130bafdb143088abf6d6983bea5e60ff3c110f28
[platform/kernel/linux-starfive.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83
84 #include <trace/events/ipi.h>
85
86 #include "book3s.h"
87 #include "book3s_hv.h"
88
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL  (~(u64)0)
103
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119         .set = param_set_int,
120         .get = param_get_int,
121 };
122
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_1THREAD,
154         RWMR_RPA_P8_2THREAD,
155         RWMR_RPA_P8_3THREAD,
156         RWMR_RPA_P8_4THREAD,
157         RWMR_RPA_P8_5THREAD,
158         RWMR_RPA_P8_6THREAD,
159         RWMR_RPA_P8_7THREAD,
160         RWMR_RPA_P8_8THREAD,
161 };
162
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164                 int *ip)
165 {
166         int i = *ip;
167         struct kvm_vcpu *vcpu;
168
169         while (++i < MAX_SMT_THREADS) {
170                 vcpu = READ_ONCE(vc->runnable_threads[i]);
171                 if (vcpu) {
172                         *ip = i;
173                         return vcpu;
174                 }
175         }
176         return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188         if (kvmhv_on_pseries())
189                 return false;
190
191         /* On POWER9 we can use msgsnd to IPI any cpu */
192         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193                 msg |= get_hard_smp_processor_id(cpu);
194                 smp_mb();
195                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196                 return true;
197         }
198
199         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201                 preempt_disable();
202                 if (cpu_first_thread_sibling(cpu) ==
203                     cpu_first_thread_sibling(smp_processor_id())) {
204                         msg |= cpu_thread_in_core(cpu);
205                         smp_mb();
206                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207                         preempt_enable();
208                         return true;
209                 }
210                 preempt_enable();
211         }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214         if (cpu >= 0 && cpu < nr_cpu_ids) {
215                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216                         xics_wake_cpu(cpu);
217                         return true;
218                 }
219                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220                 return true;
221         }
222 #endif
223
224         return false;
225 }
226
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229         int cpu;
230         struct rcuwait *waitp;
231
232         /*
233          * rcuwait_wake_up contains smp_mb() which orders prior stores that
234          * create pending work vs below loads of cpu fields. The other side
235          * is the barrier in vcpu run that orders setting the cpu fields vs
236          * testing for pending work.
237          */
238
239         waitp = kvm_arch_vcpu_get_wait(vcpu);
240         if (rcuwait_wake_up(waitp))
241                 ++vcpu->stat.generic.halt_wakeup;
242
243         cpu = READ_ONCE(vcpu->arch.thread_cpu);
244         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245                 return;
246
247         /* CPU points to the first thread of the core */
248         cpu = vcpu->cpu;
249         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250                 smp_send_reschedule(cpu);
251 }
252
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  *
256  * Stolen time is counted as time when either the vcpu is able to
257  * run as part of a virtual core, but the task running the vcore
258  * is preempted or sleeping, or when the vcpu needs something done
259  * in the kernel by the task running the vcpu, but that task is
260  * preempted or sleeping.  Those two things have to be counted
261  * separately, since one of the vcpu tasks will take on the job
262  * of running the core, and the other vcpu tasks in the vcore will
263  * sleep waiting for it to do that, but that sleep shouldn't count
264  * as stolen time.
265  *
266  * Hence we accumulate stolen time when the vcpu can run as part of
267  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268  * needs its task to do other things in the kernel (for example,
269  * service a page fault) in busy_stolen.  We don't accumulate
270  * stolen time for a vcore when it is inactive, or for a vcpu
271  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272  * a misnomer; it means that the vcpu task is not executing in
273  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274  * the kernel.  We don't have any way of dividing up that time
275  * between time that the vcpu is genuinely stopped, time that
276  * the task is actively working on behalf of the vcpu, and time
277  * that the task is preempted, so we don't count any of it as
278  * stolen.
279  *
280  * Updates to busy_stolen are protected by arch.tbacct_lock;
281  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282  * lock.  The stolen times are measured in units of timebase ticks.
283  * (Note that the != TB_NIL checks below are purely defensive;
284  * they should never fail.)
285  *
286  * The POWER9 path is simpler, one vcpu per virtual core so the
287  * former case does not exist. If a vcpu is preempted when it is
288  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290  * state in the P9 path.
291  */
292
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295         unsigned long flags;
296
297         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299         spin_lock_irqsave(&vc->stoltb_lock, flags);
300         vc->preempt_tb = tb;
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306         unsigned long flags;
307
308         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310         spin_lock_irqsave(&vc->stoltb_lock, flags);
311         if (vc->preempt_tb != TB_NIL) {
312                 vc->stolen_tb += tb - vc->preempt_tb;
313                 vc->preempt_tb = TB_NIL;
314         }
315         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321         unsigned long flags;
322         u64 now;
323
324         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325                 if (vcpu->arch.busy_preempt != TB_NIL) {
326                         WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327                         vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328                         vcpu->arch.busy_preempt = TB_NIL;
329                 }
330                 return;
331         }
332
333         now = mftb();
334
335         /*
336          * We can test vc->runner without taking the vcore lock,
337          * because only this task ever sets vc->runner to this
338          * vcpu, and once it is set to this vcpu, only this task
339          * ever sets it to NULL.
340          */
341         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342                 kvmppc_core_end_stolen(vc, now);
343
344         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346             vcpu->arch.busy_preempt != TB_NIL) {
347                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348                 vcpu->arch.busy_preempt = TB_NIL;
349         }
350         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355         struct kvmppc_vcore *vc = vcpu->arch.vcore;
356         unsigned long flags;
357         u64 now;
358
359         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360                 /*
361                  * In the P9 path, RUNNABLE is not preemptible
362                  * (nor takes host interrupts)
363                  */
364                 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365                 /*
366                  * Account stolen time when preempted while the vcpu task is
367                  * running in the kernel (but not in qemu, which is INACTIVE).
368                  */
369                 if (task_is_running(current) &&
370                                 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371                         vcpu->arch.busy_preempt = mftb();
372                 return;
373         }
374
375         now = mftb();
376
377         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378                 kvmppc_core_start_stolen(vc, now);
379
380         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382                 vcpu->arch.busy_preempt = now;
383         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388         vcpu->arch.pvr = pvr;
389 }
390
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393
394 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
395 {
396         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
397         struct kvmppc_vcore *vc = vcpu->arch.vcore;
398
399         /* We can (emulate) our own architecture version and anything older */
400         if (cpu_has_feature(CPU_FTR_ARCH_31))
401                 host_pcr_bit = PCR_ARCH_31;
402         else if (cpu_has_feature(CPU_FTR_ARCH_300))
403                 host_pcr_bit = PCR_ARCH_300;
404         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405                 host_pcr_bit = PCR_ARCH_207;
406         else if (cpu_has_feature(CPU_FTR_ARCH_206))
407                 host_pcr_bit = PCR_ARCH_206;
408         else
409                 host_pcr_bit = PCR_ARCH_205;
410
411         /* Determine lowest PCR bit needed to run guest in given PVR level */
412         guest_pcr_bit = host_pcr_bit;
413         if (arch_compat) {
414                 switch (arch_compat) {
415                 case PVR_ARCH_205:
416                         guest_pcr_bit = PCR_ARCH_205;
417                         break;
418                 case PVR_ARCH_206:
419                 case PVR_ARCH_206p:
420                         guest_pcr_bit = PCR_ARCH_206;
421                         break;
422                 case PVR_ARCH_207:
423                         guest_pcr_bit = PCR_ARCH_207;
424                         break;
425                 case PVR_ARCH_300:
426                         guest_pcr_bit = PCR_ARCH_300;
427                         break;
428                 case PVR_ARCH_31:
429                         guest_pcr_bit = PCR_ARCH_31;
430                         break;
431                 default:
432                         return -EINVAL;
433                 }
434         }
435
436         /* Check requested PCR bits don't exceed our capabilities */
437         if (guest_pcr_bit > host_pcr_bit)
438                 return -EINVAL;
439
440         spin_lock(&vc->lock);
441         vc->arch_compat = arch_compat;
442         /*
443          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
444          * Also set all reserved PCR bits
445          */
446         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
447         spin_unlock(&vc->lock);
448
449         return 0;
450 }
451
452 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
453 {
454         int r;
455
456         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
457         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
458                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
459         for (r = 0; r < 16; ++r)
460                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
461                        r, kvmppc_get_gpr(vcpu, r),
462                        r+16, kvmppc_get_gpr(vcpu, r+16));
463         pr_err("ctr = %.16lx  lr  = %.16lx\n",
464                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
465         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
466                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
467         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
468                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
469         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
470                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
471         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
472                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
473         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
474         pr_err("fault dar = %.16lx dsisr = %.8x\n",
475                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
476         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
477         for (r = 0; r < vcpu->arch.slb_max; ++r)
478                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
479                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
480         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
481                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
482                vcpu->arch.last_inst);
483 }
484
485 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
486 {
487         return kvm_get_vcpu_by_id(kvm, id);
488 }
489
490 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
491 {
492         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
493         vpa->yield_count = cpu_to_be32(1);
494 }
495
496 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
497                    unsigned long addr, unsigned long len)
498 {
499         /* check address is cacheline aligned */
500         if (addr & (L1_CACHE_BYTES - 1))
501                 return -EINVAL;
502         spin_lock(&vcpu->arch.vpa_update_lock);
503         if (v->next_gpa != addr || v->len != len) {
504                 v->next_gpa = addr;
505                 v->len = addr ? len : 0;
506                 v->update_pending = 1;
507         }
508         spin_unlock(&vcpu->arch.vpa_update_lock);
509         return 0;
510 }
511
512 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
513 struct reg_vpa {
514         u32 dummy;
515         union {
516                 __be16 hword;
517                 __be32 word;
518         } length;
519 };
520
521 static int vpa_is_registered(struct kvmppc_vpa *vpap)
522 {
523         if (vpap->update_pending)
524                 return vpap->next_gpa != 0;
525         return vpap->pinned_addr != NULL;
526 }
527
528 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
529                                        unsigned long flags,
530                                        unsigned long vcpuid, unsigned long vpa)
531 {
532         struct kvm *kvm = vcpu->kvm;
533         unsigned long len, nb;
534         void *va;
535         struct kvm_vcpu *tvcpu;
536         int err;
537         int subfunc;
538         struct kvmppc_vpa *vpap;
539
540         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
541         if (!tvcpu)
542                 return H_PARAMETER;
543
544         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
545         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
546             subfunc == H_VPA_REG_SLB) {
547                 /* Registering new area - address must be cache-line aligned */
548                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
549                         return H_PARAMETER;
550
551                 /* convert logical addr to kernel addr and read length */
552                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
553                 if (va == NULL)
554                         return H_PARAMETER;
555                 if (subfunc == H_VPA_REG_VPA)
556                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
557                 else
558                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
559                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
560
561                 /* Check length */
562                 if (len > nb || len < sizeof(struct reg_vpa))
563                         return H_PARAMETER;
564         } else {
565                 vpa = 0;
566                 len = 0;
567         }
568
569         err = H_PARAMETER;
570         vpap = NULL;
571         spin_lock(&tvcpu->arch.vpa_update_lock);
572
573         switch (subfunc) {
574         case H_VPA_REG_VPA:             /* register VPA */
575                 /*
576                  * The size of our lppaca is 1kB because of the way we align
577                  * it for the guest to avoid crossing a 4kB boundary. We only
578                  * use 640 bytes of the structure though, so we should accept
579                  * clients that set a size of 640.
580                  */
581                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
582                 if (len < sizeof(struct lppaca))
583                         break;
584                 vpap = &tvcpu->arch.vpa;
585                 err = 0;
586                 break;
587
588         case H_VPA_REG_DTL:             /* register DTL */
589                 if (len < sizeof(struct dtl_entry))
590                         break;
591                 len -= len % sizeof(struct dtl_entry);
592
593                 /* Check that they have previously registered a VPA */
594                 err = H_RESOURCE;
595                 if (!vpa_is_registered(&tvcpu->arch.vpa))
596                         break;
597
598                 vpap = &tvcpu->arch.dtl;
599                 err = 0;
600                 break;
601
602         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
603                 /* Check that they have previously registered a VPA */
604                 err = H_RESOURCE;
605                 if (!vpa_is_registered(&tvcpu->arch.vpa))
606                         break;
607
608                 vpap = &tvcpu->arch.slb_shadow;
609                 err = 0;
610                 break;
611
612         case H_VPA_DEREG_VPA:           /* deregister VPA */
613                 /* Check they don't still have a DTL or SLB buf registered */
614                 err = H_RESOURCE;
615                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
616                     vpa_is_registered(&tvcpu->arch.slb_shadow))
617                         break;
618
619                 vpap = &tvcpu->arch.vpa;
620                 err = 0;
621                 break;
622
623         case H_VPA_DEREG_DTL:           /* deregister DTL */
624                 vpap = &tvcpu->arch.dtl;
625                 err = 0;
626                 break;
627
628         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
629                 vpap = &tvcpu->arch.slb_shadow;
630                 err = 0;
631                 break;
632         }
633
634         if (vpap) {
635                 vpap->next_gpa = vpa;
636                 vpap->len = len;
637                 vpap->update_pending = 1;
638         }
639
640         spin_unlock(&tvcpu->arch.vpa_update_lock);
641
642         return err;
643 }
644
645 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
646 {
647         struct kvm *kvm = vcpu->kvm;
648         void *va;
649         unsigned long nb;
650         unsigned long gpa;
651
652         /*
653          * We need to pin the page pointed to by vpap->next_gpa,
654          * but we can't call kvmppc_pin_guest_page under the lock
655          * as it does get_user_pages() and down_read().  So we
656          * have to drop the lock, pin the page, then get the lock
657          * again and check that a new area didn't get registered
658          * in the meantime.
659          */
660         for (;;) {
661                 gpa = vpap->next_gpa;
662                 spin_unlock(&vcpu->arch.vpa_update_lock);
663                 va = NULL;
664                 nb = 0;
665                 if (gpa)
666                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
667                 spin_lock(&vcpu->arch.vpa_update_lock);
668                 if (gpa == vpap->next_gpa)
669                         break;
670                 /* sigh... unpin that one and try again */
671                 if (va)
672                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
673         }
674
675         vpap->update_pending = 0;
676         if (va && nb < vpap->len) {
677                 /*
678                  * If it's now too short, it must be that userspace
679                  * has changed the mappings underlying guest memory,
680                  * so unregister the region.
681                  */
682                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
683                 va = NULL;
684         }
685         if (vpap->pinned_addr)
686                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
687                                         vpap->dirty);
688         vpap->gpa = gpa;
689         vpap->pinned_addr = va;
690         vpap->dirty = false;
691         if (va)
692                 vpap->pinned_end = va + vpap->len;
693 }
694
695 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
696 {
697         if (!(vcpu->arch.vpa.update_pending ||
698               vcpu->arch.slb_shadow.update_pending ||
699               vcpu->arch.dtl.update_pending))
700                 return;
701
702         spin_lock(&vcpu->arch.vpa_update_lock);
703         if (vcpu->arch.vpa.update_pending) {
704                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
705                 if (vcpu->arch.vpa.pinned_addr)
706                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
707         }
708         if (vcpu->arch.dtl.update_pending) {
709                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
710                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
711                 vcpu->arch.dtl_index = 0;
712         }
713         if (vcpu->arch.slb_shadow.update_pending)
714                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
715         spin_unlock(&vcpu->arch.vpa_update_lock);
716 }
717
718 /*
719  * Return the accumulated stolen time for the vcore up until `now'.
720  * The caller should hold the vcore lock.
721  */
722 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
723 {
724         u64 p;
725         unsigned long flags;
726
727         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
728
729         spin_lock_irqsave(&vc->stoltb_lock, flags);
730         p = vc->stolen_tb;
731         if (vc->vcore_state != VCORE_INACTIVE &&
732             vc->preempt_tb != TB_NIL)
733                 p += now - vc->preempt_tb;
734         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
735         return p;
736 }
737
738 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
739                                         struct lppaca *vpa,
740                                         unsigned int pcpu, u64 now,
741                                         unsigned long stolen)
742 {
743         struct dtl_entry *dt;
744
745         dt = vcpu->arch.dtl_ptr;
746
747         if (!dt)
748                 return;
749
750         dt->dispatch_reason = 7;
751         dt->preempt_reason = 0;
752         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
753         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
754         dt->ready_to_enqueue_time = 0;
755         dt->waiting_to_ready_time = 0;
756         dt->timebase = cpu_to_be64(now);
757         dt->fault_addr = 0;
758         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
759         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
760
761         ++dt;
762         if (dt == vcpu->arch.dtl.pinned_end)
763                 dt = vcpu->arch.dtl.pinned_addr;
764         vcpu->arch.dtl_ptr = dt;
765         /* order writing *dt vs. writing vpa->dtl_idx */
766         smp_wmb();
767         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
768
769         /* vcpu->arch.dtl.dirty is set by the caller */
770 }
771
772 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
773                                        struct kvmppc_vcore *vc)
774 {
775         struct lppaca *vpa;
776         unsigned long stolen;
777         unsigned long core_stolen;
778         u64 now;
779         unsigned long flags;
780
781         vpa = vcpu->arch.vpa.pinned_addr;
782         if (!vpa)
783                 return;
784
785         now = mftb();
786
787         core_stolen = vcore_stolen_time(vc, now);
788         stolen = core_stolen - vcpu->arch.stolen_logged;
789         vcpu->arch.stolen_logged = core_stolen;
790         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
791         stolen += vcpu->arch.busy_stolen;
792         vcpu->arch.busy_stolen = 0;
793         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
794
795         vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
796
797         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
798
799         vcpu->arch.vpa.dirty = true;
800 }
801
802 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
803                                        struct kvmppc_vcore *vc,
804                                        u64 now)
805 {
806         struct lppaca *vpa;
807         unsigned long stolen;
808         unsigned long stolen_delta;
809
810         vpa = vcpu->arch.vpa.pinned_addr;
811         if (!vpa)
812                 return;
813
814         stolen = vc->stolen_tb;
815         stolen_delta = stolen - vcpu->arch.stolen_logged;
816         vcpu->arch.stolen_logged = stolen;
817
818         vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
819
820         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
821
822         vcpu->arch.vpa.dirty = true;
823 }
824
825 /* See if there is a doorbell interrupt pending for a vcpu */
826 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
827 {
828         int thr;
829         struct kvmppc_vcore *vc;
830
831         if (vcpu->arch.doorbell_request)
832                 return true;
833         if (cpu_has_feature(CPU_FTR_ARCH_300))
834                 return false;
835         /*
836          * Ensure that the read of vcore->dpdes comes after the read
837          * of vcpu->doorbell_request.  This barrier matches the
838          * smp_wmb() in kvmppc_guest_entry_inject().
839          */
840         smp_rmb();
841         vc = vcpu->arch.vcore;
842         thr = vcpu->vcpu_id - vc->first_vcpuid;
843         return !!(vc->dpdes & (1 << thr));
844 }
845
846 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
847 {
848         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
849                 return true;
850         if ((!vcpu->arch.vcore->arch_compat) &&
851             cpu_has_feature(CPU_FTR_ARCH_207S))
852                 return true;
853         return false;
854 }
855
856 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
857                              unsigned long resource, unsigned long value1,
858                              unsigned long value2)
859 {
860         switch (resource) {
861         case H_SET_MODE_RESOURCE_SET_CIABR:
862                 if (!kvmppc_power8_compatible(vcpu))
863                         return H_P2;
864                 if (value2)
865                         return H_P4;
866                 if (mflags)
867                         return H_UNSUPPORTED_FLAG_START;
868                 /* Guests can't breakpoint the hypervisor */
869                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
870                         return H_P3;
871                 vcpu->arch.ciabr  = value1;
872                 return H_SUCCESS;
873         case H_SET_MODE_RESOURCE_SET_DAWR0:
874                 if (!kvmppc_power8_compatible(vcpu))
875                         return H_P2;
876                 if (!ppc_breakpoint_available())
877                         return H_P2;
878                 if (mflags)
879                         return H_UNSUPPORTED_FLAG_START;
880                 if (value2 & DABRX_HYP)
881                         return H_P4;
882                 vcpu->arch.dawr0  = value1;
883                 vcpu->arch.dawrx0 = value2;
884                 return H_SUCCESS;
885         case H_SET_MODE_RESOURCE_SET_DAWR1:
886                 if (!kvmppc_power8_compatible(vcpu))
887                         return H_P2;
888                 if (!ppc_breakpoint_available())
889                         return H_P2;
890                 if (!cpu_has_feature(CPU_FTR_DAWR1))
891                         return H_P2;
892                 if (!vcpu->kvm->arch.dawr1_enabled)
893                         return H_FUNCTION;
894                 if (mflags)
895                         return H_UNSUPPORTED_FLAG_START;
896                 if (value2 & DABRX_HYP)
897                         return H_P4;
898                 vcpu->arch.dawr1  = value1;
899                 vcpu->arch.dawrx1 = value2;
900                 return H_SUCCESS;
901         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
902                 /*
903                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
904                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
905                  */
906                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
907                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
908                         return H_UNSUPPORTED_FLAG_START;
909                 return H_TOO_HARD;
910         default:
911                 return H_TOO_HARD;
912         }
913 }
914
915 /* Copy guest memory in place - must reside within a single memslot */
916 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
917                                   unsigned long len)
918 {
919         struct kvm_memory_slot *to_memslot = NULL;
920         struct kvm_memory_slot *from_memslot = NULL;
921         unsigned long to_addr, from_addr;
922         int r;
923
924         /* Get HPA for from address */
925         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
926         if (!from_memslot)
927                 return -EFAULT;
928         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
929                              << PAGE_SHIFT))
930                 return -EINVAL;
931         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
932         if (kvm_is_error_hva(from_addr))
933                 return -EFAULT;
934         from_addr |= (from & (PAGE_SIZE - 1));
935
936         /* Get HPA for to address */
937         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
938         if (!to_memslot)
939                 return -EFAULT;
940         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
941                            << PAGE_SHIFT))
942                 return -EINVAL;
943         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
944         if (kvm_is_error_hva(to_addr))
945                 return -EFAULT;
946         to_addr |= (to & (PAGE_SIZE - 1));
947
948         /* Perform copy */
949         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
950                              len);
951         if (r)
952                 return -EFAULT;
953         mark_page_dirty(kvm, to >> PAGE_SHIFT);
954         return 0;
955 }
956
957 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
958                                unsigned long dest, unsigned long src)
959 {
960         u64 pg_sz = SZ_4K;              /* 4K page size */
961         u64 pg_mask = SZ_4K - 1;
962         int ret;
963
964         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
965         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
966                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
967                 return H_PARAMETER;
968
969         /* dest (and src if copy_page flag set) must be page aligned */
970         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
971                 return H_PARAMETER;
972
973         /* zero and/or copy the page as determined by the flags */
974         if (flags & H_COPY_PAGE) {
975                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
976                 if (ret < 0)
977                         return H_PARAMETER;
978         } else if (flags & H_ZERO_PAGE) {
979                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
980                 if (ret < 0)
981                         return H_PARAMETER;
982         }
983
984         /* We can ignore the remaining flags */
985
986         return H_SUCCESS;
987 }
988
989 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
990 {
991         struct kvmppc_vcore *vcore = target->arch.vcore;
992
993         /*
994          * We expect to have been called by the real mode handler
995          * (kvmppc_rm_h_confer()) which would have directly returned
996          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
997          * have useful work to do and should not confer) so we don't
998          * recheck that here.
999          *
1000          * In the case of the P9 single vcpu per vcore case, the real
1001          * mode handler is not called but no other threads are in the
1002          * source vcore.
1003          */
1004         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1005                 spin_lock(&vcore->lock);
1006                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1007                     vcore->vcore_state != VCORE_INACTIVE &&
1008                     vcore->runner)
1009                         target = vcore->runner;
1010                 spin_unlock(&vcore->lock);
1011         }
1012
1013         return kvm_vcpu_yield_to(target);
1014 }
1015
1016 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1017 {
1018         int yield_count = 0;
1019         struct lppaca *lppaca;
1020
1021         spin_lock(&vcpu->arch.vpa_update_lock);
1022         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1023         if (lppaca)
1024                 yield_count = be32_to_cpu(lppaca->yield_count);
1025         spin_unlock(&vcpu->arch.vpa_update_lock);
1026         return yield_count;
1027 }
1028
1029 /*
1030  * H_RPT_INVALIDATE hcall handler for nested guests.
1031  *
1032  * Handles only nested process-scoped invalidation requests in L0.
1033  */
1034 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1035 {
1036         unsigned long type = kvmppc_get_gpr(vcpu, 6);
1037         unsigned long pid, pg_sizes, start, end;
1038
1039         /*
1040          * The partition-scoped invalidations aren't handled here in L0.
1041          */
1042         if (type & H_RPTI_TYPE_NESTED)
1043                 return RESUME_HOST;
1044
1045         pid = kvmppc_get_gpr(vcpu, 4);
1046         pg_sizes = kvmppc_get_gpr(vcpu, 7);
1047         start = kvmppc_get_gpr(vcpu, 8);
1048         end = kvmppc_get_gpr(vcpu, 9);
1049
1050         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1051                                 type, pg_sizes, start, end);
1052
1053         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1054         return RESUME_GUEST;
1055 }
1056
1057 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1058                                     unsigned long id, unsigned long target,
1059                                     unsigned long type, unsigned long pg_sizes,
1060                                     unsigned long start, unsigned long end)
1061 {
1062         if (!kvm_is_radix(vcpu->kvm))
1063                 return H_UNSUPPORTED;
1064
1065         if (end < start)
1066                 return H_P5;
1067
1068         /*
1069          * Partition-scoped invalidation for nested guests.
1070          */
1071         if (type & H_RPTI_TYPE_NESTED) {
1072                 if (!nesting_enabled(vcpu->kvm))
1073                         return H_FUNCTION;
1074
1075                 /* Support only cores as target */
1076                 if (target != H_RPTI_TARGET_CMMU)
1077                         return H_P2;
1078
1079                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1080                                                start, end);
1081         }
1082
1083         /*
1084          * Process-scoped invalidation for L1 guests.
1085          */
1086         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1087                                 type, pg_sizes, start, end);
1088         return H_SUCCESS;
1089 }
1090
1091 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1092 {
1093         struct kvm *kvm = vcpu->kvm;
1094         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1095         unsigned long target, ret = H_SUCCESS;
1096         int yield_count;
1097         struct kvm_vcpu *tvcpu;
1098         int idx, rc;
1099
1100         if (req <= MAX_HCALL_OPCODE &&
1101             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1102                 return RESUME_HOST;
1103
1104         switch (req) {
1105         case H_REMOVE:
1106                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1107                                         kvmppc_get_gpr(vcpu, 5),
1108                                         kvmppc_get_gpr(vcpu, 6));
1109                 if (ret == H_TOO_HARD)
1110                         return RESUME_HOST;
1111                 break;
1112         case H_ENTER:
1113                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1114                                         kvmppc_get_gpr(vcpu, 5),
1115                                         kvmppc_get_gpr(vcpu, 6),
1116                                         kvmppc_get_gpr(vcpu, 7));
1117                 if (ret == H_TOO_HARD)
1118                         return RESUME_HOST;
1119                 break;
1120         case H_READ:
1121                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1122                                         kvmppc_get_gpr(vcpu, 5));
1123                 if (ret == H_TOO_HARD)
1124                         return RESUME_HOST;
1125                 break;
1126         case H_CLEAR_MOD:
1127                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1128                                         kvmppc_get_gpr(vcpu, 5));
1129                 if (ret == H_TOO_HARD)
1130                         return RESUME_HOST;
1131                 break;
1132         case H_CLEAR_REF:
1133                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1134                                         kvmppc_get_gpr(vcpu, 5));
1135                 if (ret == H_TOO_HARD)
1136                         return RESUME_HOST;
1137                 break;
1138         case H_PROTECT:
1139                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1140                                         kvmppc_get_gpr(vcpu, 5),
1141                                         kvmppc_get_gpr(vcpu, 6));
1142                 if (ret == H_TOO_HARD)
1143                         return RESUME_HOST;
1144                 break;
1145         case H_BULK_REMOVE:
1146                 ret = kvmppc_h_bulk_remove(vcpu);
1147                 if (ret == H_TOO_HARD)
1148                         return RESUME_HOST;
1149                 break;
1150
1151         case H_CEDE:
1152                 break;
1153         case H_PROD:
1154                 target = kvmppc_get_gpr(vcpu, 4);
1155                 tvcpu = kvmppc_find_vcpu(kvm, target);
1156                 if (!tvcpu) {
1157                         ret = H_PARAMETER;
1158                         break;
1159                 }
1160                 tvcpu->arch.prodded = 1;
1161                 smp_mb(); /* This orders prodded store vs ceded load */
1162                 if (tvcpu->arch.ceded)
1163                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1164                 break;
1165         case H_CONFER:
1166                 target = kvmppc_get_gpr(vcpu, 4);
1167                 if (target == -1)
1168                         break;
1169                 tvcpu = kvmppc_find_vcpu(kvm, target);
1170                 if (!tvcpu) {
1171                         ret = H_PARAMETER;
1172                         break;
1173                 }
1174                 yield_count = kvmppc_get_gpr(vcpu, 5);
1175                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1176                         break;
1177                 kvm_arch_vcpu_yield_to(tvcpu);
1178                 break;
1179         case H_REGISTER_VPA:
1180                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1181                                         kvmppc_get_gpr(vcpu, 5),
1182                                         kvmppc_get_gpr(vcpu, 6));
1183                 break;
1184         case H_RTAS:
1185                 if (list_empty(&kvm->arch.rtas_tokens))
1186                         return RESUME_HOST;
1187
1188                 idx = srcu_read_lock(&kvm->srcu);
1189                 rc = kvmppc_rtas_hcall(vcpu);
1190                 srcu_read_unlock(&kvm->srcu, idx);
1191
1192                 if (rc == -ENOENT)
1193                         return RESUME_HOST;
1194                 else if (rc == 0)
1195                         break;
1196
1197                 /* Send the error out to userspace via KVM_RUN */
1198                 return rc;
1199         case H_LOGICAL_CI_LOAD:
1200                 ret = kvmppc_h_logical_ci_load(vcpu);
1201                 if (ret == H_TOO_HARD)
1202                         return RESUME_HOST;
1203                 break;
1204         case H_LOGICAL_CI_STORE:
1205                 ret = kvmppc_h_logical_ci_store(vcpu);
1206                 if (ret == H_TOO_HARD)
1207                         return RESUME_HOST;
1208                 break;
1209         case H_SET_MODE:
1210                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1211                                         kvmppc_get_gpr(vcpu, 5),
1212                                         kvmppc_get_gpr(vcpu, 6),
1213                                         kvmppc_get_gpr(vcpu, 7));
1214                 if (ret == H_TOO_HARD)
1215                         return RESUME_HOST;
1216                 break;
1217         case H_XIRR:
1218         case H_CPPR:
1219         case H_EOI:
1220         case H_IPI:
1221         case H_IPOLL:
1222         case H_XIRR_X:
1223                 if (kvmppc_xics_enabled(vcpu)) {
1224                         if (xics_on_xive()) {
1225                                 ret = H_NOT_AVAILABLE;
1226                                 return RESUME_GUEST;
1227                         }
1228                         ret = kvmppc_xics_hcall(vcpu, req);
1229                         break;
1230                 }
1231                 return RESUME_HOST;
1232         case H_SET_DABR:
1233                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1234                 break;
1235         case H_SET_XDABR:
1236                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1237                                                 kvmppc_get_gpr(vcpu, 5));
1238                 break;
1239 #ifdef CONFIG_SPAPR_TCE_IOMMU
1240         case H_GET_TCE:
1241                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1242                                                 kvmppc_get_gpr(vcpu, 5));
1243                 if (ret == H_TOO_HARD)
1244                         return RESUME_HOST;
1245                 break;
1246         case H_PUT_TCE:
1247                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1248                                                 kvmppc_get_gpr(vcpu, 5),
1249                                                 kvmppc_get_gpr(vcpu, 6));
1250                 if (ret == H_TOO_HARD)
1251                         return RESUME_HOST;
1252                 break;
1253         case H_PUT_TCE_INDIRECT:
1254                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1255                                                 kvmppc_get_gpr(vcpu, 5),
1256                                                 kvmppc_get_gpr(vcpu, 6),
1257                                                 kvmppc_get_gpr(vcpu, 7));
1258                 if (ret == H_TOO_HARD)
1259                         return RESUME_HOST;
1260                 break;
1261         case H_STUFF_TCE:
1262                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1263                                                 kvmppc_get_gpr(vcpu, 5),
1264                                                 kvmppc_get_gpr(vcpu, 6),
1265                                                 kvmppc_get_gpr(vcpu, 7));
1266                 if (ret == H_TOO_HARD)
1267                         return RESUME_HOST;
1268                 break;
1269 #endif
1270         case H_RANDOM:
1271                 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1272                         ret = H_HARDWARE;
1273                 break;
1274         case H_RPT_INVALIDATE:
1275                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1276                                               kvmppc_get_gpr(vcpu, 5),
1277                                               kvmppc_get_gpr(vcpu, 6),
1278                                               kvmppc_get_gpr(vcpu, 7),
1279                                               kvmppc_get_gpr(vcpu, 8),
1280                                               kvmppc_get_gpr(vcpu, 9));
1281                 break;
1282
1283         case H_SET_PARTITION_TABLE:
1284                 ret = H_FUNCTION;
1285                 if (nesting_enabled(kvm))
1286                         ret = kvmhv_set_partition_table(vcpu);
1287                 break;
1288         case H_ENTER_NESTED:
1289                 ret = H_FUNCTION;
1290                 if (!nesting_enabled(kvm))
1291                         break;
1292                 ret = kvmhv_enter_nested_guest(vcpu);
1293                 if (ret == H_INTERRUPT) {
1294                         kvmppc_set_gpr(vcpu, 3, 0);
1295                         vcpu->arch.hcall_needed = 0;
1296                         return -EINTR;
1297                 } else if (ret == H_TOO_HARD) {
1298                         kvmppc_set_gpr(vcpu, 3, 0);
1299                         vcpu->arch.hcall_needed = 0;
1300                         return RESUME_HOST;
1301                 }
1302                 break;
1303         case H_TLB_INVALIDATE:
1304                 ret = H_FUNCTION;
1305                 if (nesting_enabled(kvm))
1306                         ret = kvmhv_do_nested_tlbie(vcpu);
1307                 break;
1308         case H_COPY_TOFROM_GUEST:
1309                 ret = H_FUNCTION;
1310                 if (nesting_enabled(kvm))
1311                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1312                 break;
1313         case H_PAGE_INIT:
1314                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1315                                          kvmppc_get_gpr(vcpu, 5),
1316                                          kvmppc_get_gpr(vcpu, 6));
1317                 break;
1318         case H_SVM_PAGE_IN:
1319                 ret = H_UNSUPPORTED;
1320                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1321                         ret = kvmppc_h_svm_page_in(kvm,
1322                                                    kvmppc_get_gpr(vcpu, 4),
1323                                                    kvmppc_get_gpr(vcpu, 5),
1324                                                    kvmppc_get_gpr(vcpu, 6));
1325                 break;
1326         case H_SVM_PAGE_OUT:
1327                 ret = H_UNSUPPORTED;
1328                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1329                         ret = kvmppc_h_svm_page_out(kvm,
1330                                                     kvmppc_get_gpr(vcpu, 4),
1331                                                     kvmppc_get_gpr(vcpu, 5),
1332                                                     kvmppc_get_gpr(vcpu, 6));
1333                 break;
1334         case H_SVM_INIT_START:
1335                 ret = H_UNSUPPORTED;
1336                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1337                         ret = kvmppc_h_svm_init_start(kvm);
1338                 break;
1339         case H_SVM_INIT_DONE:
1340                 ret = H_UNSUPPORTED;
1341                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1342                         ret = kvmppc_h_svm_init_done(kvm);
1343                 break;
1344         case H_SVM_INIT_ABORT:
1345                 /*
1346                  * Even if that call is made by the Ultravisor, the SSR1 value
1347                  * is the guest context one, with the secure bit clear as it has
1348                  * not yet been secured. So we can't check it here.
1349                  * Instead the kvm->arch.secure_guest flag is checked inside
1350                  * kvmppc_h_svm_init_abort().
1351                  */
1352                 ret = kvmppc_h_svm_init_abort(kvm);
1353                 break;
1354
1355         default:
1356                 return RESUME_HOST;
1357         }
1358         WARN_ON_ONCE(ret == H_TOO_HARD);
1359         kvmppc_set_gpr(vcpu, 3, ret);
1360         vcpu->arch.hcall_needed = 0;
1361         return RESUME_GUEST;
1362 }
1363
1364 /*
1365  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1366  * handlers in book3s_hv_rmhandlers.S.
1367  *
1368  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1369  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1370  */
1371 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1372 {
1373         vcpu->arch.shregs.msr |= MSR_EE;
1374         vcpu->arch.ceded = 1;
1375         smp_mb();
1376         if (vcpu->arch.prodded) {
1377                 vcpu->arch.prodded = 0;
1378                 smp_mb();
1379                 vcpu->arch.ceded = 0;
1380         }
1381 }
1382
1383 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1384 {
1385         switch (cmd) {
1386         case H_CEDE:
1387         case H_PROD:
1388         case H_CONFER:
1389         case H_REGISTER_VPA:
1390         case H_SET_MODE:
1391 #ifdef CONFIG_SPAPR_TCE_IOMMU
1392         case H_GET_TCE:
1393         case H_PUT_TCE:
1394         case H_PUT_TCE_INDIRECT:
1395         case H_STUFF_TCE:
1396 #endif
1397         case H_LOGICAL_CI_LOAD:
1398         case H_LOGICAL_CI_STORE:
1399 #ifdef CONFIG_KVM_XICS
1400         case H_XIRR:
1401         case H_CPPR:
1402         case H_EOI:
1403         case H_IPI:
1404         case H_IPOLL:
1405         case H_XIRR_X:
1406 #endif
1407         case H_PAGE_INIT:
1408         case H_RPT_INVALIDATE:
1409                 return 1;
1410         }
1411
1412         /* See if it's in the real-mode table */
1413         return kvmppc_hcall_impl_hv_realmode(cmd);
1414 }
1415
1416 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1417 {
1418         ppc_inst_t last_inst;
1419
1420         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1421                                         EMULATE_DONE) {
1422                 /*
1423                  * Fetch failed, so return to guest and
1424                  * try executing it again.
1425                  */
1426                 return RESUME_GUEST;
1427         }
1428
1429         if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1430                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1431                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1432                 return RESUME_HOST;
1433         } else {
1434                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1435                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1436                 return RESUME_GUEST;
1437         }
1438 }
1439
1440 static void do_nothing(void *x)
1441 {
1442 }
1443
1444 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1445 {
1446         int thr, cpu, pcpu, nthreads;
1447         struct kvm_vcpu *v;
1448         unsigned long dpdes;
1449
1450         nthreads = vcpu->kvm->arch.emul_smt_mode;
1451         dpdes = 0;
1452         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1453         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1454                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1455                 if (!v)
1456                         continue;
1457                 /*
1458                  * If the vcpu is currently running on a physical cpu thread,
1459                  * interrupt it in order to pull it out of the guest briefly,
1460                  * which will update its vcore->dpdes value.
1461                  */
1462                 pcpu = READ_ONCE(v->cpu);
1463                 if (pcpu >= 0)
1464                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1465                 if (kvmppc_doorbell_pending(v))
1466                         dpdes |= 1 << thr;
1467         }
1468         return dpdes;
1469 }
1470
1471 /*
1472  * On POWER9, emulate doorbell-related instructions in order to
1473  * give the guest the illusion of running on a multi-threaded core.
1474  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1475  * and mfspr DPDES.
1476  */
1477 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1478 {
1479         u32 inst, rb, thr;
1480         unsigned long arg;
1481         struct kvm *kvm = vcpu->kvm;
1482         struct kvm_vcpu *tvcpu;
1483         ppc_inst_t pinst;
1484
1485         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1486                 return RESUME_GUEST;
1487         inst = ppc_inst_val(pinst);
1488         if (get_op(inst) != 31)
1489                 return EMULATE_FAIL;
1490         rb = get_rb(inst);
1491         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1492         switch (get_xop(inst)) {
1493         case OP_31_XOP_MSGSNDP:
1494                 arg = kvmppc_get_gpr(vcpu, rb);
1495                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1496                         break;
1497                 arg &= 0x7f;
1498                 if (arg >= kvm->arch.emul_smt_mode)
1499                         break;
1500                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1501                 if (!tvcpu)
1502                         break;
1503                 if (!tvcpu->arch.doorbell_request) {
1504                         tvcpu->arch.doorbell_request = 1;
1505                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1506                 }
1507                 break;
1508         case OP_31_XOP_MSGCLRP:
1509                 arg = kvmppc_get_gpr(vcpu, rb);
1510                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1511                         break;
1512                 vcpu->arch.vcore->dpdes = 0;
1513                 vcpu->arch.doorbell_request = 0;
1514                 break;
1515         case OP_31_XOP_MFSPR:
1516                 switch (get_sprn(inst)) {
1517                 case SPRN_TIR:
1518                         arg = thr;
1519                         break;
1520                 case SPRN_DPDES:
1521                         arg = kvmppc_read_dpdes(vcpu);
1522                         break;
1523                 default:
1524                         return EMULATE_FAIL;
1525                 }
1526                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1527                 break;
1528         default:
1529                 return EMULATE_FAIL;
1530         }
1531         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1532         return RESUME_GUEST;
1533 }
1534
1535 /*
1536  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1537  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1538  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1539  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1540  * allow the guest access to continue.
1541  */
1542 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1543 {
1544         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1545                 return EMULATE_FAIL;
1546
1547         vcpu->arch.hfscr |= HFSCR_PM;
1548
1549         return RESUME_GUEST;
1550 }
1551
1552 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1553 {
1554         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1555                 return EMULATE_FAIL;
1556
1557         vcpu->arch.hfscr |= HFSCR_EBB;
1558
1559         return RESUME_GUEST;
1560 }
1561
1562 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1563 {
1564         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1565                 return EMULATE_FAIL;
1566
1567         vcpu->arch.hfscr |= HFSCR_TM;
1568
1569         return RESUME_GUEST;
1570 }
1571
1572 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1573                                  struct task_struct *tsk)
1574 {
1575         struct kvm_run *run = vcpu->run;
1576         int r = RESUME_HOST;
1577
1578         vcpu->stat.sum_exits++;
1579
1580         /*
1581          * This can happen if an interrupt occurs in the last stages
1582          * of guest entry or the first stages of guest exit (i.e. after
1583          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1584          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1585          * That can happen due to a bug, or due to a machine check
1586          * occurring at just the wrong time.
1587          */
1588         if (vcpu->arch.shregs.msr & MSR_HV) {
1589                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1590                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1591                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1592                         vcpu->arch.shregs.msr);
1593                 kvmppc_dump_regs(vcpu);
1594                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1595                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1596                 return RESUME_HOST;
1597         }
1598         run->exit_reason = KVM_EXIT_UNKNOWN;
1599         run->ready_for_interrupt_injection = 1;
1600         switch (vcpu->arch.trap) {
1601         /* We're good on these - the host merely wanted to get our attention */
1602         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1603                 WARN_ON_ONCE(1); /* Should never happen */
1604                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1605                 fallthrough;
1606         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1607                 vcpu->stat.dec_exits++;
1608                 r = RESUME_GUEST;
1609                 break;
1610         case BOOK3S_INTERRUPT_EXTERNAL:
1611         case BOOK3S_INTERRUPT_H_DOORBELL:
1612         case BOOK3S_INTERRUPT_H_VIRT:
1613                 vcpu->stat.ext_intr_exits++;
1614                 r = RESUME_GUEST;
1615                 break;
1616         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1617         case BOOK3S_INTERRUPT_HMI:
1618         case BOOK3S_INTERRUPT_PERFMON:
1619         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1620                 r = RESUME_GUEST;
1621                 break;
1622         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1623                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1624                                               DEFAULT_RATELIMIT_BURST);
1625                 /*
1626                  * Print the MCE event to host console. Ratelimit so the guest
1627                  * can't flood the host log.
1628                  */
1629                 if (__ratelimit(&rs))
1630                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1631
1632                 /*
1633                  * If the guest can do FWNMI, exit to userspace so it can
1634                  * deliver a FWNMI to the guest.
1635                  * Otherwise we synthesize a machine check for the guest
1636                  * so that it knows that the machine check occurred.
1637                  */
1638                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1639                         ulong flags = (vcpu->arch.shregs.msr & 0x083c0000) |
1640                                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1641                         kvmppc_core_queue_machine_check(vcpu, flags);
1642                         r = RESUME_GUEST;
1643                         break;
1644                 }
1645
1646                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1647                 run->exit_reason = KVM_EXIT_NMI;
1648                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1649                 /* Clear out the old NMI status from run->flags */
1650                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1651                 /* Now set the NMI status */
1652                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1653                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1654                 else
1655                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1656
1657                 r = RESUME_HOST;
1658                 break;
1659         }
1660         case BOOK3S_INTERRUPT_PROGRAM:
1661         {
1662                 ulong flags;
1663                 /*
1664                  * Normally program interrupts are delivered directly
1665                  * to the guest by the hardware, but we can get here
1666                  * as a result of a hypervisor emulation interrupt
1667                  * (e40) getting turned into a 700 by BML RTAS.
1668                  */
1669                 flags = (vcpu->arch.shregs.msr & 0x1f0000ull) |
1670                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1671                 kvmppc_core_queue_program(vcpu, flags);
1672                 r = RESUME_GUEST;
1673                 break;
1674         }
1675         case BOOK3S_INTERRUPT_SYSCALL:
1676         {
1677                 int i;
1678
1679                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1680                         /*
1681                          * Guest userspace executed sc 1. This can only be
1682                          * reached by the P9 path because the old path
1683                          * handles this case in realmode hcall handlers.
1684                          */
1685                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1686                                 /*
1687                                  * A guest could be running PR KVM, so this
1688                                  * may be a PR KVM hcall. It must be reflected
1689                                  * to the guest kernel as a sc interrupt.
1690                                  */
1691                                 kvmppc_core_queue_syscall(vcpu);
1692                         } else {
1693                                 /*
1694                                  * Radix guests can not run PR KVM or nested HV
1695                                  * hash guests which might run PR KVM, so this
1696                                  * is always a privilege fault. Send a program
1697                                  * check to guest kernel.
1698                                  */
1699                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1700                         }
1701                         r = RESUME_GUEST;
1702                         break;
1703                 }
1704
1705                 /*
1706                  * hcall - gather args and set exit_reason. This will next be
1707                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1708                  * with it and resume guest, or may punt to userspace.
1709                  */
1710                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1711                 for (i = 0; i < 9; ++i)
1712                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1713                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1714                 vcpu->arch.hcall_needed = 1;
1715                 r = RESUME_HOST;
1716                 break;
1717         }
1718         /*
1719          * We get these next two if the guest accesses a page which it thinks
1720          * it has mapped but which is not actually present, either because
1721          * it is for an emulated I/O device or because the corresonding
1722          * host page has been paged out.
1723          *
1724          * Any other HDSI/HISI interrupts have been handled already for P7/8
1725          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1726          * fault handling is done here.
1727          */
1728         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1729                 unsigned long vsid;
1730                 long err;
1731
1732                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1733                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1734                         r = RESUME_GUEST; /* Just retry if it's the canary */
1735                         break;
1736                 }
1737
1738                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1739                         /*
1740                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1741                          * already attempted to handle this in rmhandlers. The
1742                          * hash fault handling below is v3 only (it uses ASDR
1743                          * via fault_gpa).
1744                          */
1745                         r = RESUME_PAGE_FAULT;
1746                         break;
1747                 }
1748
1749                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1750                         kvmppc_core_queue_data_storage(vcpu,
1751                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1752                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1753                         r = RESUME_GUEST;
1754                         break;
1755                 }
1756
1757                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1758                         vsid = vcpu->kvm->arch.vrma_slb_v;
1759                 else
1760                         vsid = vcpu->arch.fault_gpa;
1761
1762                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1763                                 vsid, vcpu->arch.fault_dsisr, true);
1764                 if (err == 0) {
1765                         r = RESUME_GUEST;
1766                 } else if (err == -1 || err == -2) {
1767                         r = RESUME_PAGE_FAULT;
1768                 } else {
1769                         kvmppc_core_queue_data_storage(vcpu,
1770                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1771                                 vcpu->arch.fault_dar, err);
1772                         r = RESUME_GUEST;
1773                 }
1774                 break;
1775         }
1776         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1777                 unsigned long vsid;
1778                 long err;
1779
1780                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1781                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1782                         DSISR_SRR1_MATCH_64S;
1783                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1784                         /*
1785                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1786                          * already attempted to handle this in rmhandlers. The
1787                          * hash fault handling below is v3 only (it uses ASDR
1788                          * via fault_gpa).
1789                          */
1790                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1791                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1792                         r = RESUME_PAGE_FAULT;
1793                         break;
1794                 }
1795
1796                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1797                         kvmppc_core_queue_inst_storage(vcpu,
1798                                 vcpu->arch.fault_dsisr |
1799                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1800                         r = RESUME_GUEST;
1801                         break;
1802                 }
1803
1804                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1805                         vsid = vcpu->kvm->arch.vrma_slb_v;
1806                 else
1807                         vsid = vcpu->arch.fault_gpa;
1808
1809                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1810                                 vsid, vcpu->arch.fault_dsisr, false);
1811                 if (err == 0) {
1812                         r = RESUME_GUEST;
1813                 } else if (err == -1) {
1814                         r = RESUME_PAGE_FAULT;
1815                 } else {
1816                         kvmppc_core_queue_inst_storage(vcpu,
1817                                 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1818                         r = RESUME_GUEST;
1819                 }
1820                 break;
1821         }
1822
1823         /*
1824          * This occurs if the guest executes an illegal instruction.
1825          * If the guest debug is disabled, generate a program interrupt
1826          * to the guest. If guest debug is enabled, we need to check
1827          * whether the instruction is a software breakpoint instruction.
1828          * Accordingly return to Guest or Host.
1829          */
1830         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1831                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1832                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1833                                 swab32(vcpu->arch.emul_inst) :
1834                                 vcpu->arch.emul_inst;
1835                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1836                         r = kvmppc_emulate_debug_inst(vcpu);
1837                 } else {
1838                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1839                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1840                         r = RESUME_GUEST;
1841                 }
1842                 break;
1843
1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1845         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1846                 /*
1847                  * This occurs for various TM-related instructions that
1848                  * we need to emulate on POWER9 DD2.2.  We have already
1849                  * handled the cases where the guest was in real-suspend
1850                  * mode and was transitioning to transactional state.
1851                  */
1852                 r = kvmhv_p9_tm_emulation(vcpu);
1853                 if (r != -1)
1854                         break;
1855                 fallthrough; /* go to facility unavailable handler */
1856 #endif
1857
1858         /*
1859          * This occurs if the guest (kernel or userspace), does something that
1860          * is prohibited by HFSCR.
1861          * On POWER9, this could be a doorbell instruction that we need
1862          * to emulate.
1863          * Otherwise, we just generate a program interrupt to the guest.
1864          */
1865         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1866                 u64 cause = vcpu->arch.hfscr >> 56;
1867
1868                 r = EMULATE_FAIL;
1869                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1870                         if (cause == FSCR_MSGP_LG)
1871                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1872                         if (cause == FSCR_PM_LG)
1873                                 r = kvmppc_pmu_unavailable(vcpu);
1874                         if (cause == FSCR_EBB_LG)
1875                                 r = kvmppc_ebb_unavailable(vcpu);
1876                         if (cause == FSCR_TM_LG)
1877                                 r = kvmppc_tm_unavailable(vcpu);
1878                 }
1879                 if (r == EMULATE_FAIL) {
1880                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1881                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1882                         r = RESUME_GUEST;
1883                 }
1884                 break;
1885         }
1886
1887         case BOOK3S_INTERRUPT_HV_RM_HARD:
1888                 r = RESUME_PASSTHROUGH;
1889                 break;
1890         default:
1891                 kvmppc_dump_regs(vcpu);
1892                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1893                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1894                         vcpu->arch.shregs.msr);
1895                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1896                 r = RESUME_HOST;
1897                 break;
1898         }
1899
1900         return r;
1901 }
1902
1903 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1904 {
1905         int r;
1906         int srcu_idx;
1907
1908         vcpu->stat.sum_exits++;
1909
1910         /*
1911          * This can happen if an interrupt occurs in the last stages
1912          * of guest entry or the first stages of guest exit (i.e. after
1913          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1914          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1915          * That can happen due to a bug, or due to a machine check
1916          * occurring at just the wrong time.
1917          */
1918         if (vcpu->arch.shregs.msr & MSR_HV) {
1919                 pr_emerg("KVM trap in HV mode while nested!\n");
1920                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1921                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1922                          vcpu->arch.shregs.msr);
1923                 kvmppc_dump_regs(vcpu);
1924                 return RESUME_HOST;
1925         }
1926         switch (vcpu->arch.trap) {
1927         /* We're good on these - the host merely wanted to get our attention */
1928         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1929                 vcpu->stat.dec_exits++;
1930                 r = RESUME_GUEST;
1931                 break;
1932         case BOOK3S_INTERRUPT_EXTERNAL:
1933                 vcpu->stat.ext_intr_exits++;
1934                 r = RESUME_HOST;
1935                 break;
1936         case BOOK3S_INTERRUPT_H_DOORBELL:
1937         case BOOK3S_INTERRUPT_H_VIRT:
1938                 vcpu->stat.ext_intr_exits++;
1939                 r = RESUME_GUEST;
1940                 break;
1941         /* These need to go to the nested HV */
1942         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1943                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1944                 vcpu->stat.dec_exits++;
1945                 r = RESUME_HOST;
1946                 break;
1947         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1948         case BOOK3S_INTERRUPT_HMI:
1949         case BOOK3S_INTERRUPT_PERFMON:
1950         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1951                 r = RESUME_GUEST;
1952                 break;
1953         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1954         {
1955                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1956                                               DEFAULT_RATELIMIT_BURST);
1957                 /* Pass the machine check to the L1 guest */
1958                 r = RESUME_HOST;
1959                 /* Print the MCE event to host console. */
1960                 if (__ratelimit(&rs))
1961                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1962                 break;
1963         }
1964         /*
1965          * We get these next two if the guest accesses a page which it thinks
1966          * it has mapped but which is not actually present, either because
1967          * it is for an emulated I/O device or because the corresonding
1968          * host page has been paged out.
1969          */
1970         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1971                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1972                 r = kvmhv_nested_page_fault(vcpu);
1973                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1974                 break;
1975         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1976                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1977                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1978                                          DSISR_SRR1_MATCH_64S;
1979                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1980                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1981                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1982                 r = kvmhv_nested_page_fault(vcpu);
1983                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1984                 break;
1985
1986 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1987         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1988                 /*
1989                  * This occurs for various TM-related instructions that
1990                  * we need to emulate on POWER9 DD2.2.  We have already
1991                  * handled the cases where the guest was in real-suspend
1992                  * mode and was transitioning to transactional state.
1993                  */
1994                 r = kvmhv_p9_tm_emulation(vcpu);
1995                 if (r != -1)
1996                         break;
1997                 fallthrough; /* go to facility unavailable handler */
1998 #endif
1999
2000         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2001                 u64 cause = vcpu->arch.hfscr >> 56;
2002
2003                 /*
2004                  * Only pass HFU interrupts to the L1 if the facility is
2005                  * permitted but disabled by the L1's HFSCR, otherwise
2006                  * the interrupt does not make sense to the L1 so turn
2007                  * it into a HEAI.
2008                  */
2009                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2010                                 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2011                         ppc_inst_t pinst;
2012                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2013
2014                         /*
2015                          * If the fetch failed, return to guest and
2016                          * try executing it again.
2017                          */
2018                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2019                         vcpu->arch.emul_inst = ppc_inst_val(pinst);
2020                         if (r != EMULATE_DONE)
2021                                 r = RESUME_GUEST;
2022                         else
2023                                 r = RESUME_HOST;
2024                 } else {
2025                         r = RESUME_HOST;
2026                 }
2027
2028                 break;
2029         }
2030
2031         case BOOK3S_INTERRUPT_HV_RM_HARD:
2032                 vcpu->arch.trap = 0;
2033                 r = RESUME_GUEST;
2034                 if (!xics_on_xive())
2035                         kvmppc_xics_rm_complete(vcpu, 0);
2036                 break;
2037         case BOOK3S_INTERRUPT_SYSCALL:
2038         {
2039                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2040
2041                 /*
2042                  * The H_RPT_INVALIDATE hcalls issued by nested
2043                  * guests for process-scoped invalidations when
2044                  * GTSE=0, are handled here in L0.
2045                  */
2046                 if (req == H_RPT_INVALIDATE) {
2047                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
2048                         break;
2049                 }
2050
2051                 r = RESUME_HOST;
2052                 break;
2053         }
2054         default:
2055                 r = RESUME_HOST;
2056                 break;
2057         }
2058
2059         return r;
2060 }
2061
2062 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2063                                             struct kvm_sregs *sregs)
2064 {
2065         int i;
2066
2067         memset(sregs, 0, sizeof(struct kvm_sregs));
2068         sregs->pvr = vcpu->arch.pvr;
2069         for (i = 0; i < vcpu->arch.slb_max; i++) {
2070                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2071                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2078                                             struct kvm_sregs *sregs)
2079 {
2080         int i, j;
2081
2082         /* Only accept the same PVR as the host's, since we can't spoof it */
2083         if (sregs->pvr != vcpu->arch.pvr)
2084                 return -EINVAL;
2085
2086         j = 0;
2087         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2088                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2089                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2090                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2091                         ++j;
2092                 }
2093         }
2094         vcpu->arch.slb_max = j;
2095
2096         return 0;
2097 }
2098
2099 /*
2100  * Enforce limits on guest LPCR values based on hardware availability,
2101  * guest configuration, and possibly hypervisor support and security
2102  * concerns.
2103  */
2104 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2105 {
2106         /* LPCR_TC only applies to HPT guests */
2107         if (kvm_is_radix(kvm))
2108                 lpcr &= ~LPCR_TC;
2109
2110         /* On POWER8 and above, userspace can modify AIL */
2111         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2112                 lpcr &= ~LPCR_AIL;
2113         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2114                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2115         /*
2116          * On some POWER9s we force AIL off for radix guests to prevent
2117          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2118          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2119          * be cached, which the host TLB management does not expect.
2120          */
2121         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2122                 lpcr &= ~LPCR_AIL;
2123
2124         /*
2125          * On POWER9, allow userspace to enable large decrementer for the
2126          * guest, whether or not the host has it enabled.
2127          */
2128         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2129                 lpcr &= ~LPCR_LD;
2130
2131         return lpcr;
2132 }
2133
2134 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2135 {
2136         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2137                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2138                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2139         }
2140 }
2141
2142 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2143                 bool preserve_top32)
2144 {
2145         struct kvm *kvm = vcpu->kvm;
2146         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2147         u64 mask;
2148
2149         spin_lock(&vc->lock);
2150
2151         /*
2152          * Userspace can only modify
2153          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2154          * TC (translation control), AIL (alternate interrupt location),
2155          * LD (large decrementer).
2156          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2157          */
2158         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2159
2160         /* Broken 32-bit version of LPCR must not clear top bits */
2161         if (preserve_top32)
2162                 mask &= 0xFFFFFFFF;
2163
2164         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2165                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2166
2167         /*
2168          * If ILE (interrupt little-endian) has changed, update the
2169          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2170          */
2171         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2172                 struct kvm_vcpu *vcpu;
2173                 unsigned long i;
2174
2175                 kvm_for_each_vcpu(i, vcpu, kvm) {
2176                         if (vcpu->arch.vcore != vc)
2177                                 continue;
2178                         if (new_lpcr & LPCR_ILE)
2179                                 vcpu->arch.intr_msr |= MSR_LE;
2180                         else
2181                                 vcpu->arch.intr_msr &= ~MSR_LE;
2182                 }
2183         }
2184
2185         vc->lpcr = new_lpcr;
2186
2187         spin_unlock(&vc->lock);
2188 }
2189
2190 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2191                                  union kvmppc_one_reg *val)
2192 {
2193         int r = 0;
2194         long int i;
2195
2196         switch (id) {
2197         case KVM_REG_PPC_DEBUG_INST:
2198                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2199                 break;
2200         case KVM_REG_PPC_HIOR:
2201                 *val = get_reg_val(id, 0);
2202                 break;
2203         case KVM_REG_PPC_DABR:
2204                 *val = get_reg_val(id, vcpu->arch.dabr);
2205                 break;
2206         case KVM_REG_PPC_DABRX:
2207                 *val = get_reg_val(id, vcpu->arch.dabrx);
2208                 break;
2209         case KVM_REG_PPC_DSCR:
2210                 *val = get_reg_val(id, vcpu->arch.dscr);
2211                 break;
2212         case KVM_REG_PPC_PURR:
2213                 *val = get_reg_val(id, vcpu->arch.purr);
2214                 break;
2215         case KVM_REG_PPC_SPURR:
2216                 *val = get_reg_val(id, vcpu->arch.spurr);
2217                 break;
2218         case KVM_REG_PPC_AMR:
2219                 *val = get_reg_val(id, vcpu->arch.amr);
2220                 break;
2221         case KVM_REG_PPC_UAMOR:
2222                 *val = get_reg_val(id, vcpu->arch.uamor);
2223                 break;
2224         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2225                 i = id - KVM_REG_PPC_MMCR0;
2226                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2227                 break;
2228         case KVM_REG_PPC_MMCR2:
2229                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2230                 break;
2231         case KVM_REG_PPC_MMCRA:
2232                 *val = get_reg_val(id, vcpu->arch.mmcra);
2233                 break;
2234         case KVM_REG_PPC_MMCRS:
2235                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2236                 break;
2237         case KVM_REG_PPC_MMCR3:
2238                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2239                 break;
2240         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2241                 i = id - KVM_REG_PPC_PMC1;
2242                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2243                 break;
2244         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2245                 i = id - KVM_REG_PPC_SPMC1;
2246                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2247                 break;
2248         case KVM_REG_PPC_SIAR:
2249                 *val = get_reg_val(id, vcpu->arch.siar);
2250                 break;
2251         case KVM_REG_PPC_SDAR:
2252                 *val = get_reg_val(id, vcpu->arch.sdar);
2253                 break;
2254         case KVM_REG_PPC_SIER:
2255                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2256                 break;
2257         case KVM_REG_PPC_SIER2:
2258                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2259                 break;
2260         case KVM_REG_PPC_SIER3:
2261                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2262                 break;
2263         case KVM_REG_PPC_IAMR:
2264                 *val = get_reg_val(id, vcpu->arch.iamr);
2265                 break;
2266         case KVM_REG_PPC_PSPB:
2267                 *val = get_reg_val(id, vcpu->arch.pspb);
2268                 break;
2269         case KVM_REG_PPC_DPDES:
2270                 /*
2271                  * On POWER9, where we are emulating msgsndp etc.,
2272                  * we return 1 bit for each vcpu, which can come from
2273                  * either vcore->dpdes or doorbell_request.
2274                  * On POWER8, doorbell_request is 0.
2275                  */
2276                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2277                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2278                 else
2279                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2280                 break;
2281         case KVM_REG_PPC_VTB:
2282                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2283                 break;
2284         case KVM_REG_PPC_DAWR:
2285                 *val = get_reg_val(id, vcpu->arch.dawr0);
2286                 break;
2287         case KVM_REG_PPC_DAWRX:
2288                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2289                 break;
2290         case KVM_REG_PPC_DAWR1:
2291                 *val = get_reg_val(id, vcpu->arch.dawr1);
2292                 break;
2293         case KVM_REG_PPC_DAWRX1:
2294                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2295                 break;
2296         case KVM_REG_PPC_CIABR:
2297                 *val = get_reg_val(id, vcpu->arch.ciabr);
2298                 break;
2299         case KVM_REG_PPC_CSIGR:
2300                 *val = get_reg_val(id, vcpu->arch.csigr);
2301                 break;
2302         case KVM_REG_PPC_TACR:
2303                 *val = get_reg_val(id, vcpu->arch.tacr);
2304                 break;
2305         case KVM_REG_PPC_TCSCR:
2306                 *val = get_reg_val(id, vcpu->arch.tcscr);
2307                 break;
2308         case KVM_REG_PPC_PID:
2309                 *val = get_reg_val(id, vcpu->arch.pid);
2310                 break;
2311         case KVM_REG_PPC_ACOP:
2312                 *val = get_reg_val(id, vcpu->arch.acop);
2313                 break;
2314         case KVM_REG_PPC_WORT:
2315                 *val = get_reg_val(id, vcpu->arch.wort);
2316                 break;
2317         case KVM_REG_PPC_TIDR:
2318                 *val = get_reg_val(id, vcpu->arch.tid);
2319                 break;
2320         case KVM_REG_PPC_PSSCR:
2321                 *val = get_reg_val(id, vcpu->arch.psscr);
2322                 break;
2323         case KVM_REG_PPC_VPA_ADDR:
2324                 spin_lock(&vcpu->arch.vpa_update_lock);
2325                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2326                 spin_unlock(&vcpu->arch.vpa_update_lock);
2327                 break;
2328         case KVM_REG_PPC_VPA_SLB:
2329                 spin_lock(&vcpu->arch.vpa_update_lock);
2330                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2331                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2332                 spin_unlock(&vcpu->arch.vpa_update_lock);
2333                 break;
2334         case KVM_REG_PPC_VPA_DTL:
2335                 spin_lock(&vcpu->arch.vpa_update_lock);
2336                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2337                 val->vpaval.length = vcpu->arch.dtl.len;
2338                 spin_unlock(&vcpu->arch.vpa_update_lock);
2339                 break;
2340         case KVM_REG_PPC_TB_OFFSET:
2341                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2342                 break;
2343         case KVM_REG_PPC_LPCR:
2344         case KVM_REG_PPC_LPCR_64:
2345                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2346                 break;
2347         case KVM_REG_PPC_PPR:
2348                 *val = get_reg_val(id, vcpu->arch.ppr);
2349                 break;
2350 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2351         case KVM_REG_PPC_TFHAR:
2352                 *val = get_reg_val(id, vcpu->arch.tfhar);
2353                 break;
2354         case KVM_REG_PPC_TFIAR:
2355                 *val = get_reg_val(id, vcpu->arch.tfiar);
2356                 break;
2357         case KVM_REG_PPC_TEXASR:
2358                 *val = get_reg_val(id, vcpu->arch.texasr);
2359                 break;
2360         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2361                 i = id - KVM_REG_PPC_TM_GPR0;
2362                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2363                 break;
2364         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2365         {
2366                 int j;
2367                 i = id - KVM_REG_PPC_TM_VSR0;
2368                 if (i < 32)
2369                         for (j = 0; j < TS_FPRWIDTH; j++)
2370                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2371                 else {
2372                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2373                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2374                         else
2375                                 r = -ENXIO;
2376                 }
2377                 break;
2378         }
2379         case KVM_REG_PPC_TM_CR:
2380                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2381                 break;
2382         case KVM_REG_PPC_TM_XER:
2383                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2384                 break;
2385         case KVM_REG_PPC_TM_LR:
2386                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2387                 break;
2388         case KVM_REG_PPC_TM_CTR:
2389                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2390                 break;
2391         case KVM_REG_PPC_TM_FPSCR:
2392                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2393                 break;
2394         case KVM_REG_PPC_TM_AMR:
2395                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2396                 break;
2397         case KVM_REG_PPC_TM_PPR:
2398                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2399                 break;
2400         case KVM_REG_PPC_TM_VRSAVE:
2401                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2402                 break;
2403         case KVM_REG_PPC_TM_VSCR:
2404                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2405                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2406                 else
2407                         r = -ENXIO;
2408                 break;
2409         case KVM_REG_PPC_TM_DSCR:
2410                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2411                 break;
2412         case KVM_REG_PPC_TM_TAR:
2413                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2414                 break;
2415 #endif
2416         case KVM_REG_PPC_ARCH_COMPAT:
2417                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2418                 break;
2419         case KVM_REG_PPC_DEC_EXPIRY:
2420                 *val = get_reg_val(id, vcpu->arch.dec_expires);
2421                 break;
2422         case KVM_REG_PPC_ONLINE:
2423                 *val = get_reg_val(id, vcpu->arch.online);
2424                 break;
2425         case KVM_REG_PPC_PTCR:
2426                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2427                 break;
2428         default:
2429                 r = -EINVAL;
2430                 break;
2431         }
2432
2433         return r;
2434 }
2435
2436 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2437                                  union kvmppc_one_reg *val)
2438 {
2439         int r = 0;
2440         long int i;
2441         unsigned long addr, len;
2442
2443         switch (id) {
2444         case KVM_REG_PPC_HIOR:
2445                 /* Only allow this to be set to zero */
2446                 if (set_reg_val(id, *val))
2447                         r = -EINVAL;
2448                 break;
2449         case KVM_REG_PPC_DABR:
2450                 vcpu->arch.dabr = set_reg_val(id, *val);
2451                 break;
2452         case KVM_REG_PPC_DABRX:
2453                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2454                 break;
2455         case KVM_REG_PPC_DSCR:
2456                 vcpu->arch.dscr = set_reg_val(id, *val);
2457                 break;
2458         case KVM_REG_PPC_PURR:
2459                 vcpu->arch.purr = set_reg_val(id, *val);
2460                 break;
2461         case KVM_REG_PPC_SPURR:
2462                 vcpu->arch.spurr = set_reg_val(id, *val);
2463                 break;
2464         case KVM_REG_PPC_AMR:
2465                 vcpu->arch.amr = set_reg_val(id, *val);
2466                 break;
2467         case KVM_REG_PPC_UAMOR:
2468                 vcpu->arch.uamor = set_reg_val(id, *val);
2469                 break;
2470         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2471                 i = id - KVM_REG_PPC_MMCR0;
2472                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2473                 break;
2474         case KVM_REG_PPC_MMCR2:
2475                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2476                 break;
2477         case KVM_REG_PPC_MMCRA:
2478                 vcpu->arch.mmcra = set_reg_val(id, *val);
2479                 break;
2480         case KVM_REG_PPC_MMCRS:
2481                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2482                 break;
2483         case KVM_REG_PPC_MMCR3:
2484                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2485                 break;
2486         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2487                 i = id - KVM_REG_PPC_PMC1;
2488                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2489                 break;
2490         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2491                 i = id - KVM_REG_PPC_SPMC1;
2492                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2493                 break;
2494         case KVM_REG_PPC_SIAR:
2495                 vcpu->arch.siar = set_reg_val(id, *val);
2496                 break;
2497         case KVM_REG_PPC_SDAR:
2498                 vcpu->arch.sdar = set_reg_val(id, *val);
2499                 break;
2500         case KVM_REG_PPC_SIER:
2501                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2502                 break;
2503         case KVM_REG_PPC_SIER2:
2504                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2505                 break;
2506         case KVM_REG_PPC_SIER3:
2507                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2508                 break;
2509         case KVM_REG_PPC_IAMR:
2510                 vcpu->arch.iamr = set_reg_val(id, *val);
2511                 break;
2512         case KVM_REG_PPC_PSPB:
2513                 vcpu->arch.pspb = set_reg_val(id, *val);
2514                 break;
2515         case KVM_REG_PPC_DPDES:
2516                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2517                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2518                 else
2519                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2520                 break;
2521         case KVM_REG_PPC_VTB:
2522                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2523                 break;
2524         case KVM_REG_PPC_DAWR:
2525                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2526                 break;
2527         case KVM_REG_PPC_DAWRX:
2528                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2529                 break;
2530         case KVM_REG_PPC_DAWR1:
2531                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2532                 break;
2533         case KVM_REG_PPC_DAWRX1:
2534                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2535                 break;
2536         case KVM_REG_PPC_CIABR:
2537                 vcpu->arch.ciabr = set_reg_val(id, *val);
2538                 /* Don't allow setting breakpoints in hypervisor code */
2539                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2540                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2541                 break;
2542         case KVM_REG_PPC_CSIGR:
2543                 vcpu->arch.csigr = set_reg_val(id, *val);
2544                 break;
2545         case KVM_REG_PPC_TACR:
2546                 vcpu->arch.tacr = set_reg_val(id, *val);
2547                 break;
2548         case KVM_REG_PPC_TCSCR:
2549                 vcpu->arch.tcscr = set_reg_val(id, *val);
2550                 break;
2551         case KVM_REG_PPC_PID:
2552                 vcpu->arch.pid = set_reg_val(id, *val);
2553                 break;
2554         case KVM_REG_PPC_ACOP:
2555                 vcpu->arch.acop = set_reg_val(id, *val);
2556                 break;
2557         case KVM_REG_PPC_WORT:
2558                 vcpu->arch.wort = set_reg_val(id, *val);
2559                 break;
2560         case KVM_REG_PPC_TIDR:
2561                 vcpu->arch.tid = set_reg_val(id, *val);
2562                 break;
2563         case KVM_REG_PPC_PSSCR:
2564                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2565                 break;
2566         case KVM_REG_PPC_VPA_ADDR:
2567                 addr = set_reg_val(id, *val);
2568                 r = -EINVAL;
2569                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2570                               vcpu->arch.dtl.next_gpa))
2571                         break;
2572                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2573                 break;
2574         case KVM_REG_PPC_VPA_SLB:
2575                 addr = val->vpaval.addr;
2576                 len = val->vpaval.length;
2577                 r = -EINVAL;
2578                 if (addr && !vcpu->arch.vpa.next_gpa)
2579                         break;
2580                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2581                 break;
2582         case KVM_REG_PPC_VPA_DTL:
2583                 addr = val->vpaval.addr;
2584                 len = val->vpaval.length;
2585                 r = -EINVAL;
2586                 if (addr && (len < sizeof(struct dtl_entry) ||
2587                              !vcpu->arch.vpa.next_gpa))
2588                         break;
2589                 len -= len % sizeof(struct dtl_entry);
2590                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2591                 break;
2592         case KVM_REG_PPC_TB_OFFSET:
2593         {
2594                 /* round up to multiple of 2^24 */
2595                 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2596
2597                 /*
2598                  * Now that we know the timebase offset, update the
2599                  * decrementer expiry with a guest timebase value. If
2600                  * the userspace does not set DEC_EXPIRY, this ensures
2601                  * a migrated vcpu at least starts with an expired
2602                  * decrementer, which is better than a large one that
2603                  * causes a hang.
2604                  */
2605                 if (!vcpu->arch.dec_expires && tb_offset)
2606                         vcpu->arch.dec_expires = get_tb() + tb_offset;
2607
2608                 vcpu->arch.vcore->tb_offset = tb_offset;
2609                 break;
2610         }
2611         case KVM_REG_PPC_LPCR:
2612                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2613                 break;
2614         case KVM_REG_PPC_LPCR_64:
2615                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2616                 break;
2617         case KVM_REG_PPC_PPR:
2618                 vcpu->arch.ppr = set_reg_val(id, *val);
2619                 break;
2620 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2621         case KVM_REG_PPC_TFHAR:
2622                 vcpu->arch.tfhar = set_reg_val(id, *val);
2623                 break;
2624         case KVM_REG_PPC_TFIAR:
2625                 vcpu->arch.tfiar = set_reg_val(id, *val);
2626                 break;
2627         case KVM_REG_PPC_TEXASR:
2628                 vcpu->arch.texasr = set_reg_val(id, *val);
2629                 break;
2630         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2631                 i = id - KVM_REG_PPC_TM_GPR0;
2632                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2633                 break;
2634         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2635         {
2636                 int j;
2637                 i = id - KVM_REG_PPC_TM_VSR0;
2638                 if (i < 32)
2639                         for (j = 0; j < TS_FPRWIDTH; j++)
2640                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2641                 else
2642                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2643                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2644                         else
2645                                 r = -ENXIO;
2646                 break;
2647         }
2648         case KVM_REG_PPC_TM_CR:
2649                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2650                 break;
2651         case KVM_REG_PPC_TM_XER:
2652                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2653                 break;
2654         case KVM_REG_PPC_TM_LR:
2655                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2656                 break;
2657         case KVM_REG_PPC_TM_CTR:
2658                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2659                 break;
2660         case KVM_REG_PPC_TM_FPSCR:
2661                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2662                 break;
2663         case KVM_REG_PPC_TM_AMR:
2664                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2665                 break;
2666         case KVM_REG_PPC_TM_PPR:
2667                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2668                 break;
2669         case KVM_REG_PPC_TM_VRSAVE:
2670                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2671                 break;
2672         case KVM_REG_PPC_TM_VSCR:
2673                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2674                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2675                 else
2676                         r = - ENXIO;
2677                 break;
2678         case KVM_REG_PPC_TM_DSCR:
2679                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2680                 break;
2681         case KVM_REG_PPC_TM_TAR:
2682                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2683                 break;
2684 #endif
2685         case KVM_REG_PPC_ARCH_COMPAT:
2686                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2687                 break;
2688         case KVM_REG_PPC_DEC_EXPIRY:
2689                 vcpu->arch.dec_expires = set_reg_val(id, *val);
2690                 break;
2691         case KVM_REG_PPC_ONLINE:
2692                 i = set_reg_val(id, *val);
2693                 if (i && !vcpu->arch.online)
2694                         atomic_inc(&vcpu->arch.vcore->online_count);
2695                 else if (!i && vcpu->arch.online)
2696                         atomic_dec(&vcpu->arch.vcore->online_count);
2697                 vcpu->arch.online = i;
2698                 break;
2699         case KVM_REG_PPC_PTCR:
2700                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2701                 break;
2702         default:
2703                 r = -EINVAL;
2704                 break;
2705         }
2706
2707         return r;
2708 }
2709
2710 /*
2711  * On POWER9, threads are independent and can be in different partitions.
2712  * Therefore we consider each thread to be a subcore.
2713  * There is a restriction that all threads have to be in the same
2714  * MMU mode (radix or HPT), unfortunately, but since we only support
2715  * HPT guests on a HPT host so far, that isn't an impediment yet.
2716  */
2717 static int threads_per_vcore(struct kvm *kvm)
2718 {
2719         if (cpu_has_feature(CPU_FTR_ARCH_300))
2720                 return 1;
2721         return threads_per_subcore;
2722 }
2723
2724 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2725 {
2726         struct kvmppc_vcore *vcore;
2727
2728         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2729
2730         if (vcore == NULL)
2731                 return NULL;
2732
2733         spin_lock_init(&vcore->lock);
2734         spin_lock_init(&vcore->stoltb_lock);
2735         rcuwait_init(&vcore->wait);
2736         vcore->preempt_tb = TB_NIL;
2737         vcore->lpcr = kvm->arch.lpcr;
2738         vcore->first_vcpuid = id;
2739         vcore->kvm = kvm;
2740         INIT_LIST_HEAD(&vcore->preempt_list);
2741
2742         return vcore;
2743 }
2744
2745 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2746 static struct debugfs_timings_element {
2747         const char *name;
2748         size_t offset;
2749 } timings[] = {
2750 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2751         {"vcpu_entry",  offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2752         {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2753         {"in_guest",    offsetof(struct kvm_vcpu, arch.in_guest)},
2754         {"guest_exit",  offsetof(struct kvm_vcpu, arch.guest_exit)},
2755         {"vcpu_exit",   offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2756         {"hypercall",   offsetof(struct kvm_vcpu, arch.hcall)},
2757         {"page_fault",  offsetof(struct kvm_vcpu, arch.pg_fault)},
2758 #else
2759         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2760         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2761         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2762         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2763         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2764 #endif
2765 };
2766
2767 #define N_TIMINGS       (ARRAY_SIZE(timings))
2768
2769 struct debugfs_timings_state {
2770         struct kvm_vcpu *vcpu;
2771         unsigned int    buflen;
2772         char            buf[N_TIMINGS * 100];
2773 };
2774
2775 static int debugfs_timings_open(struct inode *inode, struct file *file)
2776 {
2777         struct kvm_vcpu *vcpu = inode->i_private;
2778         struct debugfs_timings_state *p;
2779
2780         p = kzalloc(sizeof(*p), GFP_KERNEL);
2781         if (!p)
2782                 return -ENOMEM;
2783
2784         kvm_get_kvm(vcpu->kvm);
2785         p->vcpu = vcpu;
2786         file->private_data = p;
2787
2788         return nonseekable_open(inode, file);
2789 }
2790
2791 static int debugfs_timings_release(struct inode *inode, struct file *file)
2792 {
2793         struct debugfs_timings_state *p = file->private_data;
2794
2795         kvm_put_kvm(p->vcpu->kvm);
2796         kfree(p);
2797         return 0;
2798 }
2799
2800 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2801                                     size_t len, loff_t *ppos)
2802 {
2803         struct debugfs_timings_state *p = file->private_data;
2804         struct kvm_vcpu *vcpu = p->vcpu;
2805         char *s, *buf_end;
2806         struct kvmhv_tb_accumulator tb;
2807         u64 count;
2808         loff_t pos;
2809         ssize_t n;
2810         int i, loops;
2811         bool ok;
2812
2813         if (!p->buflen) {
2814                 s = p->buf;
2815                 buf_end = s + sizeof(p->buf);
2816                 for (i = 0; i < N_TIMINGS; ++i) {
2817                         struct kvmhv_tb_accumulator *acc;
2818
2819                         acc = (struct kvmhv_tb_accumulator *)
2820                                 ((unsigned long)vcpu + timings[i].offset);
2821                         ok = false;
2822                         for (loops = 0; loops < 1000; ++loops) {
2823                                 count = acc->seqcount;
2824                                 if (!(count & 1)) {
2825                                         smp_rmb();
2826                                         tb = *acc;
2827                                         smp_rmb();
2828                                         if (count == acc->seqcount) {
2829                                                 ok = true;
2830                                                 break;
2831                                         }
2832                                 }
2833                                 udelay(1);
2834                         }
2835                         if (!ok)
2836                                 snprintf(s, buf_end - s, "%s: stuck\n",
2837                                         timings[i].name);
2838                         else
2839                                 snprintf(s, buf_end - s,
2840                                         "%s: %llu %llu %llu %llu\n",
2841                                         timings[i].name, count / 2,
2842                                         tb_to_ns(tb.tb_total),
2843                                         tb_to_ns(tb.tb_min),
2844                                         tb_to_ns(tb.tb_max));
2845                         s += strlen(s);
2846                 }
2847                 p->buflen = s - p->buf;
2848         }
2849
2850         pos = *ppos;
2851         if (pos >= p->buflen)
2852                 return 0;
2853         if (len > p->buflen - pos)
2854                 len = p->buflen - pos;
2855         n = copy_to_user(buf, p->buf + pos, len);
2856         if (n) {
2857                 if (n == len)
2858                         return -EFAULT;
2859                 len -= n;
2860         }
2861         *ppos = pos + len;
2862         return len;
2863 }
2864
2865 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2866                                      size_t len, loff_t *ppos)
2867 {
2868         return -EACCES;
2869 }
2870
2871 static const struct file_operations debugfs_timings_ops = {
2872         .owner   = THIS_MODULE,
2873         .open    = debugfs_timings_open,
2874         .release = debugfs_timings_release,
2875         .read    = debugfs_timings_read,
2876         .write   = debugfs_timings_write,
2877         .llseek  = generic_file_llseek,
2878 };
2879
2880 /* Create a debugfs directory for the vcpu */
2881 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2882 {
2883         if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2884                 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2885                                     &debugfs_timings_ops);
2886         return 0;
2887 }
2888
2889 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2890 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2891 {
2892         return 0;
2893 }
2894 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2895
2896 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2897 {
2898         int err;
2899         int core;
2900         struct kvmppc_vcore *vcore;
2901         struct kvm *kvm;
2902         unsigned int id;
2903
2904         kvm = vcpu->kvm;
2905         id = vcpu->vcpu_id;
2906
2907         vcpu->arch.shared = &vcpu->arch.shregs;
2908 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2909         /*
2910          * The shared struct is never shared on HV,
2911          * so we can always use host endianness
2912          */
2913 #ifdef __BIG_ENDIAN__
2914         vcpu->arch.shared_big_endian = true;
2915 #else
2916         vcpu->arch.shared_big_endian = false;
2917 #endif
2918 #endif
2919         vcpu->arch.mmcr[0] = MMCR0_FC;
2920         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2921                 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2922                 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2923         }
2924
2925         vcpu->arch.ctrl = CTRL_RUNLATCH;
2926         /* default to host PVR, since we can't spoof it */
2927         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2928         spin_lock_init(&vcpu->arch.vpa_update_lock);
2929         spin_lock_init(&vcpu->arch.tbacct_lock);
2930         vcpu->arch.busy_preempt = TB_NIL;
2931         vcpu->arch.shregs.msr = MSR_ME;
2932         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2933
2934         /*
2935          * Set the default HFSCR for the guest from the host value.
2936          * This value is only used on POWER9 and later.
2937          * On >= POWER9, we want to virtualize the doorbell facility, so we
2938          * don't set the HFSCR_MSGP bit, and that causes those instructions
2939          * to trap and then we emulate them.
2940          */
2941         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2942                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2943
2944         /* On POWER10 and later, allow prefixed instructions */
2945         if (cpu_has_feature(CPU_FTR_ARCH_31))
2946                 vcpu->arch.hfscr |= HFSCR_PREFIX;
2947
2948         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2949                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2950 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2951                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2952                         vcpu->arch.hfscr |= HFSCR_TM;
2953 #endif
2954         }
2955         if (cpu_has_feature(CPU_FTR_TM_COMP))
2956                 vcpu->arch.hfscr |= HFSCR_TM;
2957
2958         vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2959
2960         /*
2961          * PM, EBB, TM are demand-faulted so start with it clear.
2962          */
2963         vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2964
2965         kvmppc_mmu_book3s_hv_init(vcpu);
2966
2967         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2968
2969         init_waitqueue_head(&vcpu->arch.cpu_run);
2970
2971         mutex_lock(&kvm->lock);
2972         vcore = NULL;
2973         err = -EINVAL;
2974         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2975                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2976                         pr_devel("KVM: VCPU ID too high\n");
2977                         core = KVM_MAX_VCORES;
2978                 } else {
2979                         BUG_ON(kvm->arch.smt_mode != 1);
2980                         core = kvmppc_pack_vcpu_id(kvm, id);
2981                 }
2982         } else {
2983                 core = id / kvm->arch.smt_mode;
2984         }
2985         if (core < KVM_MAX_VCORES) {
2986                 vcore = kvm->arch.vcores[core];
2987                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2988                         pr_devel("KVM: collision on id %u", id);
2989                         vcore = NULL;
2990                 } else if (!vcore) {
2991                         /*
2992                          * Take mmu_setup_lock for mutual exclusion
2993                          * with kvmppc_update_lpcr().
2994                          */
2995                         err = -ENOMEM;
2996                         vcore = kvmppc_vcore_create(kvm,
2997                                         id & ~(kvm->arch.smt_mode - 1));
2998                         mutex_lock(&kvm->arch.mmu_setup_lock);
2999                         kvm->arch.vcores[core] = vcore;
3000                         kvm->arch.online_vcores++;
3001                         mutex_unlock(&kvm->arch.mmu_setup_lock);
3002                 }
3003         }
3004         mutex_unlock(&kvm->lock);
3005
3006         if (!vcore)
3007                 return err;
3008
3009         spin_lock(&vcore->lock);
3010         ++vcore->num_threads;
3011         spin_unlock(&vcore->lock);
3012         vcpu->arch.vcore = vcore;
3013         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3014         vcpu->arch.thread_cpu = -1;
3015         vcpu->arch.prev_cpu = -1;
3016
3017         vcpu->arch.cpu_type = KVM_CPU_3S_64;
3018         kvmppc_sanity_check(vcpu);
3019
3020         return 0;
3021 }
3022
3023 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3024                               unsigned long flags)
3025 {
3026         int err;
3027         int esmt = 0;
3028
3029         if (flags)
3030                 return -EINVAL;
3031         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3032                 return -EINVAL;
3033         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3034                 /*
3035                  * On POWER8 (or POWER7), the threading mode is "strict",
3036                  * so we pack smt_mode vcpus per vcore.
3037                  */
3038                 if (smt_mode > threads_per_subcore)
3039                         return -EINVAL;
3040         } else {
3041                 /*
3042                  * On POWER9, the threading mode is "loose",
3043                  * so each vcpu gets its own vcore.
3044                  */
3045                 esmt = smt_mode;
3046                 smt_mode = 1;
3047         }
3048         mutex_lock(&kvm->lock);
3049         err = -EBUSY;
3050         if (!kvm->arch.online_vcores) {
3051                 kvm->arch.smt_mode = smt_mode;
3052                 kvm->arch.emul_smt_mode = esmt;
3053                 err = 0;
3054         }
3055         mutex_unlock(&kvm->lock);
3056
3057         return err;
3058 }
3059
3060 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3061 {
3062         if (vpa->pinned_addr)
3063                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3064                                         vpa->dirty);
3065 }
3066
3067 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3068 {
3069         spin_lock(&vcpu->arch.vpa_update_lock);
3070         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3071         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3072         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3073         spin_unlock(&vcpu->arch.vpa_update_lock);
3074 }
3075
3076 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3077 {
3078         /* Indicate we want to get back into the guest */
3079         return 1;
3080 }
3081
3082 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3083 {
3084         unsigned long dec_nsec, now;
3085
3086         now = get_tb();
3087         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3088                 /* decrementer has already gone negative */
3089                 kvmppc_core_queue_dec(vcpu);
3090                 kvmppc_core_prepare_to_enter(vcpu);
3091                 return;
3092         }
3093         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3094         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3095         vcpu->arch.timer_running = 1;
3096 }
3097
3098 extern int __kvmppc_vcore_entry(void);
3099
3100 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3101                                    struct kvm_vcpu *vcpu, u64 tb)
3102 {
3103         u64 now;
3104
3105         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3106                 return;
3107         spin_lock_irq(&vcpu->arch.tbacct_lock);
3108         now = tb;
3109         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3110                 vcpu->arch.stolen_logged;
3111         vcpu->arch.busy_preempt = now;
3112         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3113         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3114         --vc->n_runnable;
3115         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3116 }
3117
3118 static int kvmppc_grab_hwthread(int cpu)
3119 {
3120         struct paca_struct *tpaca;
3121         long timeout = 10000;
3122
3123         tpaca = paca_ptrs[cpu];
3124
3125         /* Ensure the thread won't go into the kernel if it wakes */
3126         tpaca->kvm_hstate.kvm_vcpu = NULL;
3127         tpaca->kvm_hstate.kvm_vcore = NULL;
3128         tpaca->kvm_hstate.napping = 0;
3129         smp_wmb();
3130         tpaca->kvm_hstate.hwthread_req = 1;
3131
3132         /*
3133          * If the thread is already executing in the kernel (e.g. handling
3134          * a stray interrupt), wait for it to get back to nap mode.
3135          * The smp_mb() is to ensure that our setting of hwthread_req
3136          * is visible before we look at hwthread_state, so if this
3137          * races with the code at system_reset_pSeries and the thread
3138          * misses our setting of hwthread_req, we are sure to see its
3139          * setting of hwthread_state, and vice versa.
3140          */
3141         smp_mb();
3142         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3143                 if (--timeout <= 0) {
3144                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3145                         return -EBUSY;
3146                 }
3147                 udelay(1);
3148         }
3149         return 0;
3150 }
3151
3152 static void kvmppc_release_hwthread(int cpu)
3153 {
3154         struct paca_struct *tpaca;
3155
3156         tpaca = paca_ptrs[cpu];
3157         tpaca->kvm_hstate.hwthread_req = 0;
3158         tpaca->kvm_hstate.kvm_vcpu = NULL;
3159         tpaca->kvm_hstate.kvm_vcore = NULL;
3160         tpaca->kvm_hstate.kvm_split_mode = NULL;
3161 }
3162
3163 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3164
3165 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3166 {
3167         struct kvm_nested_guest *nested = vcpu->arch.nested;
3168         cpumask_t *need_tlb_flush;
3169         int i;
3170
3171         if (nested)
3172                 need_tlb_flush = &nested->need_tlb_flush;
3173         else
3174                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3175
3176         cpu = cpu_first_tlb_thread_sibling(cpu);
3177         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3178                                         i += cpu_tlb_thread_sibling_step())
3179                 cpumask_set_cpu(i, need_tlb_flush);
3180
3181         /*
3182          * Make sure setting of bit in need_tlb_flush precedes testing of
3183          * cpu_in_guest. The matching barrier on the other side is hwsync
3184          * when switching to guest MMU mode, which happens between
3185          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3186          * being tested.
3187          */
3188         smp_mb();
3189
3190         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3191                                         i += cpu_tlb_thread_sibling_step()) {
3192                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3193
3194                 if (running == kvm)
3195                         smp_call_function_single(i, do_nothing, NULL, 1);
3196         }
3197 }
3198
3199 static void do_migrate_away_vcpu(void *arg)
3200 {
3201         struct kvm_vcpu *vcpu = arg;
3202         struct kvm *kvm = vcpu->kvm;
3203
3204         /*
3205          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3206          * ptesync sequence on the old CPU before migrating to a new one, in
3207          * case we interrupted the guest between a tlbie ; eieio ;
3208          * tlbsync; ptesync sequence.
3209          *
3210          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3211          */
3212         if (kvm->arch.lpcr & LPCR_GTSE)
3213                 asm volatile("eieio; tlbsync; ptesync");
3214         else
3215                 asm volatile("ptesync");
3216 }
3217
3218 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3219 {
3220         struct kvm_nested_guest *nested = vcpu->arch.nested;
3221         struct kvm *kvm = vcpu->kvm;
3222         int prev_cpu;
3223
3224         if (!cpu_has_feature(CPU_FTR_HVMODE))
3225                 return;
3226
3227         if (nested)
3228                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3229         else
3230                 prev_cpu = vcpu->arch.prev_cpu;
3231
3232         /*
3233          * With radix, the guest can do TLB invalidations itself,
3234          * and it could choose to use the local form (tlbiel) if
3235          * it is invalidating a translation that has only ever been
3236          * used on one vcpu.  However, that doesn't mean it has
3237          * only ever been used on one physical cpu, since vcpus
3238          * can move around between pcpus.  To cope with this, when
3239          * a vcpu moves from one pcpu to another, we need to tell
3240          * any vcpus running on the same core as this vcpu previously
3241          * ran to flush the TLB.
3242          */
3243         if (prev_cpu != pcpu) {
3244                 if (prev_cpu >= 0) {
3245                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3246                             cpu_first_tlb_thread_sibling(pcpu))
3247                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3248
3249                         smp_call_function_single(prev_cpu,
3250                                         do_migrate_away_vcpu, vcpu, 1);
3251                 }
3252                 if (nested)
3253                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3254                 else
3255                         vcpu->arch.prev_cpu = pcpu;
3256         }
3257 }
3258
3259 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3260 {
3261         int cpu;
3262         struct paca_struct *tpaca;
3263
3264         cpu = vc->pcpu;
3265         if (vcpu) {
3266                 if (vcpu->arch.timer_running) {
3267                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3268                         vcpu->arch.timer_running = 0;
3269                 }
3270                 cpu += vcpu->arch.ptid;
3271                 vcpu->cpu = vc->pcpu;
3272                 vcpu->arch.thread_cpu = cpu;
3273         }
3274         tpaca = paca_ptrs[cpu];
3275         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3276         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3277         tpaca->kvm_hstate.fake_suspend = 0;
3278         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3279         smp_wmb();
3280         tpaca->kvm_hstate.kvm_vcore = vc;
3281         if (cpu != smp_processor_id())
3282                 kvmppc_ipi_thread(cpu);
3283 }
3284
3285 static void kvmppc_wait_for_nap(int n_threads)
3286 {
3287         int cpu = smp_processor_id();
3288         int i, loops;
3289
3290         if (n_threads <= 1)
3291                 return;
3292         for (loops = 0; loops < 1000000; ++loops) {
3293                 /*
3294                  * Check if all threads are finished.
3295                  * We set the vcore pointer when starting a thread
3296                  * and the thread clears it when finished, so we look
3297                  * for any threads that still have a non-NULL vcore ptr.
3298                  */
3299                 for (i = 1; i < n_threads; ++i)
3300                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3301                                 break;
3302                 if (i == n_threads) {
3303                         HMT_medium();
3304                         return;
3305                 }
3306                 HMT_low();
3307         }
3308         HMT_medium();
3309         for (i = 1; i < n_threads; ++i)
3310                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3311                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3312 }
3313
3314 /*
3315  * Check that we are on thread 0 and that any other threads in
3316  * this core are off-line.  Then grab the threads so they can't
3317  * enter the kernel.
3318  */
3319 static int on_primary_thread(void)
3320 {
3321         int cpu = smp_processor_id();
3322         int thr;
3323
3324         /* Are we on a primary subcore? */
3325         if (cpu_thread_in_subcore(cpu))
3326                 return 0;
3327
3328         thr = 0;
3329         while (++thr < threads_per_subcore)
3330                 if (cpu_online(cpu + thr))
3331                         return 0;
3332
3333         /* Grab all hw threads so they can't go into the kernel */
3334         for (thr = 1; thr < threads_per_subcore; ++thr) {
3335                 if (kvmppc_grab_hwthread(cpu + thr)) {
3336                         /* Couldn't grab one; let the others go */
3337                         do {
3338                                 kvmppc_release_hwthread(cpu + thr);
3339                         } while (--thr > 0);
3340                         return 0;
3341                 }
3342         }
3343         return 1;
3344 }
3345
3346 /*
3347  * A list of virtual cores for each physical CPU.
3348  * These are vcores that could run but their runner VCPU tasks are
3349  * (or may be) preempted.
3350  */
3351 struct preempted_vcore_list {
3352         struct list_head        list;
3353         spinlock_t              lock;
3354 };
3355
3356 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3357
3358 static void init_vcore_lists(void)
3359 {
3360         int cpu;
3361
3362         for_each_possible_cpu(cpu) {
3363                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3364                 spin_lock_init(&lp->lock);
3365                 INIT_LIST_HEAD(&lp->list);
3366         }
3367 }
3368
3369 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3370 {
3371         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3372
3373         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3374
3375         vc->vcore_state = VCORE_PREEMPT;
3376         vc->pcpu = smp_processor_id();
3377         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3378                 spin_lock(&lp->lock);
3379                 list_add_tail(&vc->preempt_list, &lp->list);
3380                 spin_unlock(&lp->lock);
3381         }
3382
3383         /* Start accumulating stolen time */
3384         kvmppc_core_start_stolen(vc, mftb());
3385 }
3386
3387 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3388 {
3389         struct preempted_vcore_list *lp;
3390
3391         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3392
3393         kvmppc_core_end_stolen(vc, mftb());
3394         if (!list_empty(&vc->preempt_list)) {
3395                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3396                 spin_lock(&lp->lock);
3397                 list_del_init(&vc->preempt_list);
3398                 spin_unlock(&lp->lock);
3399         }
3400         vc->vcore_state = VCORE_INACTIVE;
3401 }
3402
3403 /*
3404  * This stores information about the virtual cores currently
3405  * assigned to a physical core.
3406  */
3407 struct core_info {
3408         int             n_subcores;
3409         int             max_subcore_threads;
3410         int             total_threads;
3411         int             subcore_threads[MAX_SUBCORES];
3412         struct kvmppc_vcore *vc[MAX_SUBCORES];
3413 };
3414
3415 /*
3416  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3417  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3418  */
3419 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3420
3421 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3422 {
3423         memset(cip, 0, sizeof(*cip));
3424         cip->n_subcores = 1;
3425         cip->max_subcore_threads = vc->num_threads;
3426         cip->total_threads = vc->num_threads;
3427         cip->subcore_threads[0] = vc->num_threads;
3428         cip->vc[0] = vc;
3429 }
3430
3431 static bool subcore_config_ok(int n_subcores, int n_threads)
3432 {
3433         /*
3434          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3435          * split-core mode, with one thread per subcore.
3436          */
3437         if (cpu_has_feature(CPU_FTR_ARCH_300))
3438                 return n_subcores <= 4 && n_threads == 1;
3439
3440         /* On POWER8, can only dynamically split if unsplit to begin with */
3441         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3442                 return false;
3443         if (n_subcores > MAX_SUBCORES)
3444                 return false;
3445         if (n_subcores > 1) {
3446                 if (!(dynamic_mt_modes & 2))
3447                         n_subcores = 4;
3448                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3449                         return false;
3450         }
3451
3452         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3453 }
3454
3455 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3456 {
3457         vc->entry_exit_map = 0;
3458         vc->in_guest = 0;
3459         vc->napping_threads = 0;
3460         vc->conferring_threads = 0;
3461         vc->tb_offset_applied = 0;
3462 }
3463
3464 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3465 {
3466         int n_threads = vc->num_threads;
3467         int sub;
3468
3469         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3470                 return false;
3471
3472         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3473         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3474                 return false;
3475
3476         if (n_threads < cip->max_subcore_threads)
3477                 n_threads = cip->max_subcore_threads;
3478         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3479                 return false;
3480         cip->max_subcore_threads = n_threads;
3481
3482         sub = cip->n_subcores;
3483         ++cip->n_subcores;
3484         cip->total_threads += vc->num_threads;
3485         cip->subcore_threads[sub] = vc->num_threads;
3486         cip->vc[sub] = vc;
3487         init_vcore_to_run(vc);
3488         list_del_init(&vc->preempt_list);
3489
3490         return true;
3491 }
3492
3493 /*
3494  * Work out whether it is possible to piggyback the execution of
3495  * vcore *pvc onto the execution of the other vcores described in *cip.
3496  */
3497 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3498                           int target_threads)
3499 {
3500         if (cip->total_threads + pvc->num_threads > target_threads)
3501                 return false;
3502
3503         return can_dynamic_split(pvc, cip);
3504 }
3505
3506 static void prepare_threads(struct kvmppc_vcore *vc)
3507 {
3508         int i;
3509         struct kvm_vcpu *vcpu;
3510
3511         for_each_runnable_thread(i, vcpu, vc) {
3512                 if (signal_pending(vcpu->arch.run_task))
3513                         vcpu->arch.ret = -EINTR;
3514                 else if (vcpu->arch.vpa.update_pending ||
3515                          vcpu->arch.slb_shadow.update_pending ||
3516                          vcpu->arch.dtl.update_pending)
3517                         vcpu->arch.ret = RESUME_GUEST;
3518                 else
3519                         continue;
3520                 kvmppc_remove_runnable(vc, vcpu, mftb());
3521                 wake_up(&vcpu->arch.cpu_run);
3522         }
3523 }
3524
3525 static void collect_piggybacks(struct core_info *cip, int target_threads)
3526 {
3527         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3528         struct kvmppc_vcore *pvc, *vcnext;
3529
3530         spin_lock(&lp->lock);
3531         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3532                 if (!spin_trylock(&pvc->lock))
3533                         continue;
3534                 prepare_threads(pvc);
3535                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3536                         list_del_init(&pvc->preempt_list);
3537                         if (pvc->runner == NULL) {
3538                                 pvc->vcore_state = VCORE_INACTIVE;
3539                                 kvmppc_core_end_stolen(pvc, mftb());
3540                         }
3541                         spin_unlock(&pvc->lock);
3542                         continue;
3543                 }
3544                 if (!can_piggyback(pvc, cip, target_threads)) {
3545                         spin_unlock(&pvc->lock);
3546                         continue;
3547                 }
3548                 kvmppc_core_end_stolen(pvc, mftb());
3549                 pvc->vcore_state = VCORE_PIGGYBACK;
3550                 if (cip->total_threads >= target_threads)
3551                         break;
3552         }
3553         spin_unlock(&lp->lock);
3554 }
3555
3556 static bool recheck_signals_and_mmu(struct core_info *cip)
3557 {
3558         int sub, i;
3559         struct kvm_vcpu *vcpu;
3560         struct kvmppc_vcore *vc;
3561
3562         for (sub = 0; sub < cip->n_subcores; ++sub) {
3563                 vc = cip->vc[sub];
3564                 if (!vc->kvm->arch.mmu_ready)
3565                         return true;
3566                 for_each_runnable_thread(i, vcpu, vc)
3567                         if (signal_pending(vcpu->arch.run_task))
3568                                 return true;
3569         }
3570         return false;
3571 }
3572
3573 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3574 {
3575         int still_running = 0, i;
3576         u64 now;
3577         long ret;
3578         struct kvm_vcpu *vcpu;
3579
3580         spin_lock(&vc->lock);
3581         now = get_tb();
3582         for_each_runnable_thread(i, vcpu, vc) {
3583                 /*
3584                  * It's safe to unlock the vcore in the loop here, because
3585                  * for_each_runnable_thread() is safe against removal of
3586                  * the vcpu, and the vcore state is VCORE_EXITING here,
3587                  * so any vcpus becoming runnable will have their arch.trap
3588                  * set to zero and can't actually run in the guest.
3589                  */
3590                 spin_unlock(&vc->lock);
3591                 /* cancel pending dec exception if dec is positive */
3592                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3593                     kvmppc_core_pending_dec(vcpu))
3594                         kvmppc_core_dequeue_dec(vcpu);
3595
3596                 trace_kvm_guest_exit(vcpu);
3597
3598                 ret = RESUME_GUEST;
3599                 if (vcpu->arch.trap)
3600                         ret = kvmppc_handle_exit_hv(vcpu,
3601                                                     vcpu->arch.run_task);
3602
3603                 vcpu->arch.ret = ret;
3604                 vcpu->arch.trap = 0;
3605
3606                 spin_lock(&vc->lock);
3607                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3608                         if (vcpu->arch.pending_exceptions)
3609                                 kvmppc_core_prepare_to_enter(vcpu);
3610                         if (vcpu->arch.ceded)
3611                                 kvmppc_set_timer(vcpu);
3612                         else
3613                                 ++still_running;
3614                 } else {
3615                         kvmppc_remove_runnable(vc, vcpu, mftb());
3616                         wake_up(&vcpu->arch.cpu_run);
3617                 }
3618         }
3619         if (!is_master) {
3620                 if (still_running > 0) {
3621                         kvmppc_vcore_preempt(vc);
3622                 } else if (vc->runner) {
3623                         vc->vcore_state = VCORE_PREEMPT;
3624                         kvmppc_core_start_stolen(vc, mftb());
3625                 } else {
3626                         vc->vcore_state = VCORE_INACTIVE;
3627                 }
3628                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3629                         /* make sure there's a candidate runner awake */
3630                         i = -1;
3631                         vcpu = next_runnable_thread(vc, &i);
3632                         wake_up(&vcpu->arch.cpu_run);
3633                 }
3634         }
3635         spin_unlock(&vc->lock);
3636 }
3637
3638 /*
3639  * Clear core from the list of active host cores as we are about to
3640  * enter the guest. Only do this if it is the primary thread of the
3641  * core (not if a subcore) that is entering the guest.
3642  */
3643 static inline int kvmppc_clear_host_core(unsigned int cpu)
3644 {
3645         int core;
3646
3647         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3648                 return 0;
3649         /*
3650          * Memory barrier can be omitted here as we will do a smp_wmb()
3651          * later in kvmppc_start_thread and we need ensure that state is
3652          * visible to other CPUs only after we enter guest.
3653          */
3654         core = cpu >> threads_shift;
3655         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3656         return 0;
3657 }
3658
3659 /*
3660  * Advertise this core as an active host core since we exited the guest
3661  * Only need to do this if it is the primary thread of the core that is
3662  * exiting.
3663  */
3664 static inline int kvmppc_set_host_core(unsigned int cpu)
3665 {
3666         int core;
3667
3668         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3669                 return 0;
3670
3671         /*
3672          * Memory barrier can be omitted here because we do a spin_unlock
3673          * immediately after this which provides the memory barrier.
3674          */
3675         core = cpu >> threads_shift;
3676         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3677         return 0;
3678 }
3679
3680 static void set_irq_happened(int trap)
3681 {
3682         switch (trap) {
3683         case BOOK3S_INTERRUPT_EXTERNAL:
3684                 local_paca->irq_happened |= PACA_IRQ_EE;
3685                 break;
3686         case BOOK3S_INTERRUPT_H_DOORBELL:
3687                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3688                 break;
3689         case BOOK3S_INTERRUPT_HMI:
3690                 local_paca->irq_happened |= PACA_IRQ_HMI;
3691                 break;
3692         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3693                 replay_system_reset();
3694                 break;
3695         }
3696 }
3697
3698 /*
3699  * Run a set of guest threads on a physical core.
3700  * Called with vc->lock held.
3701  */
3702 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3703 {
3704         struct kvm_vcpu *vcpu;
3705         int i;
3706         int srcu_idx;
3707         struct core_info core_info;
3708         struct kvmppc_vcore *pvc;
3709         struct kvm_split_mode split_info, *sip;
3710         int split, subcore_size, active;
3711         int sub;
3712         bool thr0_done;
3713         unsigned long cmd_bit, stat_bit;
3714         int pcpu, thr;
3715         int target_threads;
3716         int controlled_threads;
3717         int trap;
3718         bool is_power8;
3719
3720         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3721                 return;
3722
3723         /*
3724          * Remove from the list any threads that have a signal pending
3725          * or need a VPA update done
3726          */
3727         prepare_threads(vc);
3728
3729         /* if the runner is no longer runnable, let the caller pick a new one */
3730         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3731                 return;
3732
3733         /*
3734          * Initialize *vc.
3735          */
3736         init_vcore_to_run(vc);
3737         vc->preempt_tb = TB_NIL;
3738
3739         /*
3740          * Number of threads that we will be controlling: the same as
3741          * the number of threads per subcore, except on POWER9,
3742          * where it's 1 because the threads are (mostly) independent.
3743          */
3744         controlled_threads = threads_per_vcore(vc->kvm);
3745
3746         /*
3747          * Make sure we are running on primary threads, and that secondary
3748          * threads are offline.  Also check if the number of threads in this
3749          * guest are greater than the current system threads per guest.
3750          */
3751         if ((controlled_threads > 1) &&
3752             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3753                 for_each_runnable_thread(i, vcpu, vc) {
3754                         vcpu->arch.ret = -EBUSY;
3755                         kvmppc_remove_runnable(vc, vcpu, mftb());
3756                         wake_up(&vcpu->arch.cpu_run);
3757                 }
3758                 goto out;
3759         }
3760
3761         /*
3762          * See if we could run any other vcores on the physical core
3763          * along with this one.
3764          */
3765         init_core_info(&core_info, vc);
3766         pcpu = smp_processor_id();
3767         target_threads = controlled_threads;
3768         if (target_smt_mode && target_smt_mode < target_threads)
3769                 target_threads = target_smt_mode;
3770         if (vc->num_threads < target_threads)
3771                 collect_piggybacks(&core_info, target_threads);
3772
3773         /*
3774          * Hard-disable interrupts, and check resched flag and signals.
3775          * If we need to reschedule or deliver a signal, clean up
3776          * and return without going into the guest(s).
3777          * If the mmu_ready flag has been cleared, don't go into the
3778          * guest because that means a HPT resize operation is in progress.
3779          */
3780         local_irq_disable();
3781         hard_irq_disable();
3782         if (lazy_irq_pending() || need_resched() ||
3783             recheck_signals_and_mmu(&core_info)) {
3784                 local_irq_enable();
3785                 vc->vcore_state = VCORE_INACTIVE;
3786                 /* Unlock all except the primary vcore */
3787                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3788                         pvc = core_info.vc[sub];
3789                         /* Put back on to the preempted vcores list */
3790                         kvmppc_vcore_preempt(pvc);
3791                         spin_unlock(&pvc->lock);
3792                 }
3793                 for (i = 0; i < controlled_threads; ++i)
3794                         kvmppc_release_hwthread(pcpu + i);
3795                 return;
3796         }
3797
3798         kvmppc_clear_host_core(pcpu);
3799
3800         /* Decide on micro-threading (split-core) mode */
3801         subcore_size = threads_per_subcore;
3802         cmd_bit = stat_bit = 0;
3803         split = core_info.n_subcores;
3804         sip = NULL;
3805         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3806
3807         if (split > 1) {
3808                 sip = &split_info;
3809                 memset(&split_info, 0, sizeof(split_info));
3810                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3811                         split_info.vc[sub] = core_info.vc[sub];
3812
3813                 if (is_power8) {
3814                         if (split == 2 && (dynamic_mt_modes & 2)) {
3815                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3816                                 stat_bit = HID0_POWER8_2LPARMODE;
3817                         } else {
3818                                 split = 4;
3819                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3820                                 stat_bit = HID0_POWER8_4LPARMODE;
3821                         }
3822                         subcore_size = MAX_SMT_THREADS / split;
3823                         split_info.rpr = mfspr(SPRN_RPR);
3824                         split_info.pmmar = mfspr(SPRN_PMMAR);
3825                         split_info.ldbar = mfspr(SPRN_LDBAR);
3826                         split_info.subcore_size = subcore_size;
3827                 } else {
3828                         split_info.subcore_size = 1;
3829                 }
3830
3831                 /* order writes to split_info before kvm_split_mode pointer */
3832                 smp_wmb();
3833         }
3834
3835         for (thr = 0; thr < controlled_threads; ++thr) {
3836                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3837
3838                 paca->kvm_hstate.napping = 0;
3839                 paca->kvm_hstate.kvm_split_mode = sip;
3840         }
3841
3842         /* Initiate micro-threading (split-core) on POWER8 if required */
3843         if (cmd_bit) {
3844                 unsigned long hid0 = mfspr(SPRN_HID0);
3845
3846                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3847                 mb();
3848                 mtspr(SPRN_HID0, hid0);
3849                 isync();
3850                 for (;;) {
3851                         hid0 = mfspr(SPRN_HID0);
3852                         if (hid0 & stat_bit)
3853                                 break;
3854                         cpu_relax();
3855                 }
3856         }
3857
3858         /*
3859          * On POWER8, set RWMR register.
3860          * Since it only affects PURR and SPURR, it doesn't affect
3861          * the host, so we don't save/restore the host value.
3862          */
3863         if (is_power8) {
3864                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3865                 int n_online = atomic_read(&vc->online_count);
3866
3867                 /*
3868                  * Use the 8-thread value if we're doing split-core
3869                  * or if the vcore's online count looks bogus.
3870                  */
3871                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3872                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3873                         rwmr_val = p8_rwmr_values[n_online];
3874                 mtspr(SPRN_RWMR, rwmr_val);
3875         }
3876
3877         /* Start all the threads */
3878         active = 0;
3879         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3880                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3881                 thr0_done = false;
3882                 active |= 1 << thr;
3883                 pvc = core_info.vc[sub];
3884                 pvc->pcpu = pcpu + thr;
3885                 for_each_runnable_thread(i, vcpu, pvc) {
3886                         /*
3887                          * XXX: is kvmppc_start_thread called too late here?
3888                          * It updates vcpu->cpu and vcpu->arch.thread_cpu
3889                          * which are used by kvmppc_fast_vcpu_kick_hv(), but
3890                          * kick is called after new exceptions become available
3891                          * and exceptions are checked earlier than here, by
3892                          * kvmppc_core_prepare_to_enter.
3893                          */
3894                         kvmppc_start_thread(vcpu, pvc);
3895                         kvmppc_update_vpa_dispatch(vcpu, pvc);
3896                         trace_kvm_guest_enter(vcpu);
3897                         if (!vcpu->arch.ptid)
3898                                 thr0_done = true;
3899                         active |= 1 << (thr + vcpu->arch.ptid);
3900                 }
3901                 /*
3902                  * We need to start the first thread of each subcore
3903                  * even if it doesn't have a vcpu.
3904                  */
3905                 if (!thr0_done)
3906                         kvmppc_start_thread(NULL, pvc);
3907         }
3908
3909         /*
3910          * Ensure that split_info.do_nap is set after setting
3911          * the vcore pointer in the PACA of the secondaries.
3912          */
3913         smp_mb();
3914
3915         /*
3916          * When doing micro-threading, poke the inactive threads as well.
3917          * This gets them to the nap instruction after kvm_do_nap,
3918          * which reduces the time taken to unsplit later.
3919          */
3920         if (cmd_bit) {
3921                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3922                 for (thr = 1; thr < threads_per_subcore; ++thr)
3923                         if (!(active & (1 << thr)))
3924                                 kvmppc_ipi_thread(pcpu + thr);
3925         }
3926
3927         vc->vcore_state = VCORE_RUNNING;
3928         preempt_disable();
3929
3930         trace_kvmppc_run_core(vc, 0);
3931
3932         for (sub = 0; sub < core_info.n_subcores; ++sub)
3933                 spin_unlock(&core_info.vc[sub]->lock);
3934
3935         guest_timing_enter_irqoff();
3936
3937         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3938
3939         guest_state_enter_irqoff();
3940         this_cpu_disable_ftrace();
3941
3942         trap = __kvmppc_vcore_entry();
3943
3944         this_cpu_enable_ftrace();
3945         guest_state_exit_irqoff();
3946
3947         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3948
3949         set_irq_happened(trap);
3950
3951         spin_lock(&vc->lock);
3952         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3953         vc->vcore_state = VCORE_EXITING;
3954
3955         /* wait for secondary threads to finish writing their state to memory */
3956         kvmppc_wait_for_nap(controlled_threads);
3957
3958         /* Return to whole-core mode if we split the core earlier */
3959         if (cmd_bit) {
3960                 unsigned long hid0 = mfspr(SPRN_HID0);
3961                 unsigned long loops = 0;
3962
3963                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3964                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3965                 mb();
3966                 mtspr(SPRN_HID0, hid0);
3967                 isync();
3968                 for (;;) {
3969                         hid0 = mfspr(SPRN_HID0);
3970                         if (!(hid0 & stat_bit))
3971                                 break;
3972                         cpu_relax();
3973                         ++loops;
3974                 }
3975                 split_info.do_nap = 0;
3976         }
3977
3978         kvmppc_set_host_core(pcpu);
3979
3980         if (!vtime_accounting_enabled_this_cpu()) {
3981                 local_irq_enable();
3982                 /*
3983                  * Service IRQs here before guest_timing_exit_irqoff() so any
3984                  * ticks that occurred while running the guest are accounted to
3985                  * the guest. If vtime accounting is enabled, accounting uses
3986                  * TB rather than ticks, so it can be done without enabling
3987                  * interrupts here, which has the problem that it accounts
3988                  * interrupt processing overhead to the host.
3989                  */
3990                 local_irq_disable();
3991         }
3992         guest_timing_exit_irqoff();
3993
3994         local_irq_enable();
3995
3996         /* Let secondaries go back to the offline loop */
3997         for (i = 0; i < controlled_threads; ++i) {
3998                 kvmppc_release_hwthread(pcpu + i);
3999                 if (sip && sip->napped[i])
4000                         kvmppc_ipi_thread(pcpu + i);
4001         }
4002
4003         spin_unlock(&vc->lock);
4004
4005         /* make sure updates to secondary vcpu structs are visible now */
4006         smp_mb();
4007
4008         preempt_enable();
4009
4010         for (sub = 0; sub < core_info.n_subcores; ++sub) {
4011                 pvc = core_info.vc[sub];
4012                 post_guest_process(pvc, pvc == vc);
4013         }
4014
4015         spin_lock(&vc->lock);
4016
4017  out:
4018         vc->vcore_state = VCORE_INACTIVE;
4019         trace_kvmppc_run_core(vc, 1);
4020 }
4021
4022 static inline bool hcall_is_xics(unsigned long req)
4023 {
4024         return req == H_EOI || req == H_CPPR || req == H_IPI ||
4025                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4026 }
4027
4028 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4029 {
4030         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4031         if (lp) {
4032                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4033                 lp->yield_count = cpu_to_be32(yield_count);
4034                 vcpu->arch.vpa.dirty = 1;
4035         }
4036 }
4037
4038 /* call our hypervisor to load up HV regs and go */
4039 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4040 {
4041         struct kvmppc_vcore *vc = vcpu->arch.vcore;
4042         unsigned long host_psscr;
4043         unsigned long msr;
4044         struct hv_guest_state hvregs;
4045         struct p9_host_os_sprs host_os_sprs;
4046         s64 dec;
4047         int trap;
4048
4049         msr = mfmsr();
4050
4051         save_p9_host_os_sprs(&host_os_sprs);
4052
4053         /*
4054          * We need to save and restore the guest visible part of the
4055          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4056          * doesn't do this for us. Note only required if pseries since
4057          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4058          */
4059         host_psscr = mfspr(SPRN_PSSCR_PR);
4060
4061         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4062         if (lazy_irq_pending())
4063                 return 0;
4064
4065         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4066                 msr = mfmsr(); /* TM restore can update msr */
4067
4068         if (vcpu->arch.psscr != host_psscr)
4069                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4070
4071         kvmhv_save_hv_regs(vcpu, &hvregs);
4072         hvregs.lpcr = lpcr;
4073         hvregs.amor = ~0;
4074         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4075         hvregs.version = HV_GUEST_STATE_VERSION;
4076         if (vcpu->arch.nested) {
4077                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4078                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4079         } else {
4080                 hvregs.lpid = vcpu->kvm->arch.lpid;
4081                 hvregs.vcpu_token = vcpu->vcpu_id;
4082         }
4083         hvregs.hdec_expiry = time_limit;
4084
4085         /*
4086          * When setting DEC, we must always deal with irq_work_raise
4087          * via NMI vs setting DEC. The problem occurs right as we
4088          * switch into guest mode if a NMI hits and sets pending work
4089          * and sets DEC, then that will apply to the guest and not
4090          * bring us back to the host.
4091          *
4092          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4093          * for example) and set HDEC to 1? That wouldn't solve the
4094          * nested hv case which needs to abort the hcall or zero the
4095          * time limit.
4096          *
4097          * XXX: Another day's problem.
4098          */
4099         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4100
4101         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4102         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4103         switch_pmu_to_guest(vcpu, &host_os_sprs);
4104         accumulate_time(vcpu, &vcpu->arch.in_guest);
4105         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4106                                   __pa(&vcpu->arch.regs));
4107         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4108         kvmhv_restore_hv_return_state(vcpu, &hvregs);
4109         switch_pmu_to_host(vcpu, &host_os_sprs);
4110         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4111         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4112         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4113         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4114
4115         store_vcpu_state(vcpu);
4116
4117         dec = mfspr(SPRN_DEC);
4118         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4119                 dec = (s32) dec;
4120         *tb = mftb();
4121         vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4122
4123         timer_rearm_host_dec(*tb);
4124
4125         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4126         if (vcpu->arch.psscr != host_psscr)
4127                 mtspr(SPRN_PSSCR_PR, host_psscr);
4128
4129         return trap;
4130 }
4131
4132 /*
4133  * Guest entry for POWER9 and later CPUs.
4134  */
4135 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4136                          unsigned long lpcr, u64 *tb)
4137 {
4138         struct kvm *kvm = vcpu->kvm;
4139         struct kvm_nested_guest *nested = vcpu->arch.nested;
4140         u64 next_timer;
4141         int trap;
4142
4143         next_timer = timer_get_next_tb();
4144         if (*tb >= next_timer)
4145                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4146         if (next_timer < time_limit)
4147                 time_limit = next_timer;
4148         else if (*tb >= time_limit) /* nested time limit */
4149                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4150
4151         vcpu->arch.ceded = 0;
4152
4153         vcpu_vpa_increment_dispatch(vcpu);
4154
4155         if (kvmhv_on_pseries()) {
4156                 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4157
4158                 /* H_CEDE has to be handled now, not later */
4159                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4160                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4161                         kvmppc_cede(vcpu);
4162                         kvmppc_set_gpr(vcpu, 3, 0);
4163                         trap = 0;
4164                 }
4165
4166         } else if (nested) {
4167                 __this_cpu_write(cpu_in_guest, kvm);
4168                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4169                 __this_cpu_write(cpu_in_guest, NULL);
4170
4171         } else {
4172                 kvmppc_xive_push_vcpu(vcpu);
4173
4174                 __this_cpu_write(cpu_in_guest, kvm);
4175                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4176                 __this_cpu_write(cpu_in_guest, NULL);
4177
4178                 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4179                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4180                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4181
4182                         /*
4183                          * XIVE rearm and XICS hcalls must be handled
4184                          * before xive context is pulled (is this
4185                          * true?)
4186                          */
4187                         if (req == H_CEDE) {
4188                                 /* H_CEDE has to be handled now */
4189                                 kvmppc_cede(vcpu);
4190                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4191                                         /*
4192                                          * Pending escalation so abort
4193                                          * the cede.
4194                                          */
4195                                         vcpu->arch.ceded = 0;
4196                                 }
4197                                 kvmppc_set_gpr(vcpu, 3, 0);
4198                                 trap = 0;
4199
4200                         } else if (req == H_ENTER_NESTED) {
4201                                 /*
4202                                  * L2 should not run with the L1
4203                                  * context so rearm and pull it.
4204                                  */
4205                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4206                                         /*
4207                                          * Pending escalation so abort
4208                                          * H_ENTER_NESTED.
4209                                          */
4210                                         kvmppc_set_gpr(vcpu, 3, 0);
4211                                         trap = 0;
4212                                 }
4213
4214                         } else if (hcall_is_xics(req)) {
4215                                 int ret;
4216
4217                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4218                                 if (ret != H_TOO_HARD) {
4219                                         kvmppc_set_gpr(vcpu, 3, ret);
4220                                         trap = 0;
4221                                 }
4222                         }
4223                 }
4224                 kvmppc_xive_pull_vcpu(vcpu);
4225
4226                 if (kvm_is_radix(kvm))
4227                         vcpu->arch.slb_max = 0;
4228         }
4229
4230         vcpu_vpa_increment_dispatch(vcpu);
4231
4232         return trap;
4233 }
4234
4235 /*
4236  * Wait for some other vcpu thread to execute us, and
4237  * wake us up when we need to handle something in the host.
4238  */
4239 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4240                                  struct kvm_vcpu *vcpu, int wait_state)
4241 {
4242         DEFINE_WAIT(wait);
4243
4244         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4245         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4246                 spin_unlock(&vc->lock);
4247                 schedule();
4248                 spin_lock(&vc->lock);
4249         }
4250         finish_wait(&vcpu->arch.cpu_run, &wait);
4251 }
4252
4253 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4254 {
4255         if (!halt_poll_ns_grow)
4256                 return;
4257
4258         vc->halt_poll_ns *= halt_poll_ns_grow;
4259         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4260                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4261 }
4262
4263 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4264 {
4265         if (halt_poll_ns_shrink == 0)
4266                 vc->halt_poll_ns = 0;
4267         else
4268                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4269 }
4270
4271 #ifdef CONFIG_KVM_XICS
4272 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4273 {
4274         if (!xics_on_xive())
4275                 return false;
4276         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4277                 vcpu->arch.xive_saved_state.cppr;
4278 }
4279 #else
4280 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4281 {
4282         return false;
4283 }
4284 #endif /* CONFIG_KVM_XICS */
4285
4286 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4287 {
4288         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4289             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4290                 return true;
4291
4292         return false;
4293 }
4294
4295 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4296 {
4297         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4298                 return true;
4299         return false;
4300 }
4301
4302 /*
4303  * Check to see if any of the runnable vcpus on the vcore have pending
4304  * exceptions or are no longer ceded
4305  */
4306 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4307 {
4308         struct kvm_vcpu *vcpu;
4309         int i;
4310
4311         for_each_runnable_thread(i, vcpu, vc) {
4312                 if (kvmppc_vcpu_check_block(vcpu))
4313                         return 1;
4314         }
4315
4316         return 0;
4317 }
4318
4319 /*
4320  * All the vcpus in this vcore are idle, so wait for a decrementer
4321  * or external interrupt to one of the vcpus.  vc->lock is held.
4322  */
4323 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4324 {
4325         ktime_t cur, start_poll, start_wait;
4326         int do_sleep = 1;
4327         u64 block_ns;
4328
4329         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4330
4331         /* Poll for pending exceptions and ceded state */
4332         cur = start_poll = ktime_get();
4333         if (vc->halt_poll_ns) {
4334                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4335                 ++vc->runner->stat.generic.halt_attempted_poll;
4336
4337                 vc->vcore_state = VCORE_POLLING;
4338                 spin_unlock(&vc->lock);
4339
4340                 do {
4341                         if (kvmppc_vcore_check_block(vc)) {
4342                                 do_sleep = 0;
4343                                 break;
4344                         }
4345                         cur = ktime_get();
4346                 } while (kvm_vcpu_can_poll(cur, stop));
4347
4348                 spin_lock(&vc->lock);
4349                 vc->vcore_state = VCORE_INACTIVE;
4350
4351                 if (!do_sleep) {
4352                         ++vc->runner->stat.generic.halt_successful_poll;
4353                         goto out;
4354                 }
4355         }
4356
4357         prepare_to_rcuwait(&vc->wait);
4358         set_current_state(TASK_INTERRUPTIBLE);
4359         if (kvmppc_vcore_check_block(vc)) {
4360                 finish_rcuwait(&vc->wait);
4361                 do_sleep = 0;
4362                 /* If we polled, count this as a successful poll */
4363                 if (vc->halt_poll_ns)
4364                         ++vc->runner->stat.generic.halt_successful_poll;
4365                 goto out;
4366         }
4367
4368         start_wait = ktime_get();
4369
4370         vc->vcore_state = VCORE_SLEEPING;
4371         trace_kvmppc_vcore_blocked(vc->runner, 0);
4372         spin_unlock(&vc->lock);
4373         schedule();
4374         finish_rcuwait(&vc->wait);
4375         spin_lock(&vc->lock);
4376         vc->vcore_state = VCORE_INACTIVE;
4377         trace_kvmppc_vcore_blocked(vc->runner, 1);
4378         ++vc->runner->stat.halt_successful_wait;
4379
4380         cur = ktime_get();
4381
4382 out:
4383         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4384
4385         /* Attribute wait time */
4386         if (do_sleep) {
4387                 vc->runner->stat.generic.halt_wait_ns +=
4388                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4389                 KVM_STATS_LOG_HIST_UPDATE(
4390                                 vc->runner->stat.generic.halt_wait_hist,
4391                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4392                 /* Attribute failed poll time */
4393                 if (vc->halt_poll_ns) {
4394                         vc->runner->stat.generic.halt_poll_fail_ns +=
4395                                 ktime_to_ns(start_wait) -
4396                                 ktime_to_ns(start_poll);
4397                         KVM_STATS_LOG_HIST_UPDATE(
4398                                 vc->runner->stat.generic.halt_poll_fail_hist,
4399                                 ktime_to_ns(start_wait) -
4400                                 ktime_to_ns(start_poll));
4401                 }
4402         } else {
4403                 /* Attribute successful poll time */
4404                 if (vc->halt_poll_ns) {
4405                         vc->runner->stat.generic.halt_poll_success_ns +=
4406                                 ktime_to_ns(cur) -
4407                                 ktime_to_ns(start_poll);
4408                         KVM_STATS_LOG_HIST_UPDATE(
4409                                 vc->runner->stat.generic.halt_poll_success_hist,
4410                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4411                 }
4412         }
4413
4414         /* Adjust poll time */
4415         if (halt_poll_ns) {
4416                 if (block_ns <= vc->halt_poll_ns)
4417                         ;
4418                 /* We slept and blocked for longer than the max halt time */
4419                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4420                         shrink_halt_poll_ns(vc);
4421                 /* We slept and our poll time is too small */
4422                 else if (vc->halt_poll_ns < halt_poll_ns &&
4423                                 block_ns < halt_poll_ns)
4424                         grow_halt_poll_ns(vc);
4425                 if (vc->halt_poll_ns > halt_poll_ns)
4426                         vc->halt_poll_ns = halt_poll_ns;
4427         } else
4428                 vc->halt_poll_ns = 0;
4429
4430         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4431 }
4432
4433 /*
4434  * This never fails for a radix guest, as none of the operations it does
4435  * for a radix guest can fail or have a way to report failure.
4436  */
4437 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4438 {
4439         int r = 0;
4440         struct kvm *kvm = vcpu->kvm;
4441
4442         mutex_lock(&kvm->arch.mmu_setup_lock);
4443         if (!kvm->arch.mmu_ready) {
4444                 if (!kvm_is_radix(kvm))
4445                         r = kvmppc_hv_setup_htab_rma(vcpu);
4446                 if (!r) {
4447                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4448                                 kvmppc_setup_partition_table(kvm);
4449                         kvm->arch.mmu_ready = 1;
4450                 }
4451         }
4452         mutex_unlock(&kvm->arch.mmu_setup_lock);
4453         return r;
4454 }
4455
4456 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4457 {
4458         struct kvm_run *run = vcpu->run;
4459         int n_ceded, i, r;
4460         struct kvmppc_vcore *vc;
4461         struct kvm_vcpu *v;
4462
4463         trace_kvmppc_run_vcpu_enter(vcpu);
4464
4465         run->exit_reason = 0;
4466         vcpu->arch.ret = RESUME_GUEST;
4467         vcpu->arch.trap = 0;
4468         kvmppc_update_vpas(vcpu);
4469
4470         /*
4471          * Synchronize with other threads in this virtual core
4472          */
4473         vc = vcpu->arch.vcore;
4474         spin_lock(&vc->lock);
4475         vcpu->arch.ceded = 0;
4476         vcpu->arch.run_task = current;
4477         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4478         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4479         vcpu->arch.busy_preempt = TB_NIL;
4480         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4481         ++vc->n_runnable;
4482
4483         /*
4484          * This happens the first time this is called for a vcpu.
4485          * If the vcore is already running, we may be able to start
4486          * this thread straight away and have it join in.
4487          */
4488         if (!signal_pending(current)) {
4489                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4490                      vc->vcore_state == VCORE_RUNNING) &&
4491                            !VCORE_IS_EXITING(vc)) {
4492                         kvmppc_update_vpa_dispatch(vcpu, vc);
4493                         kvmppc_start_thread(vcpu, vc);
4494                         trace_kvm_guest_enter(vcpu);
4495                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4496                         rcuwait_wake_up(&vc->wait);
4497                 }
4498
4499         }
4500
4501         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4502                !signal_pending(current)) {
4503                 /* See if the MMU is ready to go */
4504                 if (!vcpu->kvm->arch.mmu_ready) {
4505                         spin_unlock(&vc->lock);
4506                         r = kvmhv_setup_mmu(vcpu);
4507                         spin_lock(&vc->lock);
4508                         if (r) {
4509                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4510                                 run->fail_entry.
4511                                         hardware_entry_failure_reason = 0;
4512                                 vcpu->arch.ret = r;
4513                                 break;
4514                         }
4515                 }
4516
4517                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4518                         kvmppc_vcore_end_preempt(vc);
4519
4520                 if (vc->vcore_state != VCORE_INACTIVE) {
4521                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4522                         continue;
4523                 }
4524                 for_each_runnable_thread(i, v, vc) {
4525                         kvmppc_core_prepare_to_enter(v);
4526                         if (signal_pending(v->arch.run_task)) {
4527                                 kvmppc_remove_runnable(vc, v, mftb());
4528                                 v->stat.signal_exits++;
4529                                 v->run->exit_reason = KVM_EXIT_INTR;
4530                                 v->arch.ret = -EINTR;
4531                                 wake_up(&v->arch.cpu_run);
4532                         }
4533                 }
4534                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4535                         break;
4536                 n_ceded = 0;
4537                 for_each_runnable_thread(i, v, vc) {
4538                         if (!kvmppc_vcpu_woken(v))
4539                                 n_ceded += v->arch.ceded;
4540                         else
4541                                 v->arch.ceded = 0;
4542                 }
4543                 vc->runner = vcpu;
4544                 if (n_ceded == vc->n_runnable) {
4545                         kvmppc_vcore_blocked(vc);
4546                 } else if (need_resched()) {
4547                         kvmppc_vcore_preempt(vc);
4548                         /* Let something else run */
4549                         cond_resched_lock(&vc->lock);
4550                         if (vc->vcore_state == VCORE_PREEMPT)
4551                                 kvmppc_vcore_end_preempt(vc);
4552                 } else {
4553                         kvmppc_run_core(vc);
4554                 }
4555                 vc->runner = NULL;
4556         }
4557
4558         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4559                (vc->vcore_state == VCORE_RUNNING ||
4560                 vc->vcore_state == VCORE_EXITING ||
4561                 vc->vcore_state == VCORE_PIGGYBACK))
4562                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4563
4564         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4565                 kvmppc_vcore_end_preempt(vc);
4566
4567         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4568                 kvmppc_remove_runnable(vc, vcpu, mftb());
4569                 vcpu->stat.signal_exits++;
4570                 run->exit_reason = KVM_EXIT_INTR;
4571                 vcpu->arch.ret = -EINTR;
4572         }
4573
4574         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4575                 /* Wake up some vcpu to run the core */
4576                 i = -1;
4577                 v = next_runnable_thread(vc, &i);
4578                 wake_up(&v->arch.cpu_run);
4579         }
4580
4581         trace_kvmppc_run_vcpu_exit(vcpu);
4582         spin_unlock(&vc->lock);
4583         return vcpu->arch.ret;
4584 }
4585
4586 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4587                           unsigned long lpcr)
4588 {
4589         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4590         struct kvm_run *run = vcpu->run;
4591         int trap, r, pcpu;
4592         int srcu_idx;
4593         struct kvmppc_vcore *vc;
4594         struct kvm *kvm = vcpu->kvm;
4595         struct kvm_nested_guest *nested = vcpu->arch.nested;
4596         unsigned long flags;
4597         u64 tb;
4598
4599         trace_kvmppc_run_vcpu_enter(vcpu);
4600
4601         run->exit_reason = 0;
4602         vcpu->arch.ret = RESUME_GUEST;
4603         vcpu->arch.trap = 0;
4604
4605         vc = vcpu->arch.vcore;
4606         vcpu->arch.ceded = 0;
4607         vcpu->arch.run_task = current;
4608         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4609
4610         /* See if the MMU is ready to go */
4611         if (unlikely(!kvm->arch.mmu_ready)) {
4612                 r = kvmhv_setup_mmu(vcpu);
4613                 if (r) {
4614                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4615                         run->fail_entry.hardware_entry_failure_reason = 0;
4616                         vcpu->arch.ret = r;
4617                         return r;
4618                 }
4619         }
4620
4621         if (need_resched())
4622                 cond_resched();
4623
4624         kvmppc_update_vpas(vcpu);
4625
4626         preempt_disable();
4627         pcpu = smp_processor_id();
4628         if (kvm_is_radix(kvm))
4629                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4630
4631         /* flags save not required, but irq_pmu has no disable/enable API */
4632         powerpc_local_irq_pmu_save(flags);
4633
4634         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4635
4636         if (signal_pending(current))
4637                 goto sigpend;
4638         if (need_resched() || !kvm->arch.mmu_ready)
4639                 goto out;
4640
4641         vcpu->cpu = pcpu;
4642         vcpu->arch.thread_cpu = pcpu;
4643         vc->pcpu = pcpu;
4644         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4645         local_paca->kvm_hstate.ptid = 0;
4646         local_paca->kvm_hstate.fake_suspend = 0;
4647
4648         /*
4649          * Orders set cpu/thread_cpu vs testing for pending interrupts and
4650          * doorbells below. The other side is when these fields are set vs
4651          * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4652          * kick a vCPU to notice the pending interrupt.
4653          */
4654         smp_mb();
4655
4656         if (!nested) {
4657                 kvmppc_core_prepare_to_enter(vcpu);
4658                 if (vcpu->arch.shregs.msr & MSR_EE) {
4659                         if (xive_interrupt_pending(vcpu))
4660                                 kvmppc_inject_interrupt_hv(vcpu,
4661                                                 BOOK3S_INTERRUPT_EXTERNAL, 0);
4662                 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4663                              &vcpu->arch.pending_exceptions)) {
4664                         lpcr |= LPCR_MER;
4665                 }
4666         } else if (vcpu->arch.pending_exceptions ||
4667                    vcpu->arch.doorbell_request ||
4668                    xive_interrupt_pending(vcpu)) {
4669                 vcpu->arch.ret = RESUME_HOST;
4670                 goto out;
4671         }
4672
4673         if (vcpu->arch.timer_running) {
4674                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4675                 vcpu->arch.timer_running = 0;
4676         }
4677
4678         tb = mftb();
4679
4680         kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4681
4682         trace_kvm_guest_enter(vcpu);
4683
4684         guest_timing_enter_irqoff();
4685
4686         srcu_idx = srcu_read_lock(&kvm->srcu);
4687
4688         guest_state_enter_irqoff();
4689         this_cpu_disable_ftrace();
4690
4691         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4692         vcpu->arch.trap = trap;
4693
4694         this_cpu_enable_ftrace();
4695         guest_state_exit_irqoff();
4696
4697         srcu_read_unlock(&kvm->srcu, srcu_idx);
4698
4699         set_irq_happened(trap);
4700
4701         vcpu->cpu = -1;
4702         vcpu->arch.thread_cpu = -1;
4703         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4704
4705         if (!vtime_accounting_enabled_this_cpu()) {
4706                 powerpc_local_irq_pmu_restore(flags);
4707                 /*
4708                  * Service IRQs here before guest_timing_exit_irqoff() so any
4709                  * ticks that occurred while running the guest are accounted to
4710                  * the guest. If vtime accounting is enabled, accounting uses
4711                  * TB rather than ticks, so it can be done without enabling
4712                  * interrupts here, which has the problem that it accounts
4713                  * interrupt processing overhead to the host.
4714                  */
4715                 powerpc_local_irq_pmu_save(flags);
4716         }
4717         guest_timing_exit_irqoff();
4718
4719         powerpc_local_irq_pmu_restore(flags);
4720
4721         preempt_enable();
4722
4723         /*
4724          * cancel pending decrementer exception if DEC is now positive, or if
4725          * entering a nested guest in which case the decrementer is now owned
4726          * by L2 and the L1 decrementer is provided in hdec_expires
4727          */
4728         if (kvmppc_core_pending_dec(vcpu) &&
4729                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4730                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4731                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4732                 kvmppc_core_dequeue_dec(vcpu);
4733
4734         trace_kvm_guest_exit(vcpu);
4735         r = RESUME_GUEST;
4736         if (trap) {
4737                 if (!nested)
4738                         r = kvmppc_handle_exit_hv(vcpu, current);
4739                 else
4740                         r = kvmppc_handle_nested_exit(vcpu);
4741         }
4742         vcpu->arch.ret = r;
4743
4744         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4745                 kvmppc_set_timer(vcpu);
4746
4747                 prepare_to_rcuwait(wait);
4748                 for (;;) {
4749                         set_current_state(TASK_INTERRUPTIBLE);
4750                         if (signal_pending(current)) {
4751                                 vcpu->stat.signal_exits++;
4752                                 run->exit_reason = KVM_EXIT_INTR;
4753                                 vcpu->arch.ret = -EINTR;
4754                                 break;
4755                         }
4756
4757                         if (kvmppc_vcpu_check_block(vcpu))
4758                                 break;
4759
4760                         trace_kvmppc_vcore_blocked(vcpu, 0);
4761                         schedule();
4762                         trace_kvmppc_vcore_blocked(vcpu, 1);
4763                 }
4764                 finish_rcuwait(wait);
4765         }
4766         vcpu->arch.ceded = 0;
4767
4768  done:
4769         trace_kvmppc_run_vcpu_exit(vcpu);
4770
4771         return vcpu->arch.ret;
4772
4773  sigpend:
4774         vcpu->stat.signal_exits++;
4775         run->exit_reason = KVM_EXIT_INTR;
4776         vcpu->arch.ret = -EINTR;
4777  out:
4778         vcpu->cpu = -1;
4779         vcpu->arch.thread_cpu = -1;
4780         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4781         powerpc_local_irq_pmu_restore(flags);
4782         preempt_enable();
4783         goto done;
4784 }
4785
4786 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4787 {
4788         struct kvm_run *run = vcpu->run;
4789         int r;
4790         int srcu_idx;
4791         struct kvm *kvm;
4792         unsigned long msr;
4793
4794         start_timing(vcpu, &vcpu->arch.vcpu_entry);
4795
4796         if (!vcpu->arch.sane) {
4797                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4798                 return -EINVAL;
4799         }
4800
4801         /* No need to go into the guest when all we'll do is come back out */
4802         if (signal_pending(current)) {
4803                 run->exit_reason = KVM_EXIT_INTR;
4804                 return -EINTR;
4805         }
4806
4807 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4808         /*
4809          * Don't allow entry with a suspended transaction, because
4810          * the guest entry/exit code will lose it.
4811          */
4812         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4813             (current->thread.regs->msr & MSR_TM)) {
4814                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4815                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4816                         run->fail_entry.hardware_entry_failure_reason = 0;
4817                         return -EINVAL;
4818                 }
4819         }
4820 #endif
4821
4822         /*
4823          * Force online to 1 for the sake of old userspace which doesn't
4824          * set it.
4825          */
4826         if (!vcpu->arch.online) {
4827                 atomic_inc(&vcpu->arch.vcore->online_count);
4828                 vcpu->arch.online = 1;
4829         }
4830
4831         kvmppc_core_prepare_to_enter(vcpu);
4832
4833         kvm = vcpu->kvm;
4834         atomic_inc(&kvm->arch.vcpus_running);
4835         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4836         smp_mb();
4837
4838         msr = 0;
4839         if (IS_ENABLED(CONFIG_PPC_FPU))
4840                 msr |= MSR_FP;
4841         if (cpu_has_feature(CPU_FTR_ALTIVEC))
4842                 msr |= MSR_VEC;
4843         if (cpu_has_feature(CPU_FTR_VSX))
4844                 msr |= MSR_VSX;
4845         if ((cpu_has_feature(CPU_FTR_TM) ||
4846             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4847                         (vcpu->arch.hfscr & HFSCR_TM))
4848                 msr |= MSR_TM;
4849         msr = msr_check_and_set(msr);
4850
4851         kvmppc_save_user_regs();
4852
4853         kvmppc_save_current_sprs();
4854
4855         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4856                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4857         vcpu->arch.pgdir = kvm->mm->pgd;
4858         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4859
4860         do {
4861                 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4862                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4863                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4864                                                   vcpu->arch.vcore->lpcr);
4865                 else
4866                         r = kvmppc_run_vcpu(vcpu);
4867
4868                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4869                         accumulate_time(vcpu, &vcpu->arch.hcall);
4870
4871                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4872                                 /*
4873                                  * These should have been caught reflected
4874                                  * into the guest by now. Final sanity check:
4875                                  * don't allow userspace to execute hcalls in
4876                                  * the hypervisor.
4877                                  */
4878                                 r = RESUME_GUEST;
4879                                 continue;
4880                         }
4881                         trace_kvm_hcall_enter(vcpu);
4882                         r = kvmppc_pseries_do_hcall(vcpu);
4883                         trace_kvm_hcall_exit(vcpu, r);
4884                         kvmppc_core_prepare_to_enter(vcpu);
4885                 } else if (r == RESUME_PAGE_FAULT) {
4886                         accumulate_time(vcpu, &vcpu->arch.pg_fault);
4887                         srcu_idx = srcu_read_lock(&kvm->srcu);
4888                         r = kvmppc_book3s_hv_page_fault(vcpu,
4889                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4890                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4891                 } else if (r == RESUME_PASSTHROUGH) {
4892                         if (WARN_ON(xics_on_xive()))
4893                                 r = H_SUCCESS;
4894                         else
4895                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4896                 }
4897         } while (is_kvmppc_resume_guest(r));
4898         accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4899
4900         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4901         atomic_dec(&kvm->arch.vcpus_running);
4902
4903         srr_regs_clobbered();
4904
4905         end_timing(vcpu);
4906
4907         return r;
4908 }
4909
4910 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4911                                      int shift, int sllp)
4912 {
4913         (*sps)->page_shift = shift;
4914         (*sps)->slb_enc = sllp;
4915         (*sps)->enc[0].page_shift = shift;
4916         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4917         /*
4918          * Add 16MB MPSS support (may get filtered out by userspace)
4919          */
4920         if (shift != 24) {
4921                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4922                 if (penc != -1) {
4923                         (*sps)->enc[1].page_shift = 24;
4924                         (*sps)->enc[1].pte_enc = penc;
4925                 }
4926         }
4927         (*sps)++;
4928 }
4929
4930 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4931                                          struct kvm_ppc_smmu_info *info)
4932 {
4933         struct kvm_ppc_one_seg_page_size *sps;
4934
4935         /*
4936          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4937          * POWER7 doesn't support keys for instruction accesses,
4938          * POWER8 and POWER9 do.
4939          */
4940         info->data_keys = 32;
4941         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4942
4943         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4944         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4945         info->slb_size = 32;
4946
4947         /* We only support these sizes for now, and no muti-size segments */
4948         sps = &info->sps[0];
4949         kvmppc_add_seg_page_size(&sps, 12, 0);
4950         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4951         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4952
4953         /* If running as a nested hypervisor, we don't support HPT guests */
4954         if (kvmhv_on_pseries())
4955                 info->flags |= KVM_PPC_NO_HASH;
4956
4957         return 0;
4958 }
4959
4960 /*
4961  * Get (and clear) the dirty memory log for a memory slot.
4962  */
4963 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4964                                          struct kvm_dirty_log *log)
4965 {
4966         struct kvm_memslots *slots;
4967         struct kvm_memory_slot *memslot;
4968         int r;
4969         unsigned long n, i;
4970         unsigned long *buf, *p;
4971         struct kvm_vcpu *vcpu;
4972
4973         mutex_lock(&kvm->slots_lock);
4974
4975         r = -EINVAL;
4976         if (log->slot >= KVM_USER_MEM_SLOTS)
4977                 goto out;
4978
4979         slots = kvm_memslots(kvm);
4980         memslot = id_to_memslot(slots, log->slot);
4981         r = -ENOENT;
4982         if (!memslot || !memslot->dirty_bitmap)
4983                 goto out;
4984
4985         /*
4986          * Use second half of bitmap area because both HPT and radix
4987          * accumulate bits in the first half.
4988          */
4989         n = kvm_dirty_bitmap_bytes(memslot);
4990         buf = memslot->dirty_bitmap + n / sizeof(long);
4991         memset(buf, 0, n);
4992
4993         if (kvm_is_radix(kvm))
4994                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4995         else
4996                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4997         if (r)
4998                 goto out;
4999
5000         /*
5001          * We accumulate dirty bits in the first half of the
5002          * memslot's dirty_bitmap area, for when pages are paged
5003          * out or modified by the host directly.  Pick up these
5004          * bits and add them to the map.
5005          */
5006         p = memslot->dirty_bitmap;
5007         for (i = 0; i < n / sizeof(long); ++i)
5008                 buf[i] |= xchg(&p[i], 0);
5009
5010         /* Harvest dirty bits from VPA and DTL updates */
5011         /* Note: we never modify the SLB shadow buffer areas */
5012         kvm_for_each_vcpu(i, vcpu, kvm) {
5013                 spin_lock(&vcpu->arch.vpa_update_lock);
5014                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5015                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5016                 spin_unlock(&vcpu->arch.vpa_update_lock);
5017         }
5018
5019         r = -EFAULT;
5020         if (copy_to_user(log->dirty_bitmap, buf, n))
5021                 goto out;
5022
5023         r = 0;
5024 out:
5025         mutex_unlock(&kvm->slots_lock);
5026         return r;
5027 }
5028
5029 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5030 {
5031         vfree(slot->arch.rmap);
5032         slot->arch.rmap = NULL;
5033 }
5034
5035 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5036                                 const struct kvm_memory_slot *old,
5037                                 struct kvm_memory_slot *new,
5038                                 enum kvm_mr_change change)
5039 {
5040         if (change == KVM_MR_CREATE) {
5041                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5042
5043                 if ((size >> PAGE_SHIFT) > totalram_pages())
5044                         return -ENOMEM;
5045
5046                 new->arch.rmap = vzalloc(size);
5047                 if (!new->arch.rmap)
5048                         return -ENOMEM;
5049         } else if (change != KVM_MR_DELETE) {
5050                 new->arch.rmap = old->arch.rmap;
5051         }
5052
5053         return 0;
5054 }
5055
5056 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5057                                 struct kvm_memory_slot *old,
5058                                 const struct kvm_memory_slot *new,
5059                                 enum kvm_mr_change change)
5060 {
5061         /*
5062          * If we are creating or modifying a memslot, it might make
5063          * some address that was previously cached as emulated
5064          * MMIO be no longer emulated MMIO, so invalidate
5065          * all the caches of emulated MMIO translations.
5066          */
5067         if (change != KVM_MR_DELETE)
5068                 atomic64_inc(&kvm->arch.mmio_update);
5069
5070         /*
5071          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5072          * have already called kvm_arch_flush_shadow_memslot() to
5073          * flush shadow mappings.  For KVM_MR_CREATE we have no
5074          * previous mappings.  So the only case to handle is
5075          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5076          * has been changed.
5077          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5078          * to get rid of any THP PTEs in the partition-scoped page tables
5079          * so we can track dirtiness at the page level; we flush when
5080          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5081          * using THP PTEs.
5082          */
5083         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5084             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5085                 kvmppc_radix_flush_memslot(kvm, old);
5086         /*
5087          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5088          */
5089         if (!kvm->arch.secure_guest)
5090                 return;
5091
5092         switch (change) {
5093         case KVM_MR_CREATE:
5094                 /*
5095                  * @TODO kvmppc_uvmem_memslot_create() can fail and
5096                  * return error. Fix this.
5097                  */
5098                 kvmppc_uvmem_memslot_create(kvm, new);
5099                 break;
5100         case KVM_MR_DELETE:
5101                 kvmppc_uvmem_memslot_delete(kvm, old);
5102                 break;
5103         default:
5104                 /* TODO: Handle KVM_MR_MOVE */
5105                 break;
5106         }
5107 }
5108
5109 /*
5110  * Update LPCR values in kvm->arch and in vcores.
5111  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5112  * of kvm->arch.lpcr update).
5113  */
5114 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5115 {
5116         long int i;
5117         u32 cores_done = 0;
5118
5119         if ((kvm->arch.lpcr & mask) == lpcr)
5120                 return;
5121
5122         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5123
5124         for (i = 0; i < KVM_MAX_VCORES; ++i) {
5125                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5126                 if (!vc)
5127                         continue;
5128
5129                 spin_lock(&vc->lock);
5130                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5131                 verify_lpcr(kvm, vc->lpcr);
5132                 spin_unlock(&vc->lock);
5133                 if (++cores_done >= kvm->arch.online_vcores)
5134                         break;
5135         }
5136 }
5137
5138 void kvmppc_setup_partition_table(struct kvm *kvm)
5139 {
5140         unsigned long dw0, dw1;
5141
5142         if (!kvm_is_radix(kvm)) {
5143                 /* PS field - page size for VRMA */
5144                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5145                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5146                 /* HTABSIZE and HTABORG fields */
5147                 dw0 |= kvm->arch.sdr1;
5148
5149                 /* Second dword as set by userspace */
5150                 dw1 = kvm->arch.process_table;
5151         } else {
5152                 dw0 = PATB_HR | radix__get_tree_size() |
5153                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5154                 dw1 = PATB_GR | kvm->arch.process_table;
5155         }
5156         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5157 }
5158
5159 /*
5160  * Set up HPT (hashed page table) and RMA (real-mode area).
5161  * Must be called with kvm->arch.mmu_setup_lock held.
5162  */
5163 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5164 {
5165         int err = 0;
5166         struct kvm *kvm = vcpu->kvm;
5167         unsigned long hva;
5168         struct kvm_memory_slot *memslot;
5169         struct vm_area_struct *vma;
5170         unsigned long lpcr = 0, senc;
5171         unsigned long psize, porder;
5172         int srcu_idx;
5173
5174         /* Allocate hashed page table (if not done already) and reset it */
5175         if (!kvm->arch.hpt.virt) {
5176                 int order = KVM_DEFAULT_HPT_ORDER;
5177                 struct kvm_hpt_info info;
5178
5179                 err = kvmppc_allocate_hpt(&info, order);
5180                 /* If we get here, it means userspace didn't specify a
5181                  * size explicitly.  So, try successively smaller
5182                  * sizes if the default failed. */
5183                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5184                         err  = kvmppc_allocate_hpt(&info, order);
5185
5186                 if (err < 0) {
5187                         pr_err("KVM: Couldn't alloc HPT\n");
5188                         goto out;
5189                 }
5190
5191                 kvmppc_set_hpt(kvm, &info);
5192         }
5193
5194         /* Look up the memslot for guest physical address 0 */
5195         srcu_idx = srcu_read_lock(&kvm->srcu);
5196         memslot = gfn_to_memslot(kvm, 0);
5197
5198         /* We must have some memory at 0 by now */
5199         err = -EINVAL;
5200         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5201                 goto out_srcu;
5202
5203         /* Look up the VMA for the start of this memory slot */
5204         hva = memslot->userspace_addr;
5205         mmap_read_lock(kvm->mm);
5206         vma = vma_lookup(kvm->mm, hva);
5207         if (!vma || (vma->vm_flags & VM_IO))
5208                 goto up_out;
5209
5210         psize = vma_kernel_pagesize(vma);
5211
5212         mmap_read_unlock(kvm->mm);
5213
5214         /* We can handle 4k, 64k or 16M pages in the VRMA */
5215         if (psize >= 0x1000000)
5216                 psize = 0x1000000;
5217         else if (psize >= 0x10000)
5218                 psize = 0x10000;
5219         else
5220                 psize = 0x1000;
5221         porder = __ilog2(psize);
5222
5223         senc = slb_pgsize_encoding(psize);
5224         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5225                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5226         /* Create HPTEs in the hash page table for the VRMA */
5227         kvmppc_map_vrma(vcpu, memslot, porder);
5228
5229         /* Update VRMASD field in the LPCR */
5230         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5231                 /* the -4 is to account for senc values starting at 0x10 */
5232                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5233                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5234         }
5235
5236         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5237         smp_wmb();
5238         err = 0;
5239  out_srcu:
5240         srcu_read_unlock(&kvm->srcu, srcu_idx);
5241  out:
5242         return err;
5243
5244  up_out:
5245         mmap_read_unlock(kvm->mm);
5246         goto out_srcu;
5247 }
5248
5249 /*
5250  * Must be called with kvm->arch.mmu_setup_lock held and
5251  * mmu_ready = 0 and no vcpus running.
5252  */
5253 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5254 {
5255         unsigned long lpcr, lpcr_mask;
5256
5257         if (nesting_enabled(kvm))
5258                 kvmhv_release_all_nested(kvm);
5259         kvmppc_rmap_reset(kvm);
5260         kvm->arch.process_table = 0;
5261         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5262         spin_lock(&kvm->mmu_lock);
5263         kvm->arch.radix = 0;
5264         spin_unlock(&kvm->mmu_lock);
5265         kvmppc_free_radix(kvm);
5266
5267         lpcr = LPCR_VPM1;
5268         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5269         if (cpu_has_feature(CPU_FTR_ARCH_31))
5270                 lpcr_mask |= LPCR_HAIL;
5271         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5272
5273         return 0;
5274 }
5275
5276 /*
5277  * Must be called with kvm->arch.mmu_setup_lock held and
5278  * mmu_ready = 0 and no vcpus running.
5279  */
5280 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5281 {
5282         unsigned long lpcr, lpcr_mask;
5283         int err;
5284
5285         err = kvmppc_init_vm_radix(kvm);
5286         if (err)
5287                 return err;
5288         kvmppc_rmap_reset(kvm);
5289         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5290         spin_lock(&kvm->mmu_lock);
5291         kvm->arch.radix = 1;
5292         spin_unlock(&kvm->mmu_lock);
5293         kvmppc_free_hpt(&kvm->arch.hpt);
5294
5295         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5296         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5297         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5298                 lpcr_mask |= LPCR_HAIL;
5299                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5300                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5301                         lpcr |= LPCR_HAIL;
5302         }
5303         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5304
5305         return 0;
5306 }
5307
5308 #ifdef CONFIG_KVM_XICS
5309 /*
5310  * Allocate a per-core structure for managing state about which cores are
5311  * running in the host versus the guest and for exchanging data between
5312  * real mode KVM and CPU running in the host.
5313  * This is only done for the first VM.
5314  * The allocated structure stays even if all VMs have stopped.
5315  * It is only freed when the kvm-hv module is unloaded.
5316  * It's OK for this routine to fail, we just don't support host
5317  * core operations like redirecting H_IPI wakeups.
5318  */
5319 void kvmppc_alloc_host_rm_ops(void)
5320 {
5321         struct kvmppc_host_rm_ops *ops;
5322         unsigned long l_ops;
5323         int cpu, core;
5324         int size;
5325
5326         if (cpu_has_feature(CPU_FTR_ARCH_300))
5327                 return;
5328
5329         /* Not the first time here ? */
5330         if (kvmppc_host_rm_ops_hv != NULL)
5331                 return;
5332
5333         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5334         if (!ops)
5335                 return;
5336
5337         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5338         ops->rm_core = kzalloc(size, GFP_KERNEL);
5339
5340         if (!ops->rm_core) {
5341                 kfree(ops);
5342                 return;
5343         }
5344
5345         cpus_read_lock();
5346
5347         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5348                 if (!cpu_online(cpu))
5349                         continue;
5350
5351                 core = cpu >> threads_shift;
5352                 ops->rm_core[core].rm_state.in_host = 1;
5353         }
5354
5355         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5356
5357         /*
5358          * Make the contents of the kvmppc_host_rm_ops structure visible
5359          * to other CPUs before we assign it to the global variable.
5360          * Do an atomic assignment (no locks used here), but if someone
5361          * beats us to it, just free our copy and return.
5362          */
5363         smp_wmb();
5364         l_ops = (unsigned long) ops;
5365
5366         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5367                 cpus_read_unlock();
5368                 kfree(ops->rm_core);
5369                 kfree(ops);
5370                 return;
5371         }
5372
5373         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5374                                              "ppc/kvm_book3s:prepare",
5375                                              kvmppc_set_host_core,
5376                                              kvmppc_clear_host_core);
5377         cpus_read_unlock();
5378 }
5379
5380 void kvmppc_free_host_rm_ops(void)
5381 {
5382         if (kvmppc_host_rm_ops_hv) {
5383                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5384                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5385                 kfree(kvmppc_host_rm_ops_hv);
5386                 kvmppc_host_rm_ops_hv = NULL;
5387         }
5388 }
5389 #endif
5390
5391 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5392 {
5393         unsigned long lpcr, lpid;
5394         int ret;
5395
5396         mutex_init(&kvm->arch.uvmem_lock);
5397         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5398         mutex_init(&kvm->arch.mmu_setup_lock);
5399
5400         /* Allocate the guest's logical partition ID */
5401
5402         lpid = kvmppc_alloc_lpid();
5403         if ((long)lpid < 0)
5404                 return -ENOMEM;
5405         kvm->arch.lpid = lpid;
5406
5407         kvmppc_alloc_host_rm_ops();
5408
5409         kvmhv_vm_nested_init(kvm);
5410
5411         /*
5412          * Since we don't flush the TLB when tearing down a VM,
5413          * and this lpid might have previously been used,
5414          * make sure we flush on each core before running the new VM.
5415          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5416          * does this flush for us.
5417          */
5418         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5419                 cpumask_setall(&kvm->arch.need_tlb_flush);
5420
5421         /* Start out with the default set of hcalls enabled */
5422         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5423                sizeof(kvm->arch.enabled_hcalls));
5424
5425         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5426                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5427
5428         /* Init LPCR for virtual RMA mode */
5429         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5430                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5431                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5432                 lpcr &= LPCR_PECE | LPCR_LPES;
5433         } else {
5434                 /*
5435                  * The L2 LPES mode will be set by the L0 according to whether
5436                  * or not it needs to take external interrupts in HV mode.
5437                  */
5438                 lpcr = 0;
5439         }
5440         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5441                 LPCR_VPM0 | LPCR_VPM1;
5442         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5443                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5444         /* On POWER8 turn on online bit to enable PURR/SPURR */
5445         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5446                 lpcr |= LPCR_ONL;
5447         /*
5448          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5449          * Set HVICE bit to enable hypervisor virtualization interrupts.
5450          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5451          * be unnecessary but better safe than sorry in case we re-enable
5452          * EE in HV mode with this LPCR still set)
5453          */
5454         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5455                 lpcr &= ~LPCR_VPM0;
5456                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5457
5458                 /*
5459                  * If xive is enabled, we route 0x500 interrupts directly
5460                  * to the guest.
5461                  */
5462                 if (xics_on_xive())
5463                         lpcr |= LPCR_LPES;
5464         }
5465
5466         /*
5467          * If the host uses radix, the guest starts out as radix.
5468          */
5469         if (radix_enabled()) {
5470                 kvm->arch.radix = 1;
5471                 kvm->arch.mmu_ready = 1;
5472                 lpcr &= ~LPCR_VPM1;
5473                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5474                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5475                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5476                     (kvm->arch.host_lpcr & LPCR_HAIL))
5477                         lpcr |= LPCR_HAIL;
5478                 ret = kvmppc_init_vm_radix(kvm);
5479                 if (ret) {
5480                         kvmppc_free_lpid(kvm->arch.lpid);
5481                         return ret;
5482                 }
5483                 kvmppc_setup_partition_table(kvm);
5484         }
5485
5486         verify_lpcr(kvm, lpcr);
5487         kvm->arch.lpcr = lpcr;
5488
5489         /* Initialization for future HPT resizes */
5490         kvm->arch.resize_hpt = NULL;
5491
5492         /*
5493          * Work out how many sets the TLB has, for the use of
5494          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5495          */
5496         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5497                 /*
5498                  * P10 will flush all the congruence class with a single tlbiel
5499                  */
5500                 kvm->arch.tlb_sets = 1;
5501         } else if (radix_enabled())
5502                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5503         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5504                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5505         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5506                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5507         else
5508                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5509
5510         /*
5511          * Track that we now have a HV mode VM active. This blocks secondary
5512          * CPU threads from coming online.
5513          */
5514         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5515                 kvm_hv_vm_activated();
5516
5517         /*
5518          * Initialize smt_mode depending on processor.
5519          * POWER8 and earlier have to use "strict" threading, where
5520          * all vCPUs in a vcore have to run on the same (sub)core,
5521          * whereas on POWER9 the threads can each run a different
5522          * guest.
5523          */
5524         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5525                 kvm->arch.smt_mode = threads_per_subcore;
5526         else
5527                 kvm->arch.smt_mode = 1;
5528         kvm->arch.emul_smt_mode = 1;
5529
5530         return 0;
5531 }
5532
5533 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5534 {
5535         kvmppc_mmu_debugfs_init(kvm);
5536         if (radix_enabled())
5537                 kvmhv_radix_debugfs_init(kvm);
5538         return 0;
5539 }
5540
5541 static void kvmppc_free_vcores(struct kvm *kvm)
5542 {
5543         long int i;
5544
5545         for (i = 0; i < KVM_MAX_VCORES; ++i)
5546                 kfree(kvm->arch.vcores[i]);
5547         kvm->arch.online_vcores = 0;
5548 }
5549
5550 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5551 {
5552         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5553                 kvm_hv_vm_deactivated();
5554
5555         kvmppc_free_vcores(kvm);
5556
5557
5558         if (kvm_is_radix(kvm))
5559                 kvmppc_free_radix(kvm);
5560         else
5561                 kvmppc_free_hpt(&kvm->arch.hpt);
5562
5563         /* Perform global invalidation and return lpid to the pool */
5564         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5565                 if (nesting_enabled(kvm))
5566                         kvmhv_release_all_nested(kvm);
5567                 kvm->arch.process_table = 0;
5568                 if (kvm->arch.secure_guest)
5569                         uv_svm_terminate(kvm->arch.lpid);
5570                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5571         }
5572
5573         kvmppc_free_lpid(kvm->arch.lpid);
5574
5575         kvmppc_free_pimap(kvm);
5576 }
5577
5578 /* We don't need to emulate any privileged instructions or dcbz */
5579 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5580                                      unsigned int inst, int *advance)
5581 {
5582         return EMULATE_FAIL;
5583 }
5584
5585 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5586                                         ulong spr_val)
5587 {
5588         return EMULATE_FAIL;
5589 }
5590
5591 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5592                                         ulong *spr_val)
5593 {
5594         return EMULATE_FAIL;
5595 }
5596
5597 static int kvmppc_core_check_processor_compat_hv(void)
5598 {
5599         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5600             cpu_has_feature(CPU_FTR_ARCH_206))
5601                 return 0;
5602
5603         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5604         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5605                 return 0;
5606
5607         return -EIO;
5608 }
5609
5610 #ifdef CONFIG_KVM_XICS
5611
5612 void kvmppc_free_pimap(struct kvm *kvm)
5613 {
5614         kfree(kvm->arch.pimap);
5615 }
5616
5617 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5618 {
5619         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5620 }
5621
5622 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5623 {
5624         struct irq_desc *desc;
5625         struct kvmppc_irq_map *irq_map;
5626         struct kvmppc_passthru_irqmap *pimap;
5627         struct irq_chip *chip;
5628         int i, rc = 0;
5629         struct irq_data *host_data;
5630
5631         if (!kvm_irq_bypass)
5632                 return 1;
5633
5634         desc = irq_to_desc(host_irq);
5635         if (!desc)
5636                 return -EIO;
5637
5638         mutex_lock(&kvm->lock);
5639
5640         pimap = kvm->arch.pimap;
5641         if (pimap == NULL) {
5642                 /* First call, allocate structure to hold IRQ map */
5643                 pimap = kvmppc_alloc_pimap();
5644                 if (pimap == NULL) {
5645                         mutex_unlock(&kvm->lock);
5646                         return -ENOMEM;
5647                 }
5648                 kvm->arch.pimap = pimap;
5649         }
5650
5651         /*
5652          * For now, we only support interrupts for which the EOI operation
5653          * is an OPAL call followed by a write to XIRR, since that's
5654          * what our real-mode EOI code does, or a XIVE interrupt
5655          */
5656         chip = irq_data_get_irq_chip(&desc->irq_data);
5657         if (!chip || !is_pnv_opal_msi(chip)) {
5658                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5659                         host_irq, guest_gsi);
5660                 mutex_unlock(&kvm->lock);
5661                 return -ENOENT;
5662         }
5663
5664         /*
5665          * See if we already have an entry for this guest IRQ number.
5666          * If it's mapped to a hardware IRQ number, that's an error,
5667          * otherwise re-use this entry.
5668          */
5669         for (i = 0; i < pimap->n_mapped; i++) {
5670                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5671                         if (pimap->mapped[i].r_hwirq) {
5672                                 mutex_unlock(&kvm->lock);
5673                                 return -EINVAL;
5674                         }
5675                         break;
5676                 }
5677         }
5678
5679         if (i == KVMPPC_PIRQ_MAPPED) {
5680                 mutex_unlock(&kvm->lock);
5681                 return -EAGAIN;         /* table is full */
5682         }
5683
5684         irq_map = &pimap->mapped[i];
5685
5686         irq_map->v_hwirq = guest_gsi;
5687         irq_map->desc = desc;
5688
5689         /*
5690          * Order the above two stores before the next to serialize with
5691          * the KVM real mode handler.
5692          */
5693         smp_wmb();
5694
5695         /*
5696          * The 'host_irq' number is mapped in the PCI-MSI domain but
5697          * the underlying calls, which will EOI the interrupt in real
5698          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5699          */
5700         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5701         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5702
5703         if (i == pimap->n_mapped)
5704                 pimap->n_mapped++;
5705
5706         if (xics_on_xive())
5707                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5708         else
5709                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5710         if (rc)
5711                 irq_map->r_hwirq = 0;
5712
5713         mutex_unlock(&kvm->lock);
5714
5715         return 0;
5716 }
5717
5718 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5719 {
5720         struct irq_desc *desc;
5721         struct kvmppc_passthru_irqmap *pimap;
5722         int i, rc = 0;
5723
5724         if (!kvm_irq_bypass)
5725                 return 0;
5726
5727         desc = irq_to_desc(host_irq);
5728         if (!desc)
5729                 return -EIO;
5730
5731         mutex_lock(&kvm->lock);
5732         if (!kvm->arch.pimap)
5733                 goto unlock;
5734
5735         pimap = kvm->arch.pimap;
5736
5737         for (i = 0; i < pimap->n_mapped; i++) {
5738                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5739                         break;
5740         }
5741
5742         if (i == pimap->n_mapped) {
5743                 mutex_unlock(&kvm->lock);
5744                 return -ENODEV;
5745         }
5746
5747         if (xics_on_xive())
5748                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5749         else
5750                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5751
5752         /* invalidate the entry (what to do on error from the above ?) */
5753         pimap->mapped[i].r_hwirq = 0;
5754
5755         /*
5756          * We don't free this structure even when the count goes to
5757          * zero. The structure is freed when we destroy the VM.
5758          */
5759  unlock:
5760         mutex_unlock(&kvm->lock);
5761         return rc;
5762 }
5763
5764 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5765                                              struct irq_bypass_producer *prod)
5766 {
5767         int ret = 0;
5768         struct kvm_kernel_irqfd *irqfd =
5769                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5770
5771         irqfd->producer = prod;
5772
5773         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5774         if (ret)
5775                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5776                         prod->irq, irqfd->gsi, ret);
5777
5778         return ret;
5779 }
5780
5781 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5782                                               struct irq_bypass_producer *prod)
5783 {
5784         int ret;
5785         struct kvm_kernel_irqfd *irqfd =
5786                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5787
5788         irqfd->producer = NULL;
5789
5790         /*
5791          * When producer of consumer is unregistered, we change back to
5792          * default external interrupt handling mode - KVM real mode
5793          * will switch back to host.
5794          */
5795         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5796         if (ret)
5797                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5798                         prod->irq, irqfd->gsi, ret);
5799 }
5800 #endif
5801
5802 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5803                                 unsigned int ioctl, unsigned long arg)
5804 {
5805         struct kvm *kvm __maybe_unused = filp->private_data;
5806         void __user *argp = (void __user *)arg;
5807         int r;
5808
5809         switch (ioctl) {
5810
5811         case KVM_PPC_ALLOCATE_HTAB: {
5812                 u32 htab_order;
5813
5814                 /* If we're a nested hypervisor, we currently only support radix */
5815                 if (kvmhv_on_pseries()) {
5816                         r = -EOPNOTSUPP;
5817                         break;
5818                 }
5819
5820                 r = -EFAULT;
5821                 if (get_user(htab_order, (u32 __user *)argp))
5822                         break;
5823                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5824                 if (r)
5825                         break;
5826                 r = 0;
5827                 break;
5828         }
5829
5830         case KVM_PPC_GET_HTAB_FD: {
5831                 struct kvm_get_htab_fd ghf;
5832
5833                 r = -EFAULT;
5834                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5835                         break;
5836                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5837                 break;
5838         }
5839
5840         case KVM_PPC_RESIZE_HPT_PREPARE: {
5841                 struct kvm_ppc_resize_hpt rhpt;
5842
5843                 r = -EFAULT;
5844                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5845                         break;
5846
5847                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5848                 break;
5849         }
5850
5851         case KVM_PPC_RESIZE_HPT_COMMIT: {
5852                 struct kvm_ppc_resize_hpt rhpt;
5853
5854                 r = -EFAULT;
5855                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5856                         break;
5857
5858                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5859                 break;
5860         }
5861
5862         default:
5863                 r = -ENOTTY;
5864         }
5865
5866         return r;
5867 }
5868
5869 /*
5870  * List of hcall numbers to enable by default.
5871  * For compatibility with old userspace, we enable by default
5872  * all hcalls that were implemented before the hcall-enabling
5873  * facility was added.  Note this list should not include H_RTAS.
5874  */
5875 static unsigned int default_hcall_list[] = {
5876         H_REMOVE,
5877         H_ENTER,
5878         H_READ,
5879         H_PROTECT,
5880         H_BULK_REMOVE,
5881 #ifdef CONFIG_SPAPR_TCE_IOMMU
5882         H_GET_TCE,
5883         H_PUT_TCE,
5884 #endif
5885         H_SET_DABR,
5886         H_SET_XDABR,
5887         H_CEDE,
5888         H_PROD,
5889         H_CONFER,
5890         H_REGISTER_VPA,
5891 #ifdef CONFIG_KVM_XICS
5892         H_EOI,
5893         H_CPPR,
5894         H_IPI,
5895         H_IPOLL,
5896         H_XIRR,
5897         H_XIRR_X,
5898 #endif
5899         0
5900 };
5901
5902 static void init_default_hcalls(void)
5903 {
5904         int i;
5905         unsigned int hcall;
5906
5907         for (i = 0; default_hcall_list[i]; ++i) {
5908                 hcall = default_hcall_list[i];
5909                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5910                 __set_bit(hcall / 4, default_enabled_hcalls);
5911         }
5912 }
5913
5914 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5915 {
5916         unsigned long lpcr;
5917         int radix;
5918         int err;
5919
5920         /* If not on a POWER9, reject it */
5921         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5922                 return -ENODEV;
5923
5924         /* If any unknown flags set, reject it */
5925         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5926                 return -EINVAL;
5927
5928         /* GR (guest radix) bit in process_table field must match */
5929         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5930         if (!!(cfg->process_table & PATB_GR) != radix)
5931                 return -EINVAL;
5932
5933         /* Process table size field must be reasonable, i.e. <= 24 */
5934         if ((cfg->process_table & PRTS_MASK) > 24)
5935                 return -EINVAL;
5936
5937         /* We can change a guest to/from radix now, if the host is radix */
5938         if (radix && !radix_enabled())
5939                 return -EINVAL;
5940
5941         /* If we're a nested hypervisor, we currently only support radix */
5942         if (kvmhv_on_pseries() && !radix)
5943                 return -EINVAL;
5944
5945         mutex_lock(&kvm->arch.mmu_setup_lock);
5946         if (radix != kvm_is_radix(kvm)) {
5947                 if (kvm->arch.mmu_ready) {
5948                         kvm->arch.mmu_ready = 0;
5949                         /* order mmu_ready vs. vcpus_running */
5950                         smp_mb();
5951                         if (atomic_read(&kvm->arch.vcpus_running)) {
5952                                 kvm->arch.mmu_ready = 1;
5953                                 err = -EBUSY;
5954                                 goto out_unlock;
5955                         }
5956                 }
5957                 if (radix)
5958                         err = kvmppc_switch_mmu_to_radix(kvm);
5959                 else
5960                         err = kvmppc_switch_mmu_to_hpt(kvm);
5961                 if (err)
5962                         goto out_unlock;
5963         }
5964
5965         kvm->arch.process_table = cfg->process_table;
5966         kvmppc_setup_partition_table(kvm);
5967
5968         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5969         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5970         err = 0;
5971
5972  out_unlock:
5973         mutex_unlock(&kvm->arch.mmu_setup_lock);
5974         return err;
5975 }
5976
5977 static int kvmhv_enable_nested(struct kvm *kvm)
5978 {
5979         if (!nested)
5980                 return -EPERM;
5981         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5982                 return -ENODEV;
5983         if (!radix_enabled())
5984                 return -ENODEV;
5985
5986         /* kvm == NULL means the caller is testing if the capability exists */
5987         if (kvm)
5988                 kvm->arch.nested_enable = true;
5989         return 0;
5990 }
5991
5992 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5993                                  int size)
5994 {
5995         int rc = -EINVAL;
5996
5997         if (kvmhv_vcpu_is_radix(vcpu)) {
5998                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5999
6000                 if (rc > 0)
6001                         rc = -EINVAL;
6002         }
6003
6004         /* For now quadrants are the only way to access nested guest memory */
6005         if (rc && vcpu->arch.nested)
6006                 rc = -EAGAIN;
6007
6008         return rc;
6009 }
6010
6011 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6012                                 int size)
6013 {
6014         int rc = -EINVAL;
6015
6016         if (kvmhv_vcpu_is_radix(vcpu)) {
6017                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6018
6019                 if (rc > 0)
6020                         rc = -EINVAL;
6021         }
6022
6023         /* For now quadrants are the only way to access nested guest memory */
6024         if (rc && vcpu->arch.nested)
6025                 rc = -EAGAIN;
6026
6027         return rc;
6028 }
6029
6030 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6031 {
6032         unpin_vpa(kvm, vpa);
6033         vpa->gpa = 0;
6034         vpa->pinned_addr = NULL;
6035         vpa->dirty = false;
6036         vpa->update_pending = 0;
6037 }
6038
6039 /*
6040  * Enable a guest to become a secure VM, or test whether
6041  * that could be enabled.
6042  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6043  * tested (kvm == NULL) or enabled (kvm != NULL).
6044  */
6045 static int kvmhv_enable_svm(struct kvm *kvm)
6046 {
6047         if (!kvmppc_uvmem_available())
6048                 return -EINVAL;
6049         if (kvm)
6050                 kvm->arch.svm_enabled = 1;
6051         return 0;
6052 }
6053
6054 /*
6055  *  IOCTL handler to turn off secure mode of guest
6056  *
6057  * - Release all device pages
6058  * - Issue ucall to terminate the guest on the UV side
6059  * - Unpin the VPA pages.
6060  * - Reinit the partition scoped page tables
6061  */
6062 static int kvmhv_svm_off(struct kvm *kvm)
6063 {
6064         struct kvm_vcpu *vcpu;
6065         int mmu_was_ready;
6066         int srcu_idx;
6067         int ret = 0;
6068         unsigned long i;
6069
6070         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6071                 return ret;
6072
6073         mutex_lock(&kvm->arch.mmu_setup_lock);
6074         mmu_was_ready = kvm->arch.mmu_ready;
6075         if (kvm->arch.mmu_ready) {
6076                 kvm->arch.mmu_ready = 0;
6077                 /* order mmu_ready vs. vcpus_running */
6078                 smp_mb();
6079                 if (atomic_read(&kvm->arch.vcpus_running)) {
6080                         kvm->arch.mmu_ready = 1;
6081                         ret = -EBUSY;
6082                         goto out;
6083                 }
6084         }
6085
6086         srcu_idx = srcu_read_lock(&kvm->srcu);
6087         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6088                 struct kvm_memory_slot *memslot;
6089                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6090                 int bkt;
6091
6092                 if (!slots)
6093                         continue;
6094
6095                 kvm_for_each_memslot(memslot, bkt, slots) {
6096                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
6097                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6098                 }
6099         }
6100         srcu_read_unlock(&kvm->srcu, srcu_idx);
6101
6102         ret = uv_svm_terminate(kvm->arch.lpid);
6103         if (ret != U_SUCCESS) {
6104                 ret = -EINVAL;
6105                 goto out;
6106         }
6107
6108         /*
6109          * When secure guest is reset, all the guest pages are sent
6110          * to UV via UV_PAGE_IN before the non-boot vcpus get a
6111          * chance to run and unpin their VPA pages. Unpinning of all
6112          * VPA pages is done here explicitly so that VPA pages
6113          * can be migrated to the secure side.
6114          *
6115          * This is required to for the secure SMP guest to reboot
6116          * correctly.
6117          */
6118         kvm_for_each_vcpu(i, vcpu, kvm) {
6119                 spin_lock(&vcpu->arch.vpa_update_lock);
6120                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6121                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6122                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6123                 spin_unlock(&vcpu->arch.vpa_update_lock);
6124         }
6125
6126         kvmppc_setup_partition_table(kvm);
6127         kvm->arch.secure_guest = 0;
6128         kvm->arch.mmu_ready = mmu_was_ready;
6129 out:
6130         mutex_unlock(&kvm->arch.mmu_setup_lock);
6131         return ret;
6132 }
6133
6134 static int kvmhv_enable_dawr1(struct kvm *kvm)
6135 {
6136         if (!cpu_has_feature(CPU_FTR_DAWR1))
6137                 return -ENODEV;
6138
6139         /* kvm == NULL means the caller is testing if the capability exists */
6140         if (kvm)
6141                 kvm->arch.dawr1_enabled = true;
6142         return 0;
6143 }
6144
6145 static bool kvmppc_hash_v3_possible(void)
6146 {
6147         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6148                 return false;
6149
6150         if (!cpu_has_feature(CPU_FTR_HVMODE))
6151                 return false;
6152
6153         /*
6154          * POWER9 chips before version 2.02 can't have some threads in
6155          * HPT mode and some in radix mode on the same core.
6156          */
6157         if (radix_enabled()) {
6158                 unsigned int pvr = mfspr(SPRN_PVR);
6159                 if ((pvr >> 16) == PVR_POWER9 &&
6160                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6161                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6162                         return false;
6163         }
6164
6165         return true;
6166 }
6167
6168 static struct kvmppc_ops kvm_ops_hv = {
6169         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6170         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6171         .get_one_reg = kvmppc_get_one_reg_hv,
6172         .set_one_reg = kvmppc_set_one_reg_hv,
6173         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6174         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6175         .inject_interrupt = kvmppc_inject_interrupt_hv,
6176         .set_msr     = kvmppc_set_msr_hv,
6177         .vcpu_run    = kvmppc_vcpu_run_hv,
6178         .vcpu_create = kvmppc_core_vcpu_create_hv,
6179         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6180         .check_requests = kvmppc_core_check_requests_hv,
6181         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6182         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6183         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6184         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6185         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6186         .age_gfn = kvm_age_gfn_hv,
6187         .test_age_gfn = kvm_test_age_gfn_hv,
6188         .set_spte_gfn = kvm_set_spte_gfn_hv,
6189         .free_memslot = kvmppc_core_free_memslot_hv,
6190         .init_vm =  kvmppc_core_init_vm_hv,
6191         .destroy_vm = kvmppc_core_destroy_vm_hv,
6192         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6193         .emulate_op = kvmppc_core_emulate_op_hv,
6194         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6195         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6196         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6197         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6198         .hcall_implemented = kvmppc_hcall_impl_hv,
6199 #ifdef CONFIG_KVM_XICS
6200         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6201         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6202 #endif
6203         .configure_mmu = kvmhv_configure_mmu,
6204         .get_rmmu_info = kvmhv_get_rmmu_info,
6205         .set_smt_mode = kvmhv_set_smt_mode,
6206         .enable_nested = kvmhv_enable_nested,
6207         .load_from_eaddr = kvmhv_load_from_eaddr,
6208         .store_to_eaddr = kvmhv_store_to_eaddr,
6209         .enable_svm = kvmhv_enable_svm,
6210         .svm_off = kvmhv_svm_off,
6211         .enable_dawr1 = kvmhv_enable_dawr1,
6212         .hash_v3_possible = kvmppc_hash_v3_possible,
6213         .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6214         .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6215 };
6216
6217 static int kvm_init_subcore_bitmap(void)
6218 {
6219         int i, j;
6220         int nr_cores = cpu_nr_cores();
6221         struct sibling_subcore_state *sibling_subcore_state;
6222
6223         for (i = 0; i < nr_cores; i++) {
6224                 int first_cpu = i * threads_per_core;
6225                 int node = cpu_to_node(first_cpu);
6226
6227                 /* Ignore if it is already allocated. */
6228                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6229                         continue;
6230
6231                 sibling_subcore_state =
6232                         kzalloc_node(sizeof(struct sibling_subcore_state),
6233                                                         GFP_KERNEL, node);
6234                 if (!sibling_subcore_state)
6235                         return -ENOMEM;
6236
6237
6238                 for (j = 0; j < threads_per_core; j++) {
6239                         int cpu = first_cpu + j;
6240
6241                         paca_ptrs[cpu]->sibling_subcore_state =
6242                                                 sibling_subcore_state;
6243                 }
6244         }
6245         return 0;
6246 }
6247
6248 static int kvmppc_radix_possible(void)
6249 {
6250         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6251 }
6252
6253 static int kvmppc_book3s_init_hv(void)
6254 {
6255         int r;
6256
6257         if (!tlbie_capable) {
6258                 pr_err("KVM-HV: Host does not support TLBIE\n");
6259                 return -ENODEV;
6260         }
6261
6262         /*
6263          * FIXME!! Do we need to check on all cpus ?
6264          */
6265         r = kvmppc_core_check_processor_compat_hv();
6266         if (r < 0)
6267                 return -ENODEV;
6268
6269         r = kvmhv_nested_init();
6270         if (r)
6271                 return r;
6272
6273         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6274                 r = kvm_init_subcore_bitmap();
6275                 if (r)
6276                         goto err;
6277         }
6278
6279         /*
6280          * We need a way of accessing the XICS interrupt controller,
6281          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6282          * indirectly, via OPAL.
6283          */
6284 #ifdef CONFIG_SMP
6285         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6286             !local_paca->kvm_hstate.xics_phys) {
6287                 struct device_node *np;
6288
6289                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6290                 if (!np) {
6291                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6292                         r = -ENODEV;
6293                         goto err;
6294                 }
6295                 /* presence of intc confirmed - node can be dropped again */
6296                 of_node_put(np);
6297         }
6298 #endif
6299
6300         init_default_hcalls();
6301
6302         init_vcore_lists();
6303
6304         r = kvmppc_mmu_hv_init();
6305         if (r)
6306                 goto err;
6307
6308         if (kvmppc_radix_possible()) {
6309                 r = kvmppc_radix_init();
6310                 if (r)
6311                         goto err;
6312         }
6313
6314         r = kvmppc_uvmem_init();
6315         if (r < 0) {
6316                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6317                 return r;
6318         }
6319
6320         kvm_ops_hv.owner = THIS_MODULE;
6321         kvmppc_hv_ops = &kvm_ops_hv;
6322
6323         return 0;
6324
6325 err:
6326         kvmhv_nested_exit();
6327         kvmppc_radix_exit();
6328
6329         return r;
6330 }
6331
6332 static void kvmppc_book3s_exit_hv(void)
6333 {
6334         kvmppc_uvmem_free();
6335         kvmppc_free_host_rm_ops();
6336         if (kvmppc_radix_possible())
6337                 kvmppc_radix_exit();
6338         kvmppc_hv_ops = NULL;
6339         kvmhv_nested_exit();
6340 }
6341
6342 module_init(kvmppc_book3s_init_hv);
6343 module_exit(kvmppc_book3s_exit_hv);
6344 MODULE_LICENSE("GPL");
6345 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6346 MODULE_ALIAS("devname:kvm");