
557
558                 /* Send the error out to userspace via KVM_RUN */
559                 return rc;
560
561         case H_XIRR:
562         case H_CPPR:
563         case H_EOI:
564         case H_IPI:
565         case H_IPOLL:
566         case H_XIRR_X:
567                 if (kvmppc_xics_enabled(vcpu)) {
568                         ret = kvmppc_xics_hcall(vcpu, req);
569                         break;
570                 } /* fallthrough */
571         default:
572                 return RESUME_HOST;
573         }
574         kvmppc_set_gpr(vcpu, 3, ret);
575         vcpu->arch.hcall_needed = 0;
576         return RESUME_GUEST;
577 }
578
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580                               struct task_struct *tsk)
581 {
582         int r = RESUME_HOST;
583
584         vcpu->stat.sum_exits++;
585
586         run->exit_reason = KVM_EXIT_UNKNOWN;
587         run->ready_for_interrupt_injection = 1;
588         switch (vcpu->arch.trap) {
589         /* We're good on these - the host merely wanted to get our attention */
590         case BOOK3S_INTERRUPT_HV_DECREMENTER:
591                 vcpu->stat.dec_exits++;
592                 r = RESUME_GUEST;
593                 break;
594         case BOOK3S_INTERRUPT_EXTERNAL:
595                 vcpu->stat.ext_intr_exits++;
596                 r = RESUME_GUEST;
597                 break;
598         case BOOK3S_INTERRUPT_PERFMON:
599                 r = RESUME_GUEST;
600                 break;
601         case BOOK3S_INTERRUPT_MACHINE_CHECK:
602                 /*
603                  * Deliver a machine check interrupt to the guest.
604                  * We have to do this, even if the host has handled the
605                  * machine check, because machine checks use SRR0/1 and
606                  * the interrupt might have trashed guest state in them.
607                  */
608                 kvmppc_book3s_queue_irqprio(vcpu,
609                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
610                 r = RESUME_GUEST;
611                 break;
612         case BOOK3S_INTERRUPT_PROGRAM:
613         {
614                 ulong flags;
615                 /*
616                  * Normally program interrupts are delivered directly
617                  * to the guest by the hardware, but we can get here
618                  * as a result of a hypervisor emulation interrupt
619                  * (e40) getting turned into a 700 by BML RTAS.
620                  */
621                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622                 kvmppc_core_queue_program(vcpu, flags);
623                 r = RESUME_GUEST;
624                 break;
625         }
626         case BOOK3S_INTERRUPT_SYSCALL:
627         {
628                 /* hcall - punt to userspace */
629                 int i;
630
631                 if (vcpu->arch.shregs.msr & MSR_PR) {
632                         /* sc 1 from userspace - reflect to guest syscall */
633                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634                         r = RESUME_GUEST;
635                         break;
636                 }
637                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638                 for (i = 0; i < 9; ++i)
639                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
641                 vcpu->arch.hcall_needed = 1;
642                 r = RESUME_HOST;
643                 break;
644         }
645         /*
646          * We get these next two if the guest accesses a page which it thinks
647          * it has mapped but which is not actually present, either because
648          * it is for an emulated I/O device or because the corresonding
649          * host page has been paged out.  Any other HDSI/HISI interrupts
650          * have been handled already.
651          */
652         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653                 r = RESUME_PAGE_FAULT;
654                 break;
655         case BOOK3S_INTERRUPT_H_INST_STORAGE:
656                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657                 vcpu->arch.fault_dsisr = 0;
658                 r = RESUME_PAGE_FAULT;
659                 break;
660         /*
661          * This occurs if the guest executes an illegal instruction.
662          * We just generate a program interrupt to the guest, since
663          * we don't emulate any guest instructions at this stage.
664          */
665         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666                 kvmppc_core_queue_program(vcpu, 0x80000);
667                 r = RESUME_GUEST;
668                 break;
669         default:
670                 kvmppc_dump_regs(vcpu);
671                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
673                         vcpu->arch.shregs.msr);
674                 r = RESUME_HOST;
675                 BUG();
676                 break;
677         }
678
679         return r;
680 }
681
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683                                   struct kvm_sregs *sregs)
684 {
685         int i;
686
687         sregs->pvr = vcpu->arch.pvr;
688
689         memset(sregs, 0, sizeof(struct kvm_sregs));
690         for (i = 0; i < vcpu->arch.slb_max; i++) {
691                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
692                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
693         }
694
695         return 0;
696 }
697
698 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
699                                   struct kvm_sregs *sregs)
700 {
701         int i, j;
702
703         kvmppc_set_pvr(vcpu, sregs->pvr);
704
705         j = 0;
706         for (i = 0; i < vcpu->arch.slb_nr; i++) {
707                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
708                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
709                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
710                         ++j;
711                 }
712         }
713         vcpu->arch.slb_max = j;
714
715         return 0;
716 }
717
718 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
719 {
720         int r = 0;
721         long int i;
722
723         switch (id) {
724         case KVM_REG_PPC_HIOR:
725                 *val = get_reg_val(id, 0);
726                 break;
727         case KVM_REG_PPC_DABR:
728                 *val = get_reg_val(id, vcpu->arch.dabr);
729                 break;
730         case KVM_REG_PPC_DSCR:
731                 *val = get_reg_val(id, vcpu->arch.dscr);
732                 break;
733         case KVM_REG_PPC_PURR:
734                 *val = get_reg_val(id, vcpu->arch.purr);
735                 break;
736         case KVM_REG_PPC_SPURR:
737                 *val = get_reg_val(id, vcpu->arch.spurr);
738                 break;
739         case KVM_REG_PPC_AMR:
740                 *val = get_reg_val(id, vcpu->arch.amr);
741                 break;
742         case KVM_REG_PPC_UAMOR:
743                 *val = get_reg_val(id, vcpu->arch.uamor);
744                 break;
745         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
746                 i = id - KVM_REG_PPC_MMCR0;
747                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
748                 break;
749         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
750                 i = id - KVM_REG_PPC_PMC1;
751                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
752                 break;
753 #ifdef CONFIG_VSX
754         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
755                 if (cpu_has_feature(CPU_FTR_VSX)) {
756                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
757                         long int i = id - KVM_REG_PPC_FPR0;
758                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
759                 } else {
760                         /* let generic code handle it */
761                         r = -EINVAL;
762                 }
763                 break;
764         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
765                 if (cpu_has_feature(CPU_FTR_VSX)) {
766                         long int i = id - KVM_REG_PPC_VSR0;
767                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
768                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
769                 } else {
770                         r = -ENXIO;
771                 }
772                 break;
773 #endif /* CONFIG_VSX */
774         case KVM_REG_PPC_VPA_ADDR:
775                 spin_lock(&vcpu->arch.vpa_update_lock);
776                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
777                 spin_unlock(&vcpu->arch.vpa_update_lock);
778                 break;
779         case KVM_REG_PPC_VPA_SLB:
780                 spin_lock(&vcpu->arch.vpa_update_lock);
781                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
782                 val->vpaval.length = vcpu->arch.slb_shadow.len;
783                 spin_unlock(&vcpu->arch.vpa_update_lock);
784                 break;
785         case KVM_REG_PPC_VPA_DTL:
786                 spin_lock(&vcpu->arch.vpa_update_lock);
787                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
788                 val->vpaval.length = vcpu->arch.dtl.len;
789                 spin_unlock(&vcpu->arch.vpa_update_lock);
790                 break;
791         default:
792                 r = -EINVAL;
793                 break;
794         }
795
796         return r;
797 }
798
799 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
800 {
801         int r = 0;
802         long int i;
803         unsigned long addr, len;
804
805         switch (id) {
806         case KVM_REG_PPC_HIOR:
807                 /* Only allow this to be set to zero */
808                 if (set_reg_val(id, *val))
809                         r = -EINVAL;
810                 break;
811         case KVM_REG_PPC_DABR:
812                 vcpu->arch.dabr = set_reg_val(id, *val);
813                 break;
814         case KVM_REG_PPC_DSCR:
815                 vcpu->arch.dscr = set_reg_val(id, *val);
816                 break;
817         case KVM_REG_PPC_PURR:
818                 vcpu->arch.purr = set_reg_val(id, *val);
819                 break;
820         case KVM_REG_PPC_SPURR:
821                 vcpu->arch.spurr = set_reg_val(id, *val);
822                 break;
823         case KVM_REG_PPC_AMR:
824                 vcpu->arch.amr = set_reg_val(id, *val);
825                 break;
826         case KVM_REG_PPC_UAMOR:
827                 vcpu->arch.uamor = set_reg_val(id, *val);
828                 break;
829         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
830                 i = id - KVM_REG_PPC_MMCR0;
831                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
832                 break;
833         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
834                 i = id - KVM_REG_PPC_PMC1;
835                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
836                 break;
837 #ifdef CONFIG_VSX
838         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
839                 if (cpu_has_feature(CPU_FTR_VSX)) {
840                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
841                         long int i = id - KVM_REG_PPC_FPR0;
842                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
843                 } else {
844                         /* let generic code handle it */
845                         r = -EINVAL;
846                 }
847                 break;
848         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
849                 if (cpu_has_feature(CPU_FTR_VSX)) {
850                         long int i = id - KVM_REG_PPC_VSR0;
851                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
852                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
853                 } else {
854                         r = -ENXIO;
855                 }
856                 break;
857 #endif /* CONFIG_VSX */
858         case KVM_REG_PPC_VPA_ADDR:
859                 addr = set_reg_val(id, *val);
860                 r = -EINVAL;
861                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
862                               vcpu->arch.dtl.next_gpa))
863                         break;
864                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
865                 break;
866         case KVM_REG_PPC_VPA_SLB:
867                 addr = val->vpaval.addr;
868                 len = val->vpaval.length;
869                 r = -EINVAL;
870                 if (addr && !vcpu->arch.vpa.next_gpa)
871                         break;
872                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
873                 break;
874         case KVM_REG_PPC_VPA_DTL:
875                 addr = val->vpaval.addr;
876                 len = val->vpaval.length;
877                 r = -EINVAL;
878                 if (addr && (len < sizeof(struct dtl_entry) ||
879                              !vcpu->arch.vpa.next_gpa))
880                         break;
881                 len -= len % sizeof(struct dtl_entry);
882                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
883                 break;
884         default:
885                 r = -EINVAL;
886                 break;
887         }
888
889         return r;
890 }
891
892 int kvmppc_core_check_processor_compat(void)
893 {
894         if (cpu_has_feature(CPU_FTR_HVMODE))
895                 return 0;
896         return -EIO;
897 }
898
899 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
900 {
901         struct kvm_vcpu *vcpu;
902         int err = -EINVAL;
903         int core;
904         struct kvmppc_vcore *vcore;
905
906         core = id / threads_per_core;
907         if (core >= KVM_MAX_VCORES)
908                 goto out;
909
910         err = -ENOMEM;
911         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
912         if (!vcpu)
913                 goto out;
914
915         err = kvm_vcpu_init(vcpu, kvm, id);
916         if (err)
917                 goto free_vcpu;
918
919         vcpu->arch.shared = &vcpu->arch.shregs;
920         vcpu->arch.mmcr[0] = MMCR0_FC;
921         vcpu->arch.ctrl = CTRL_RUNLATCH;
922         /* default to host PVR, since we can't spoof it */
923         vcpu->arch.pvr = mfspr(SPRN_PVR);
924         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
925         spin_lock_init(&vcpu->arch.vpa_update_lock);
926         spin_lock_init(&vcpu->arch.tbacct_lock);
927         vcpu->arch.busy_preempt = TB_NIL;
928
929         kvmppc_mmu_book3s_hv_init(vcpu);
930
931         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
932
933         init_waitqueue_head(&vcpu->arch.cpu_run);
934
935         mutex_lock(&kvm->lock);
936         vcore = kvm->arch.vcores[core];
937         if (!vcore) {
938                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
939                 if (vcore) {
940                         INIT_LIST_HEAD(&vcore->runnable_threads);
941                         spin_lock_init(&vcore->lock);
942                         init_waitqueue_head(&vcore->wq);
943                         vcore->preempt_tb = TB_NIL;
944                 }
945                 kvm->arch.vcores[core] = vcore;
946                 kvm->arch.online_vcores++;
947         }
948         mutex_unlock(&kvm->lock);
949
950         if (!vcore)
951                 goto free_vcpu;
952
953         spin_lock(&vcore->lock);
954         ++vcore->num_threads;
955         spin_unlock(&vcore->lock);
956         vcpu->arch.vcore = vcore;
957
958         vcpu->arch.cpu_type = KVM_CPU_3S_64;
959         kvmppc_sanity_check(vcpu);
960
961         return vcpu;
962
963 free_vcpu:
964         kmem_cache_free(kvm_vcpu_cache, vcpu);
965 out:
966         return ERR_PTR(err);
967 }
968
969 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
970 {
971         if (vpa->pinned_addr)
972                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
973                                         vpa->dirty);
974 }
975
976 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
977 {
978         spin_lock(&vcpu->arch.vpa_update_lock);
979         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
980         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
981         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
982         spin_unlock(&vcpu->arch.vpa_update_lock);
983         kvm_vcpu_uninit(vcpu);
984         kmem_cache_free(kvm_vcpu_cache, vcpu);
985 }
986
987 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
988 {
989         unsigned long dec_nsec, now;
990
991         now = get_tb();
992         if (now > vcpu->arch.dec_expires) {
993                 /* decrementer has already gone negative */
994                 kvmppc_core_queue_dec(vcpu);
995                 kvmppc_core_prepare_to_enter(vcpu);
996                 return;
997         }
998         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
999                    / tb_ticks_per_sec;
1000         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1001                       HRTIMER_MODE_REL);
1002         vcpu->arch.timer_running = 1;
1003 }
1004
1005 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1006 {
1007         vcpu->arch.ceded = 0;
1008         if (vcpu->arch.timer_running) {
1009                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1010                 vcpu->arch.timer_running = 0;
1011         }
1012 }
1013
1014 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1015
1016 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1017                                    struct kvm_vcpu *vcpu)
1018 {
1019         u64 now;
1020
1021         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1022                 return;
1023         spin_lock(&vcpu->arch.tbacct_lock);
1024         now = mftb();
1025         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1026                 vcpu->arch.stolen_logged;
1027         vcpu->arch.busy_preempt = now;
1028         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1029         spin_unlock(&vcpu->arch.tbacct_lock);
1030         --vc->n_runnable;
1031         list_del(&vcpu->arch.run_list);
1032 }
1033
1034 static int kvmppc_grab_hwthread(int cpu)
1035 {
1036         struct paca_struct *tpaca;
1037         long timeout = 1000;
1038
1039         tpaca = &paca[cpu];
1040
1041         /* Ensure the thread won't go into the kernel if it wakes */
1042         tpaca->kvm_hstate.hwthread_req = 1;
1043         tpaca->kvm_hstate.kvm_vcpu = NULL;
1044
1045         /*
1046          * If the thread is already executing in the kernel (e.g. handling
1047          * a stray interrupt), wait for it to get back to nap mode.
1048          * The smp_mb() is to ensure that our setting of hwthread_req
1049          * is visible before we look at hwthread_state, so if this
1050          * races with the code at system_reset_pSeries and the thread
1051          * misses our setting of hwthread_req, we are sure to see its
1052          * setting of hwthread_state, and vice versa.
1053          */
1054         smp_mb();
1055         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1056                 if (--timeout <= 0) {
1057                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1058                         return -EBUSY;
1059                 }
1060                 udelay(1);
1061         }
1062         return 0;
1063 }
1064
1065 static void kvmppc_release_hwthread(int cpu)
1066 {
1067         struct paca_struct *tpaca;
1068
1069         tpaca = &paca[cpu];
1070         tpaca->kvm_hstate.hwthread_req = 0;
1071         tpaca->kvm_hstate.kvm_vcpu = NULL;
1072 }
1073
1074 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1075 {
1076         int cpu;
1077         struct paca_struct *tpaca;
1078         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1079
1080         if (vcpu->arch.timer_running) {
1081                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1082                 vcpu->arch.timer_running = 0;
1083         }
1084         cpu = vc->pcpu + vcpu->arch.ptid;
1085         tpaca = &paca[cpu];
1086         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1087         tpaca->kvm_hstate.kvm_vcore = vc;
1088         tpaca->kvm_hstate.napping = 0;
1089         vcpu->cpu = vc->pcpu;
1090         smp_wmb();
1091 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1092         if (vcpu->arch.ptid) {
1093                 xics_wake_cpu(cpu);
1094                 ++vc->n_woken;
1095         }
1096 #endif
1097 }
1098
1099 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1100 {
1101         int i;
1102
1103         HMT_low();
1104         i = 0;
1105         while (vc->nap_count < vc->n_woken) {
1106                 if (++i >= 1000000) {
1107                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1108                                vc->nap_count, vc->n_woken);
1109                         break;
1110                 }
1111                 cpu_relax();
1112         }
1113         HMT_medium();
1114 }
1115
1116 /*
1117  * Check that we are on thread 0 and that any other threads in
1118  * this core are off-line.  Then grab the threads so they can't
1119  * enter the kernel.
1120  */
1121 static int on_primary_thread(void)
1122 {
1123         int cpu = smp_processor_id();
1124         int thr = cpu_thread_in_core(cpu);
1125
1126         if (thr)
1127                 return 0;
1128         while (++thr < threads_per_core)
1129                 if (cpu_online(cpu + thr))
1130                         return 0;
1131
1132         /* Grab all hw threads so they can't go into the kernel */
1133         for (thr = 1; thr < threads_per_core; ++thr) {
1134                 if (kvmppc_grab_hwthread(cpu + thr)) {
1135                         /* Couldn't grab one; let the others go */
1136                         do {
1137                                 kvmppc_release_hwthread(cpu + thr);
1138                         } while (--thr > 0);
1139                         return 0;
1140                 }
1141         }
1142         return 1;
1143 }
1144
1145 /*
1146  * Run a set of guest threads on a physical core.
1147  * Called with vc->lock held.
1148  */
1149 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1150 {
1151         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1152         long ret;
1153         u64 now;
1154         int ptid, i, need_vpa_update;
1155         int srcu_idx;
1156         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1157
1158         /* don't start if any threads have a signal pending */
1159         need_vpa_update = 0;
1160         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1161                 if (signal_pending(vcpu->arch.run_task))
1162                         return;
1163                 if (vcpu->arch.vpa.update_pending ||
1164                     vcpu->arch.slb_shadow.update_pending ||
1165                     vcpu->arch.dtl.update_pending)
1166                         vcpus_to_update[need_vpa_update++] = vcpu;
1167         }
1168
1169         /*
1170          * Initialize *vc, in particular vc->vcore_state, so we can
1171          * drop the vcore lock if necessary.
1172          */
1173         vc->n_woken = 0;
1174         vc->nap_count = 0;
1175         vc->entry_exit_count = 0;
1176         vc->vcore_state = VCORE_STARTING;
1177         vc->in_guest = 0;
1178         vc->napping_threads = 0;
1179
1180         /*
1181          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1182          * which can't be called with any spinlocks held.
1183          */
1184         if (need_vpa_update) {
1185                 spin_unlock(&vc->lock);
1186                 for (i = 0; i < need_vpa_update; ++i)
1187                         kvmppc_update_vpas(vcpus_to_update[i]);
1188                 spin_lock(&vc->lock);
1189         }
1190
1191         /*
1192          * Assign physical thread IDs, first to non-ceded vcpus
1193          * and then to ceded ones.
1194          */
1195         ptid = 0;
1196         vcpu0 = NULL;
1197         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1198                 if (!vcpu->arch.ceded) {
1199                         if (!ptid)
1200                                 vcpu0 = vcpu;
1201                         vcpu->arch.ptid = ptid++;
1202                 }
1203         }
1204         if (!vcpu0)
1205                 goto out;       /* nothing to run; should never happen */
1206         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1207                 if (vcpu->arch.ceded)
1208                         vcpu->arch.ptid = ptid++;
1209
1210         /*
1211          * Make sure we are running on thread 0, and that
1212          * secondary threads are offline.
1213          */
1214         if (threads_per_core > 1 && !on_primary_thread()) {
1215                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1216                         vcpu->arch.ret = -EBUSY;
1217                 goto out;
1218         }
1219
1220         vc->pcpu = smp_processor_id();
1221         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1222                 kvmppc_start_thread(vcpu);
1223                 kvmppc_create_dtl_entry(vcpu, vc);
1224         }
1225
1226         vc->vcore_state = VCORE_RUNNING;
1227         preempt_disable();
1228         spin_unlock(&vc->lock);
1229
1230         kvm_guest_enter();
1231
1232         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1233
1234         __kvmppc_vcore_entry(NULL, vcpu0);
1235
1236         spin_lock(&vc->lock);
1237         /* disable sending of IPIs on virtual external irqs */
1238         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1239                 vcpu->cpu = -1;
1240         /* wait for secondary threads to finish writing their state to memory */
1241         if (vc->nap_count < vc->n_woken)
1242                 kvmppc_wait_for_nap(vc);
1243         for (i = 0; i < threads_per_core; ++i)
1244                 kvmppc_release_hwthread(vc->pcpu + i);
1245         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1246         vc->vcore_state = VCORE_EXITING;
1247         spin_unlock(&vc->lock);
1248
1249         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1250
1251         /* make sure updates to secondary vcpu structs are visible now */
1252         smp_mb();
1253         kvm_guest_exit();
1254
1255         preempt_enable();
1256         kvm_resched(vcpu);
1257
1258         spin_lock(&vc->lock);
1259         now = get_tb();
1260         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1261                 /* cancel pending dec exception if dec is positive */
1262                 if (now < vcpu->arch.dec_expires &&
1263                     kvmppc_core_pending_dec(vcpu))
1264                         kvmppc_core_dequeue_dec(vcpu);
1265
1266                 ret = RESUME_GUEST;
1267                 if (vcpu->arch.trap)
1268                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1269                                                  vcpu->arch.run_task);
1270
1271                 vcpu->arch.ret = ret;
1272                 vcpu->arch.trap = 0;
1273
1274                 if (vcpu->arch.ceded) {
1275                         if (ret != RESUME_GUEST)
1276                                 kvmppc_end_cede(vcpu);
1277                         else
1278                                 kvmppc_set_timer(vcpu);
1279                 }
1280         }
1281
1282  out:
1283         vc->vcore_state = VCORE_INACTIVE;
1284         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1285                                  arch.run_list) {
1286                 if (vcpu->arch.ret != RESUME_GUEST) {
1287                         kvmppc_remove_runnable(vc, vcpu);
1288                         wake_up(&vcpu->arch.cpu_run);
1289                 }
1290         }
1291 }
1292
1293 /*
1294  * Wait for some other vcpu thread to execute us, and
1295  * wake us up when we need to handle something in the host.
1296  */
1297 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1298 {
1299         DEFINE_WAIT(wait);
1300
1301         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1302         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1303                 schedule();
1304         finish_wait(&vcpu->arch.cpu_run, &wait);
1305 }
1306
1307 /*
1308  * All the vcpus in this vcore are idle, so wait for a decrementer
1309  * or external interrupt to one of the vcpus.  vc->lock is held.
1310  */
1311 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1312 {
1313         DEFINE_WAIT(wait);
1314
1315         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1316         vc->vcore_state = VCORE_SLEEPING;
1317         spin_unlock(&vc->lock);
1318         schedule();
1319         finish_wait(&vc->wq, &wait);
1320         spin_lock(&vc->lock);
1321         vc->vcore_state = VCORE_INACTIVE;
1322 }
1323
1324 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1325 {
1326         int n_ceded;
1327         struct kvmppc_vcore *vc;
1328         struct kvm_vcpu *v, *vn;
1329
1330         kvm_run->exit_reason = 0;
1331         vcpu->arch.ret = RESUME_GUEST;
1332         vcpu->arch.trap = 0;
1333         kvmppc_update_vpas(vcpu);
1334
1335         /*
1336          * Synchronize with other threads in this virtual core
1337          */
1338         vc = vcpu->arch.vcore;
1339         spin_lock(&vc->lock);
1340         vcpu->arch.ceded = 0;
1341         vcpu->arch.run_task = current;
1342         vcpu->arch.kvm_run = kvm_run;
1343         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1344         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1345         vcpu->arch.busy_preempt = TB_NIL;
1346         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1347         ++vc->n_runnable;
1348
1349         /*
1350          * This happens the first time this is called for a vcpu.
1351          * If the vcore is already running, we may be able to start
1352          * this thread straight away and have it join in.
1353          */
1354         if (!signal_pending(current)) {
1355                 if (vc->vcore_state == VCORE_RUNNING &&
1356                     VCORE_EXIT_COUNT(vc) == 0) {
1357                         vcpu->arch.ptid = vc->n_runnable - 1;
1358                         kvmppc_create_dtl_entry(vcpu, vc);
1359                         kvmppc_start_thread(vcpu);
1360                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1361                         wake_up(&vc->wq);
1362                 }
1363
1364         }
1365
1366         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1367                !signal_pending(current)) {
1368                 if (vc->vcore_state != VCORE_INACTIVE) {
1369                         spin_unlock(&vc->lock);
1370                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1371                         spin_lock(&vc->lock);
1372                         continue;
1373                 }
1374                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1375                                          arch.run_list) {
1376                         kvmppc_core_prepare_to_enter(v);
1377                         if (signal_pending(v->arch.run_task)) {
1378                                 kvmppc_remove_runnable(vc, v);
1379                                 v->stat.signal_exits++;
1380                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1381                                 v->arch.ret = -EINTR;
1382                                 wake_up(&v->arch.cpu_run);
1383                         }
1384                 }
1385                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1386                         break;
1387                 vc->runner = vcpu;
1388                 n_ceded = 0;
1389                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1390                         if (!v->arch.pending_exceptions)
1391                                 n_ceded += v->arch.ceded;
1392                         else
1393                                 v->arch.ceded = 0;
1394                 }
1395                 if (n_ceded == vc->n_runnable)
1396                         kvmppc_vcore_blocked(vc);
1397                 else
1398                         kvmppc_run_core(vc);
1399                 vc->runner = NULL;
1400         }
1401
1402         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1403                (vc->vcore_state == VCORE_RUNNING ||
1404                 vc->vcore_state == VCORE_EXITING)) {
1405                 spin_unlock(&vc->lock);
1406                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1407                 spin_lock(&vc->lock);
1408         }
1409
1410         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1411                 kvmppc_remove_runnable(vc, vcpu);
1412                 vcpu->stat.signal_exits++;
1413                 kvm_run->exit_reason = KVM_EXIT_INTR;
1414                 vcpu->arch.ret = -EINTR;
1415         }
1416
1417         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1418                 /* Wake up some vcpu to run the core */
1419                 v = list_first_entry(&vc->runnable_threads,
1420                                      struct kvm_vcpu, arch.run_list);
1421                 wake_up(&v->arch.cpu_run);
1422         }
1423
1424         spin_unlock(&vc->lock);
1425         return vcpu->arch.ret;
1426 }
1427
1428 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1429 {
1430         int r;
1431         int srcu_idx;
1432
1433         if (!vcpu->arch.sane) {
1434                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1435                 return -EINVAL;
1436         }
1437
1438         kvmppc_core_prepare_to_enter(vcpu);
1439
1440         /* No need to go into the guest when all we'll do is come back out */
1441         if (signal_pending(current)) {
1442                 run->exit_reason = KVM_EXIT_INTR;
1443                 return -EINTR;
1444         }
1445
1446         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1447         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1448         smp_mb();
1449
1450         /* On the first time here, set up HTAB and VRMA or RMA */
1451         if (!vcpu->kvm->arch.rma_setup_done) {
1452                 r = kvmppc_hv_setup_htab_rma(vcpu);
1453                 if (r)
1454                         goto out;
1455         }
1456
1457         flush_fp_to_thread(current);
1458         flush_altivec_to_thread(current);
1459         flush_vsx_to_thread(current);
1460         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1461         vcpu->arch.pgdir = current->mm->pgd;
1462         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1463
1464         do {
1465                 r = kvmppc_run_vcpu(run, vcpu);
1466
1467                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1468                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1469                         r = kvmppc_pseries_do_hcall(vcpu);
1470                         kvmppc_core_prepare_to_enter(vcpu);
1471                 } else if (r == RESUME_PAGE_FAULT) {
1472                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1473                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1474                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1475                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1476                 }
1477         } while (r == RESUME_GUEST);
1478
1479  out:
1480         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1481         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1482         return r;
1483 }
1484
1485
1486 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1487    Assumes POWER7 or PPC970. */
1488 static inline int lpcr_rmls(unsigned long rma_size)
1489 {
1490         switch (rma_size) {
1491         case 32ul << 20:        /* 32 MB */
1492                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1493                         return 8;       /* only supported on POWER7 */
1494                 return -1;
1495         case 64ul << 20:        /* 64 MB */
1496                 return 3;
1497         case 128ul << 20:       /* 128 MB */
1498                 return 7;
1499         case 256ul << 20:       /* 256 MB */
1500                 return 4;
1501         case 1ul << 30:         /* 1 GB */
1502                 return 2;
1503         case 16ul << 30:        /* 16 GB */
1504                 return 1;
1505         case 256ul << 30:       /* 256 GB */
1506                 return 0;
1507         default:
1508                 return -1;
1509         }
1510 }
1511
1512 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1513 {
1514         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1515         struct page *page;
1516
1517         if (vmf->pgoff >= ri->npages)
1518                 return VM_FAULT_SIGBUS;
1519
1520         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1521         get_page(page);
1522         vmf->page = page;
1523         return 0;
1524 }
1525
1526 static const struct vm_operations_struct kvm_rma_vm_ops = {
1527         .fault = kvm_rma_fault,
1528 };
1529
1530 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1531 {
1532         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1533         vma->vm_ops = &kvm_rma_vm_ops;
1534         return 0;
1535 }
1536
1537 static int kvm_rma_release(struct inode *inode, struct file *filp)
1538 {
1539         struct kvmppc_linear_info *ri = filp->private_data;
1540
1541         kvm_release_rma(ri);
1542         return 0;
1543 }
1544
1545 static const struct file_operations kvm_rma_fops = {
1546         .mmap           = kvm_rma_mmap,
1547         .release        = kvm_rma_release,
1548 };
1549
1550 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1551 {
1552         struct kvmppc_linear_info *ri;
1553         long fd;
1554
1555         ri = kvm_alloc_rma();
1556         if (!ri)
1557                 return -ENOMEM;
1558
1559         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1560         if (fd < 0)
1561                 kvm_release_rma(ri);
1562
1563         ret->rma_size = ri->npages << PAGE_SHIFT;
1564         return fd;
1565 }
1566
1567 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1568                                      int linux_psize)
1569 {
1570         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1571
1572         if (!def->shift)
1573                 return;
1574         (*sps)->page_shift = def->shift;
1575         (*sps)->slb_enc = def->sllp;
1576         (*sps)->enc[0].page_shift = def->shift;
1577         /*
1578          * Only return base page encoding. We don't want to return
1579          * all the supporting pte_enc, because our H_ENTER doesn't
1580          * support MPSS yet. Once they do, we can start passing all
1581          * support pte_enc here
1582          */
1583         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1584         (*sps)++;
1585 }
1586
1587 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1588 {
1589         struct kvm_ppc_one_seg_page_size *sps;
1590
1591         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1592         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1593                 info->flags |= KVM_PPC_1T_SEGMENTS;
1594         info->slb_size = mmu_slb_size;
1595
1596         /* We only support these sizes for now, and no muti-size segments */
1597         sps = &info->sps[0];
1598         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1599         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1600         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1601
1602         return 0;
1603 }
1604
1605 /*
1606  * Get (and clear) the dirty memory log for a memory slot.
1607  */
1608 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1609 {
1610         struct kvm_memory_slot *memslot;
1611         int r;
1612         unsigned long n;
1613
1614         mutex_lock(&kvm->slots_lock);
1615
1616         r = -EINVAL;
1617         if (log->slot >= KVM_USER_MEM_SLOTS)
1618                 goto out;
1619
1620         memslot = id_to_memslot(kvm->memslots, log->slot);
1621         r = -ENOENT;
1622         if (!memslot->dirty_bitmap)
1623                 goto out;
1624
1625         n = kvm_dirty_bitmap_bytes(memslot);
1626         memset(memslot->dirty_bitmap, 0, n);
1627
1628         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1629         if (r)
1630                 goto out;
1631
1632         r = -EFAULT;
1633         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1634                 goto out;
1635
1636         r = 0;
1637 out:
1638         mutex_unlock(&kvm->slots_lock);
1639         return r;
1640 }
1641
1642 static void unpin_slot(struct kvm_memory_slot *memslot)
1643 {
1644         unsigned long *physp;
1645         unsigned long j, npages, pfn;
1646         struct page *page;
1647
1648         physp = memslot->arch.slot_phys;
1649         npages = memslot->npages;
1650         if (!physp)
1651                 return;
1652         for (j = 0; j < npages; j++) {
1653                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1654                         continue;
1655                 pfn = physp[j] >> PAGE_SHIFT;
1656                 page = pfn_to_page(pfn);
1657                 SetPageDirty(page);
1658                 put_page(page);
1659         }
1660 }
1661
1662 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1663                               struct kvm_memory_slot *dont)
1664 {
1665         if (!dont || free->arch.rmap != dont->arch.rmap) {
1666                 vfree(free->arch.rmap);
1667                 free->arch.rmap = NULL;
1668         }
1669         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1670                 unpin_slot(free);
1671                 vfree(free->arch.slot_phys);
1672                 free->arch.slot_phys = NULL;
1673         }
1674 }
1675
1676 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1677                                unsigned long npages)
1678 {
1679         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1680         if (!slot->arch.rmap)
1681                 return -ENOMEM;
1682         slot->arch.slot_phys = NULL;
1683
1684         return 0;
1685 }
1686
1687 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1688                                       struct kvm_memory_slot *memslot,
1689                                       struct kvm_userspace_memory_region *mem)
1690 {
1691         unsigned long *phys;
1692
1693         /* Allocate a slot_phys array if needed */
1694         phys = memslot->arch.slot_phys;
1695         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1696                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1697                 if (!phys)
1698                         return -ENOMEM;
1699                 memslot->arch.slot_phys = phys;
1700         }
1701
1702         return 0;
1703 }
1704
1705 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1706                                       struct kvm_userspace_memory_region *mem,
1707                                       const struct kvm_memory_slot *old)
1708 {
1709         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1710         struct kvm_memory_slot *memslot;
1711
1712         if (npages && old->npages) {
1713                 /*
1714                  * If modifying a memslot, reset all the rmap dirty bits.
1715                  * If this is a new memslot, we don't need to do anything
1716                  * since the rmap array starts out as all zeroes,
1717                  * i.e. no pages are dirty.
1718                  */
1719                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1720                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1721         }
1722 }
1723
1724 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1725 {
1726         int err = 0;
1727         struct kvm *kvm = vcpu->kvm;
1728         struct kvmppc_linear_info *ri = NULL;
1729         unsigned long hva;
1730         struct kvm_memory_slot *memslot;
1731         struct vm_area_struct *vma;
1732         unsigned long lpcr, senc;
1733         unsigned long psize, porder;
1734         unsigned long rma_size;
1735         unsigned long rmls;
1736         unsigned long *physp;
1737         unsigned long i, npages;
1738         int srcu_idx;
1739
1740         mutex_lock(&kvm->lock);
1741         if (kvm->arch.rma_setup_done)
1742                 goto out;       /* another vcpu beat us to it */
1743
1744         /* Allocate hashed page table (if not done already) and reset it */
1745         if (!kvm->arch.hpt_virt) {
1746                 err = kvmppc_alloc_hpt(kvm, NULL);
1747                 if (err) {
1748                         pr_err("KVM: Couldn't alloc HPT\n");
1749                         goto out;
1750                 }
1751         }
1752
1753         /* Look up the memslot for guest physical address 0 */
1754         srcu_idx = srcu_read_lock(&kvm->srcu);
1755         memslot = gfn_to_memslot(kvm, 0);
1756
1757         /* We must have some memory at 0 by now */
1758         err = -EINVAL;
1759         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1760                 goto out_srcu;
1761
1762         /* Look up the VMA for the start of this memory slot */
1763         hva = memslot->userspace_addr;
1764         down_read(&current->mm->mmap_sem);
1765         vma = find_vma(current->mm, hva);
1766         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1767                 goto up_out;
1768
1769         psize = vma_kernel_pagesize(vma);
1770         porder = __ilog2(psize);
1771
1772         /* Is this one of our preallocated RMAs? */
1773         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1774             hva == vma->vm_start)
1775                 ri = vma->vm_file->private_data;
1776
1777         up_read(&current->mm->mmap_sem);
1778
1779         if (!ri) {
1780                 /* On POWER7, use VRMA; on PPC970, give up */
1781                 err = -EPERM;
1782                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1783                         pr_err("KVM: CPU requires an RMO\n");
1784                         goto out_srcu;
1785                 }
1786
1787                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1788                 err = -EINVAL;
1789                 if (!(psize == 0x1000 || psize == 0x10000 ||
1790                       psize == 0x1000000))
1791                         goto out_srcu;
1792
1793                 /* Update VRMASD field in the LPCR */
1794                 senc = slb_pgsize_encoding(psize);
1795                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1796                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1797                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1798                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1799                 kvm->arch.lpcr = lpcr;
1800
1801                 /* Create HPTEs in the hash page table for the VRMA */
1802                 kvmppc_map_vrma(vcpu, memslot, porder);
1803
1804         } else {
1805                 /* Set up to use an RMO region */
1806                 rma_size = ri->npages;
1807                 if (rma_size > memslot->npages)
1808                         rma_size = memslot->npages;
1809                 rma_size <<= PAGE_SHIFT;
1810                 rmls = lpcr_rmls(rma_size);
1811                 err = -EINVAL;
1812                 if (rmls < 0) {
1813                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1814                         goto out_srcu;
1815                 }
1816                 atomic_inc(&ri->use_count);
1817                 kvm->arch.rma = ri;
1818
1819                 /* Update LPCR and RMOR */
1820                 lpcr = kvm->arch.lpcr;
1821                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1822                         /* PPC970; insert RMLS value (split field) in HID4 */
1823                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1824                                   (3ul << HID4_RMLS2_SH));
1825                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1826                                 ((rmls & 3) << HID4_RMLS2_SH);
1827                         /* RMOR is also in HID4 */
1828                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1829                                 << HID4_RMOR_SH;
1830                 } else {
1831                         /* POWER7 */
1832                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1833                         lpcr |= rmls << LPCR_RMLS_SH;
1834                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1835                 }
1836                 kvm->arch.lpcr = lpcr;
1837                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1838                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1839
1840                 /* Initialize phys addrs of pages in RMO */
1841                 npages = ri->npages;
1842                 porder = __ilog2(npages);
1843                 physp = memslot->arch.slot_phys;
1844                 if (physp) {
1845                         if (npages > memslot->npages)
1846                                 npages = memslot->npages;
1847                         spin_lock(&kvm->arch.slot_phys_lock);
1848                         for (i = 0; i < npages; ++i)
1849                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1850                                         porder;
1851                         spin_unlock(&kvm->arch.slot_phys_lock);
1852                 }
1853         }
1854
1855         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1856         smp_wmb();
1857         kvm->arch.rma_setup_done = 1;
1858         err = 0;
1859  out_srcu:
1860         srcu_read_unlock(&kvm->srcu, srcu_idx);
1861  out:
1862         mutex_unlock(&kvm->lock);
1863         return err;
1864
1865  up_out:
1866         up_read(&current->mm->mmap_sem);
1867         goto out_srcu;
1868 }
1869
1870 int kvmppc_core_init_vm(struct kvm *kvm)
1871 {
1872         unsigned long lpcr, lpid;
1873
1874         /* Allocate the guest's logical partition ID */
1875
1876         lpid = kvmppc_alloc_lpid();
1877         if (lpid < 0)
1878                 return -ENOMEM;
1879         kvm->arch.lpid = lpid;
1880
1881         /*
1882          * Since we don't flush the TLB when tearing down a VM,
1883          * and this lpid might have previously been used,
1884          * make sure we flush on each core before running the new VM.
1885          */
1886         cpumask_setall(&kvm->arch.need_tlb_flush);
1887
1888         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1889         INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1890
1891         kvm->arch.rma = NULL;
1892
1893         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1894
1895         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1896                 /* PPC970; HID4 is effectively the LPCR */
1897                 kvm->arch.host_lpid = 0;
1898                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1899                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1900                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1901                         ((lpid & 0xf) << HID4_LPID5_SH);
1902         } else {
1903                 /* POWER7; init LPCR for virtual RMA mode */
1904                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1905                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1906                 lpcr &= LPCR_PECE | LPCR_LPES;
1907                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1908                         LPCR_VPM0 | LPCR_VPM1;
1909                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1910                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1911         }
1912         kvm->arch.lpcr = lpcr;
1913
1914         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1915         spin_lock_init(&kvm->arch.slot_phys_lock);
1916
1917         /*
1918          * Don't allow secondary CPU threads to come online
1919          * while any KVM VMs exist.
1920          */
1921         inhibit_secondary_onlining();
1922
1923         return 0;
1924 }
1925
1926 void kvmppc_core_destroy_vm(struct kvm *kvm)
1927 {
1928         uninhibit_secondary_onlining();
1929
1930         if (kvm->arch.rma) {
1931                 kvm_release_rma(kvm->arch.rma);
1932                 kvm->arch.rma = NULL;
1933         }
1934
1935         kvmppc_rtas_tokens_free(kvm);
1936
1937         kvmppc_free_hpt(kvm);
1938         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1939 }
1940
1941 /* These are stubs for now */
1942 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1943 {
1944 }
1945
1946 /* We don't need to emulate any privileged instructions or dcbz */
1947 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1948                            unsigned int inst, int *advance)
1949 {
1950         return EMULATE_FAIL;
1951 }
1952
1953 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1954 {
1955         return EMULATE_FAIL;
1956 }
1957
1958 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1959 {
1960         return EMULATE_FAIL;
1961 }
1962
1963 static int kvmppc_book3s_hv_init(void)
1964 {
1965         int r;
1966
1967         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1968
1969         if (r)
1970                 return r;
1971
1972         r = kvmppc_mmu_hv_init();
1973
1974         return r;
1975 }
1976
1977 static void kvmppc_book3s_hv_exit(void)
1978 {
1979         kvm_exit();
1980 }
1981
1982 module_init(kvmppc_book3s_hv_init);
1983 module_exit(kvmppc_book3s_hv_exit);