Merge tag 'kvm-s390-master-4.16-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21
22 /*
23  * Supported radix tree geometry.
24  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
25  * for a page size of 64k or 4k.
26  */
27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
28
29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
30                            struct kvmppc_pte *gpte, bool data, bool iswrite)
31 {
32         struct kvm *kvm = vcpu->kvm;
33         u32 pid;
34         int ret, level, ps;
35         __be64 prte, rpte;
36         unsigned long ptbl;
37         unsigned long root, pte, index;
38         unsigned long rts, bits, offset;
39         unsigned long gpa;
40         unsigned long proc_tbl_size;
41
42         /* Work out effective PID */
43         switch (eaddr >> 62) {
44         case 0:
45                 pid = vcpu->arch.pid;
46                 break;
47         case 3:
48                 pid = 0;
49                 break;
50         default:
51                 return -EINVAL;
52         }
53         proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
54         if (pid * 16 >= proc_tbl_size)
55                 return -EINVAL;
56
57         /* Read partition table to find root of tree for effective PID */
58         ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
59         ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
60         if (ret)
61                 return ret;
62
63         root = be64_to_cpu(prte);
64         rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
65                 ((root & RTS2_MASK) >> RTS2_SHIFT);
66         bits = root & RPDS_MASK;
67         root = root & RPDB_MASK;
68
69         /* P9 DD1 interprets RTS (radix tree size) differently */
70         offset = rts + 31;
71         if (cpu_has_feature(CPU_FTR_POWER9_DD1))
72                 offset -= 3;
73
74         /* current implementations only support 52-bit space */
75         if (offset != 52)
76                 return -EINVAL;
77
78         for (level = 3; level >= 0; --level) {
79                 if (level && bits != p9_supported_radix_bits[level])
80                         return -EINVAL;
81                 if (level == 0 && !(bits == 5 || bits == 9))
82                         return -EINVAL;
83                 offset -= bits;
84                 index = (eaddr >> offset) & ((1UL << bits) - 1);
85                 /* check that low bits of page table base are zero */
86                 if (root & ((1UL << (bits + 3)) - 1))
87                         return -EINVAL;
88                 ret = kvm_read_guest(kvm, root + index * 8,
89                                      &rpte, sizeof(rpte));
90                 if (ret)
91                         return ret;
92                 pte = __be64_to_cpu(rpte);
93                 if (!(pte & _PAGE_PRESENT))
94                         return -ENOENT;
95                 if (pte & _PAGE_PTE)
96                         break;
97                 bits = pte & 0x1f;
98                 root = pte & 0x0fffffffffffff00ul;
99         }
100         /* need a leaf at lowest level; 512GB pages not supported */
101         if (level < 0 || level == 3)
102                 return -EINVAL;
103
104         /* offset is now log base 2 of the page size */
105         gpa = pte & 0x01fffffffffff000ul;
106         if (gpa & ((1ul << offset) - 1))
107                 return -EINVAL;
108         gpa += eaddr & ((1ul << offset) - 1);
109         for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
110                 if (offset == mmu_psize_defs[ps].shift)
111                         break;
112         gpte->page_size = ps;
113
114         gpte->eaddr = eaddr;
115         gpte->raddr = gpa;
116
117         /* Work out permissions */
118         gpte->may_read = !!(pte & _PAGE_READ);
119         gpte->may_write = !!(pte & _PAGE_WRITE);
120         gpte->may_execute = !!(pte & _PAGE_EXEC);
121         if (kvmppc_get_msr(vcpu) & MSR_PR) {
122                 if (pte & _PAGE_PRIVILEGED) {
123                         gpte->may_read = 0;
124                         gpte->may_write = 0;
125                         gpte->may_execute = 0;
126                 }
127         } else {
128                 if (!(pte & _PAGE_PRIVILEGED)) {
129                         /* Check AMR/IAMR to see if strict mode is in force */
130                         if (vcpu->arch.amr & (1ul << 62))
131                                 gpte->may_read = 0;
132                         if (vcpu->arch.amr & (1ul << 63))
133                                 gpte->may_write = 0;
134                         if (vcpu->arch.iamr & (1ul << 62))
135                                 gpte->may_execute = 0;
136                 }
137         }
138
139         return 0;
140 }
141
142 #ifdef CONFIG_PPC_64K_PAGES
143 #define MMU_BASE_PSIZE  MMU_PAGE_64K
144 #else
145 #define MMU_BASE_PSIZE  MMU_PAGE_4K
146 #endif
147
148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
149                                     unsigned int pshift)
150 {
151         int psize = MMU_BASE_PSIZE;
152
153         if (pshift >= PMD_SHIFT)
154                 psize = MMU_PAGE_2M;
155         addr &= ~0xfffUL;
156         addr |= mmu_psize_defs[psize].ap << 5;
157         asm volatile("ptesync": : :"memory");
158         asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
159                      : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
160         asm volatile("ptesync": : :"memory");
161 }
162
163 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
164                                       unsigned long clr, unsigned long set,
165                                       unsigned long addr, unsigned int shift)
166 {
167         unsigned long old = 0;
168
169         if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
170             pte_present(*ptep)) {
171                 /* have to invalidate it first */
172                 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
173                 kvmppc_radix_tlbie_page(kvm, addr, shift);
174                 set |= _PAGE_PRESENT;
175                 old &= _PAGE_PRESENT;
176         }
177         return __radix_pte_update(ptep, clr, set) | old;
178 }
179
180 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
181                              pte_t *ptep, pte_t pte)
182 {
183         radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
184 }
185
186 static struct kmem_cache *kvm_pte_cache;
187
188 static pte_t *kvmppc_pte_alloc(void)
189 {
190         return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
191 }
192
193 static void kvmppc_pte_free(pte_t *ptep)
194 {
195         kmem_cache_free(kvm_pte_cache, ptep);
196 }
197
198 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
199 static inline int pmd_is_leaf(pmd_t pmd)
200 {
201         return !!(pmd_val(pmd) & _PAGE_PTE);
202 }
203
204 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
205                              unsigned int level, unsigned long mmu_seq)
206 {
207         pgd_t *pgd;
208         pud_t *pud, *new_pud = NULL;
209         pmd_t *pmd, *new_pmd = NULL;
210         pte_t *ptep, *new_ptep = NULL;
211         unsigned long old;
212         int ret;
213
214         /* Traverse the guest's 2nd-level tree, allocate new levels needed */
215         pgd = kvm->arch.pgtable + pgd_index(gpa);
216         pud = NULL;
217         if (pgd_present(*pgd))
218                 pud = pud_offset(pgd, gpa);
219         else
220                 new_pud = pud_alloc_one(kvm->mm, gpa);
221
222         pmd = NULL;
223         if (pud && pud_present(*pud))
224                 pmd = pmd_offset(pud, gpa);
225         else
226                 new_pmd = pmd_alloc_one(kvm->mm, gpa);
227
228         if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
229                 new_ptep = kvmppc_pte_alloc();
230
231         /* Check if we might have been invalidated; let the guest retry if so */
232         spin_lock(&kvm->mmu_lock);
233         ret = -EAGAIN;
234         if (mmu_notifier_retry(kvm, mmu_seq))
235                 goto out_unlock;
236
237         /* Now traverse again under the lock and change the tree */
238         ret = -ENOMEM;
239         if (pgd_none(*pgd)) {
240                 if (!new_pud)
241                         goto out_unlock;
242                 pgd_populate(kvm->mm, pgd, new_pud);
243                 new_pud = NULL;
244         }
245         pud = pud_offset(pgd, gpa);
246         if (pud_none(*pud)) {
247                 if (!new_pmd)
248                         goto out_unlock;
249                 pud_populate(kvm->mm, pud, new_pmd);
250                 new_pmd = NULL;
251         }
252         pmd = pmd_offset(pud, gpa);
253         if (pmd_is_leaf(*pmd)) {
254                 unsigned long lgpa = gpa & PMD_MASK;
255
256                 /*
257                  * If we raced with another CPU which has just put
258                  * a 2MB pte in after we saw a pte page, try again.
259                  */
260                 if (level == 0 && !new_ptep) {
261                         ret = -EAGAIN;
262                         goto out_unlock;
263                 }
264                 /* Valid 2MB page here already, remove it */
265                 old = kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
266                                               ~0UL, 0, lgpa, PMD_SHIFT);
267                 kvmppc_radix_tlbie_page(kvm, lgpa, PMD_SHIFT);
268                 if (old & _PAGE_DIRTY) {
269                         unsigned long gfn = lgpa >> PAGE_SHIFT;
270                         struct kvm_memory_slot *memslot;
271                         memslot = gfn_to_memslot(kvm, gfn);
272                         if (memslot && memslot->dirty_bitmap)
273                                 kvmppc_update_dirty_map(memslot,
274                                                         gfn, PMD_SIZE);
275                 }
276         } else if (level == 1 && !pmd_none(*pmd)) {
277                 /*
278                  * There's a page table page here, but we wanted
279                  * to install a large page.  Tell the caller and let
280                  * it try installing a normal page if it wants.
281                  */
282                 ret = -EBUSY;
283                 goto out_unlock;
284         }
285         if (level == 0) {
286                 if (pmd_none(*pmd)) {
287                         if (!new_ptep)
288                                 goto out_unlock;
289                         pmd_populate(kvm->mm, pmd, new_ptep);
290                         new_ptep = NULL;
291                 }
292                 ptep = pte_offset_kernel(pmd, gpa);
293                 if (pte_present(*ptep)) {
294                         /* PTE was previously valid, so invalidate it */
295                         old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
296                                                       0, gpa, 0);
297                         kvmppc_radix_tlbie_page(kvm, gpa, 0);
298                         if (old & _PAGE_DIRTY)
299                                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
300                 }
301                 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
302         } else {
303                 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
304         }
305         ret = 0;
306
307  out_unlock:
308         spin_unlock(&kvm->mmu_lock);
309         if (new_pud)
310                 pud_free(kvm->mm, new_pud);
311         if (new_pmd)
312                 pmd_free(kvm->mm, new_pmd);
313         if (new_ptep)
314                 kvmppc_pte_free(new_ptep);
315         return ret;
316 }
317
318 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
319                                    unsigned long ea, unsigned long dsisr)
320 {
321         struct kvm *kvm = vcpu->kvm;
322         unsigned long mmu_seq, pte_size;
323         unsigned long gpa, gfn, hva, pfn;
324         struct kvm_memory_slot *memslot;
325         struct page *page = NULL, *pages[1];
326         long ret, npages, ok;
327         unsigned int writing;
328         struct vm_area_struct *vma;
329         unsigned long flags;
330         pte_t pte, *ptep;
331         unsigned long pgflags;
332         unsigned int shift, level;
333
334         /* Check for unusual errors */
335         if (dsisr & DSISR_UNSUPP_MMU) {
336                 pr_err("KVM: Got unsupported MMU fault\n");
337                 return -EFAULT;
338         }
339         if (dsisr & DSISR_BADACCESS) {
340                 /* Reflect to the guest as DSI */
341                 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
342                 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
343                 return RESUME_GUEST;
344         }
345
346         /* Translate the logical address and get the page */
347         gpa = vcpu->arch.fault_gpa & ~0xfffUL;
348         gpa &= ~0xF000000000000000ul;
349         gfn = gpa >> PAGE_SHIFT;
350         if (!(dsisr & DSISR_PRTABLE_FAULT))
351                 gpa |= ea & 0xfff;
352         memslot = gfn_to_memslot(kvm, gfn);
353
354         /* No memslot means it's an emulated MMIO region */
355         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
356                 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
357                              DSISR_SET_RC)) {
358                         /*
359                          * Bad address in guest page table tree, or other
360                          * unusual error - reflect it to the guest as DSI.
361                          */
362                         kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
363                         return RESUME_GUEST;
364                 }
365                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
366                                               dsisr & DSISR_ISSTORE);
367         }
368
369         /* used to check for invalidations in progress */
370         mmu_seq = kvm->mmu_notifier_seq;
371         smp_rmb();
372
373         writing = (dsisr & DSISR_ISSTORE) != 0;
374         hva = gfn_to_hva_memslot(memslot, gfn);
375         if (dsisr & DSISR_SET_RC) {
376                 /*
377                  * Need to set an R or C bit in the 2nd-level tables;
378                  * if the relevant bits aren't already set in the linux
379                  * page tables, fall through to do the gup_fast to
380                  * set them in the linux page tables too.
381                  */
382                 ok = 0;
383                 pgflags = _PAGE_ACCESSED;
384                 if (writing)
385                         pgflags |= _PAGE_DIRTY;
386                 local_irq_save(flags);
387                 ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL);
388                 if (ptep) {
389                         pte = READ_ONCE(*ptep);
390                         if (pte_present(pte) &&
391                             (pte_val(pte) & pgflags) == pgflags)
392                                 ok = 1;
393                 }
394                 local_irq_restore(flags);
395                 if (ok) {
396                         spin_lock(&kvm->mmu_lock);
397                         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
398                                 spin_unlock(&kvm->mmu_lock);
399                                 return RESUME_GUEST;
400                         }
401                         /*
402                          * We are walking the secondary page table here. We can do this
403                          * without disabling irq.
404                          */
405                         ptep = __find_linux_pte(kvm->arch.pgtable,
406                                                 gpa, NULL, &shift);
407                         if (ptep && pte_present(*ptep)) {
408                                 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
409                                                         gpa, shift);
410                                 spin_unlock(&kvm->mmu_lock);
411                                 return RESUME_GUEST;
412                         }
413                         spin_unlock(&kvm->mmu_lock);
414                 }
415         }
416
417         ret = -EFAULT;
418         pfn = 0;
419         pte_size = PAGE_SIZE;
420         pgflags = _PAGE_READ | _PAGE_EXEC;
421         level = 0;
422         npages = get_user_pages_fast(hva, 1, writing, pages);
423         if (npages < 1) {
424                 /* Check if it's an I/O mapping */
425                 down_read(&current->mm->mmap_sem);
426                 vma = find_vma(current->mm, hva);
427                 if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
428                     (vma->vm_flags & VM_PFNMAP)) {
429                         pfn = vma->vm_pgoff +
430                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
431                         pgflags = pgprot_val(vma->vm_page_prot);
432                 }
433                 up_read(&current->mm->mmap_sem);
434                 if (!pfn)
435                         return -EFAULT;
436         } else {
437                 page = pages[0];
438                 pfn = page_to_pfn(page);
439                 if (PageCompound(page)) {
440                         pte_size <<= compound_order(compound_head(page));
441                         /* See if we can insert a 2MB large-page PTE here */
442                         if (pte_size >= PMD_SIZE &&
443                             (gpa & (PMD_SIZE - PAGE_SIZE)) ==
444                             (hva & (PMD_SIZE - PAGE_SIZE))) {
445                                 level = 1;
446                                 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
447                         }
448                 }
449                 /* See if we can provide write access */
450                 if (writing) {
451                         pgflags |= _PAGE_WRITE;
452                 } else {
453                         local_irq_save(flags);
454                         ptep = find_current_mm_pte(current->mm->pgd,
455                                                    hva, NULL, NULL);
456                         if (ptep && pte_write(*ptep))
457                                 pgflags |= _PAGE_WRITE;
458                         local_irq_restore(flags);
459                 }
460         }
461
462         /*
463          * Compute the PTE value that we need to insert.
464          */
465         pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
466         if (pgflags & _PAGE_WRITE)
467                 pgflags |= _PAGE_DIRTY;
468         pte = pfn_pte(pfn, __pgprot(pgflags));
469
470         /* Allocate space in the tree and write the PTE */
471         ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
472         if (ret == -EBUSY) {
473                 /*
474                  * There's already a PMD where wanted to install a large page;
475                  * for now, fall back to installing a small page.
476                  */
477                 level = 0;
478                 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
479                 pte = pfn_pte(pfn, __pgprot(pgflags));
480                 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
481         }
482
483         if (page) {
484                 if (!ret && (pgflags & _PAGE_WRITE))
485                         set_page_dirty_lock(page);
486                 put_page(page);
487         }
488
489         if (ret == 0 || ret == -EAGAIN)
490                 ret = RESUME_GUEST;
491         return ret;
492 }
493
494 /* Called with kvm->lock held */
495 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
496                     unsigned long gfn)
497 {
498         pte_t *ptep;
499         unsigned long gpa = gfn << PAGE_SHIFT;
500         unsigned int shift;
501         unsigned long old;
502
503         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
504         if (ptep && pte_present(*ptep)) {
505                 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
506                                               gpa, shift);
507                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
508                 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
509                         unsigned long npages = 1;
510                         if (shift)
511                                 npages = 1ul << (shift - PAGE_SHIFT);
512                         kvmppc_update_dirty_map(memslot, gfn, npages);
513                 }
514         }
515         return 0;                               
516 }
517
518 /* Called with kvm->lock held */
519 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
520                   unsigned long gfn)
521 {
522         pte_t *ptep;
523         unsigned long gpa = gfn << PAGE_SHIFT;
524         unsigned int shift;
525         int ref = 0;
526
527         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
528         if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
529                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
530                                         gpa, shift);
531                 /* XXX need to flush tlb here? */
532                 ref = 1;
533         }
534         return ref;
535 }
536
537 /* Called with kvm->lock held */
538 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
539                        unsigned long gfn)
540 {
541         pte_t *ptep;
542         unsigned long gpa = gfn << PAGE_SHIFT;
543         unsigned int shift;
544         int ref = 0;
545
546         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
547         if (ptep && pte_present(*ptep) && pte_young(*ptep))
548                 ref = 1;
549         return ref;
550 }
551
552 /* Returns the number of PAGE_SIZE pages that are dirty */
553 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
554                                 struct kvm_memory_slot *memslot, int pagenum)
555 {
556         unsigned long gfn = memslot->base_gfn + pagenum;
557         unsigned long gpa = gfn << PAGE_SHIFT;
558         pte_t *ptep;
559         unsigned int shift;
560         int ret = 0;
561
562         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
563         if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
564                 ret = 1;
565                 if (shift)
566                         ret = 1 << (shift - PAGE_SHIFT);
567                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
568                                         gpa, shift);
569                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
570         }
571         return ret;
572 }
573
574 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
575                         struct kvm_memory_slot *memslot, unsigned long *map)
576 {
577         unsigned long i, j;
578         int npages;
579
580         for (i = 0; i < memslot->npages; i = j) {
581                 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
582
583                 /*
584                  * Note that if npages > 0 then i must be a multiple of npages,
585                  * since huge pages are only used to back the guest at guest
586                  * real addresses that are a multiple of their size.
587                  * Since we have at most one PTE covering any given guest
588                  * real address, if npages > 1 we can skip to i + npages.
589                  */
590                 j = i + 1;
591                 if (npages) {
592                         set_dirty_bits(map, i, npages);
593                         j = i + npages;
594                 }
595         }
596         return 0;
597 }
598
599 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
600                                  int psize, int *indexp)
601 {
602         if (!mmu_psize_defs[psize].shift)
603                 return;
604         info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
605                 (mmu_psize_defs[psize].ap << 29);
606         ++(*indexp);
607 }
608
609 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
610 {
611         int i;
612
613         if (!radix_enabled())
614                 return -EINVAL;
615         memset(info, 0, sizeof(*info));
616
617         /* 4k page size */
618         info->geometries[0].page_shift = 12;
619         info->geometries[0].level_bits[0] = 9;
620         for (i = 1; i < 4; ++i)
621                 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
622         /* 64k page size */
623         info->geometries[1].page_shift = 16;
624         for (i = 0; i < 4; ++i)
625                 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
626
627         i = 0;
628         add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
629         add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
630         add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
631         add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
632
633         return 0;
634 }
635
636 int kvmppc_init_vm_radix(struct kvm *kvm)
637 {
638         kvm->arch.pgtable = pgd_alloc(kvm->mm);
639         if (!kvm->arch.pgtable)
640                 return -ENOMEM;
641         return 0;
642 }
643
644 void kvmppc_free_radix(struct kvm *kvm)
645 {
646         unsigned long ig, iu, im;
647         pte_t *pte;
648         pmd_t *pmd;
649         pud_t *pud;
650         pgd_t *pgd;
651
652         if (!kvm->arch.pgtable)
653                 return;
654         pgd = kvm->arch.pgtable;
655         for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
656                 if (!pgd_present(*pgd))
657                         continue;
658                 pud = pud_offset(pgd, 0);
659                 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
660                         if (!pud_present(*pud))
661                                 continue;
662                         pmd = pmd_offset(pud, 0);
663                         for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
664                                 if (pmd_is_leaf(*pmd)) {
665                                         pmd_clear(pmd);
666                                         continue;
667                                 }
668                                 if (!pmd_present(*pmd))
669                                         continue;
670                                 pte = pte_offset_map(pmd, 0);
671                                 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
672                                 kvmppc_pte_free(pte);
673                                 pmd_clear(pmd);
674                         }
675                         pmd_free(kvm->mm, pmd_offset(pud, 0));
676                         pud_clear(pud);
677                 }
678                 pud_free(kvm->mm, pud_offset(pgd, 0));
679                 pgd_clear(pgd);
680         }
681         pgd_free(kvm->mm, kvm->arch.pgtable);
682         kvm->arch.pgtable = NULL;
683 }
684
685 static void pte_ctor(void *addr)
686 {
687         memset(addr, 0, PTE_TABLE_SIZE);
688 }
689
690 int kvmppc_radix_init(void)
691 {
692         unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
693
694         kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
695         if (!kvm_pte_cache)
696                 return -ENOMEM;
697         return 0;
698 }
699
700 void kvmppc_radix_exit(void)
701 {
702         kmem_cache_destroy(kvm_pte_cache);
703 }