Merge tag 'powerpc-4.16-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-rpi.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/kvm_ppc.h>
15 #include <asm/kvm_book3s.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21
22 /*
23  * Supported radix tree geometry.
24  * Like p9, we support either 5 or 9 bits at the first (lowest) level,
25  * for a page size of 64k or 4k.
26  */
27 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
28
29 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
30                            struct kvmppc_pte *gpte, bool data, bool iswrite)
31 {
32         struct kvm *kvm = vcpu->kvm;
33         u32 pid;
34         int ret, level, ps;
35         __be64 prte, rpte;
36         unsigned long ptbl;
37         unsigned long root, pte, index;
38         unsigned long rts, bits, offset;
39         unsigned long gpa;
40         unsigned long proc_tbl_size;
41
42         /* Work out effective PID */
43         switch (eaddr >> 62) {
44         case 0:
45                 pid = vcpu->arch.pid;
46                 break;
47         case 3:
48                 pid = 0;
49                 break;
50         default:
51                 return -EINVAL;
52         }
53         proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
54         if (pid * 16 >= proc_tbl_size)
55                 return -EINVAL;
56
57         /* Read partition table to find root of tree for effective PID */
58         ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
59         ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
60         if (ret)
61                 return ret;
62
63         root = be64_to_cpu(prte);
64         rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
65                 ((root & RTS2_MASK) >> RTS2_SHIFT);
66         bits = root & RPDS_MASK;
67         root = root & RPDB_MASK;
68
69         /* P9 DD1 interprets RTS (radix tree size) differently */
70         offset = rts + 31;
71         if (cpu_has_feature(CPU_FTR_POWER9_DD1))
72                 offset -= 3;
73
74         /* current implementations only support 52-bit space */
75         if (offset != 52)
76                 return -EINVAL;
77
78         for (level = 3; level >= 0; --level) {
79                 if (level && bits != p9_supported_radix_bits[level])
80                         return -EINVAL;
81                 if (level == 0 && !(bits == 5 || bits == 9))
82                         return -EINVAL;
83                 offset -= bits;
84                 index = (eaddr >> offset) & ((1UL << bits) - 1);
85                 /* check that low bits of page table base are zero */
86                 if (root & ((1UL << (bits + 3)) - 1))
87                         return -EINVAL;
88                 ret = kvm_read_guest(kvm, root + index * 8,
89                                      &rpte, sizeof(rpte));
90                 if (ret)
91                         return ret;
92                 pte = __be64_to_cpu(rpte);
93                 if (!(pte & _PAGE_PRESENT))
94                         return -ENOENT;
95                 if (pte & _PAGE_PTE)
96                         break;
97                 bits = pte & 0x1f;
98                 root = pte & 0x0fffffffffffff00ul;
99         }
100         /* need a leaf at lowest level; 512GB pages not supported */
101         if (level < 0 || level == 3)
102                 return -EINVAL;
103
104         /* offset is now log base 2 of the page size */
105         gpa = pte & 0x01fffffffffff000ul;
106         if (gpa & ((1ul << offset) - 1))
107                 return -EINVAL;
108         gpa += eaddr & ((1ul << offset) - 1);
109         for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
110                 if (offset == mmu_psize_defs[ps].shift)
111                         break;
112         gpte->page_size = ps;
113
114         gpte->eaddr = eaddr;
115         gpte->raddr = gpa;
116
117         /* Work out permissions */
118         gpte->may_read = !!(pte & _PAGE_READ);
119         gpte->may_write = !!(pte & _PAGE_WRITE);
120         gpte->may_execute = !!(pte & _PAGE_EXEC);
121         if (kvmppc_get_msr(vcpu) & MSR_PR) {
122                 if (pte & _PAGE_PRIVILEGED) {
123                         gpte->may_read = 0;
124                         gpte->may_write = 0;
125                         gpte->may_execute = 0;
126                 }
127         } else {
128                 if (!(pte & _PAGE_PRIVILEGED)) {
129                         /* Check AMR/IAMR to see if strict mode is in force */
130                         if (vcpu->arch.amr & (1ul << 62))
131                                 gpte->may_read = 0;
132                         if (vcpu->arch.amr & (1ul << 63))
133                                 gpte->may_write = 0;
134                         if (vcpu->arch.iamr & (1ul << 62))
135                                 gpte->may_execute = 0;
136                 }
137         }
138
139         return 0;
140 }
141
142 #ifdef CONFIG_PPC_64K_PAGES
143 #define MMU_BASE_PSIZE  MMU_PAGE_64K
144 #else
145 #define MMU_BASE_PSIZE  MMU_PAGE_4K
146 #endif
147
148 static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
149                                     unsigned int pshift)
150 {
151         int psize = MMU_BASE_PSIZE;
152
153         if (pshift >= PMD_SHIFT)
154                 psize = MMU_PAGE_2M;
155         addr &= ~0xfffUL;
156         addr |= mmu_psize_defs[psize].ap << 5;
157         asm volatile("ptesync": : :"memory");
158         asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
159                      : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
160         if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG))
161                 asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
162                              : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
163         asm volatile("ptesync": : :"memory");
164 }
165
166 unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
167                                       unsigned long clr, unsigned long set,
168                                       unsigned long addr, unsigned int shift)
169 {
170         unsigned long old = 0;
171
172         if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
173             pte_present(*ptep)) {
174                 /* have to invalidate it first */
175                 old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
176                 kvmppc_radix_tlbie_page(kvm, addr, shift);
177                 set |= _PAGE_PRESENT;
178                 old &= _PAGE_PRESENT;
179         }
180         return __radix_pte_update(ptep, clr, set) | old;
181 }
182
183 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
184                              pte_t *ptep, pte_t pte)
185 {
186         radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
187 }
188
189 static struct kmem_cache *kvm_pte_cache;
190
191 static pte_t *kvmppc_pte_alloc(void)
192 {
193         return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
194 }
195
196 static void kvmppc_pte_free(pte_t *ptep)
197 {
198         kmem_cache_free(kvm_pte_cache, ptep);
199 }
200
201 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
202 static inline int pmd_is_leaf(pmd_t pmd)
203 {
204         return !!(pmd_val(pmd) & _PAGE_PTE);
205 }
206
207 static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
208                              unsigned int level, unsigned long mmu_seq)
209 {
210         pgd_t *pgd;
211         pud_t *pud, *new_pud = NULL;
212         pmd_t *pmd, *new_pmd = NULL;
213         pte_t *ptep, *new_ptep = NULL;
214         unsigned long old;
215         int ret;
216
217         /* Traverse the guest's 2nd-level tree, allocate new levels needed */
218         pgd = kvm->arch.pgtable + pgd_index(gpa);
219         pud = NULL;
220         if (pgd_present(*pgd))
221                 pud = pud_offset(pgd, gpa);
222         else
223                 new_pud = pud_alloc_one(kvm->mm, gpa);
224
225         pmd = NULL;
226         if (pud && pud_present(*pud))
227                 pmd = pmd_offset(pud, gpa);
228         else
229                 new_pmd = pmd_alloc_one(kvm->mm, gpa);
230
231         if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
232                 new_ptep = kvmppc_pte_alloc();
233
234         /* Check if we might have been invalidated; let the guest retry if so */
235         spin_lock(&kvm->mmu_lock);
236         ret = -EAGAIN;
237         if (mmu_notifier_retry(kvm, mmu_seq))
238                 goto out_unlock;
239
240         /* Now traverse again under the lock and change the tree */
241         ret = -ENOMEM;
242         if (pgd_none(*pgd)) {
243                 if (!new_pud)
244                         goto out_unlock;
245                 pgd_populate(kvm->mm, pgd, new_pud);
246                 new_pud = NULL;
247         }
248         pud = pud_offset(pgd, gpa);
249         if (pud_none(*pud)) {
250                 if (!new_pmd)
251                         goto out_unlock;
252                 pud_populate(kvm->mm, pud, new_pmd);
253                 new_pmd = NULL;
254         }
255         pmd = pmd_offset(pud, gpa);
256         if (pmd_is_leaf(*pmd)) {
257                 unsigned long lgpa = gpa & PMD_MASK;
258
259                 /*
260                  * If we raced with another CPU which has just put
261                  * a 2MB pte in after we saw a pte page, try again.
262                  */
263                 if (level == 0 && !new_ptep) {
264                         ret = -EAGAIN;
265                         goto out_unlock;
266                 }
267                 /* Valid 2MB page here already, remove it */
268                 old = kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
269                                               ~0UL, 0, lgpa, PMD_SHIFT);
270                 kvmppc_radix_tlbie_page(kvm, lgpa, PMD_SHIFT);
271                 if (old & _PAGE_DIRTY) {
272                         unsigned long gfn = lgpa >> PAGE_SHIFT;
273                         struct kvm_memory_slot *memslot;
274                         memslot = gfn_to_memslot(kvm, gfn);
275                         if (memslot && memslot->dirty_bitmap)
276                                 kvmppc_update_dirty_map(memslot,
277                                                         gfn, PMD_SIZE);
278                 }
279         } else if (level == 1 && !pmd_none(*pmd)) {
280                 /*
281                  * There's a page table page here, but we wanted
282                  * to install a large page.  Tell the caller and let
283                  * it try installing a normal page if it wants.
284                  */
285                 ret = -EBUSY;
286                 goto out_unlock;
287         }
288         if (level == 0) {
289                 if (pmd_none(*pmd)) {
290                         if (!new_ptep)
291                                 goto out_unlock;
292                         pmd_populate(kvm->mm, pmd, new_ptep);
293                         new_ptep = NULL;
294                 }
295                 ptep = pte_offset_kernel(pmd, gpa);
296                 if (pte_present(*ptep)) {
297                         /* PTE was previously valid, so invalidate it */
298                         old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
299                                                       0, gpa, 0);
300                         kvmppc_radix_tlbie_page(kvm, gpa, 0);
301                         if (old & _PAGE_DIRTY)
302                                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
303                 }
304                 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
305         } else {
306                 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
307         }
308         ret = 0;
309
310  out_unlock:
311         spin_unlock(&kvm->mmu_lock);
312         if (new_pud)
313                 pud_free(kvm->mm, new_pud);
314         if (new_pmd)
315                 pmd_free(kvm->mm, new_pmd);
316         if (new_ptep)
317                 kvmppc_pte_free(new_ptep);
318         return ret;
319 }
320
321 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
322                                    unsigned long ea, unsigned long dsisr)
323 {
324         struct kvm *kvm = vcpu->kvm;
325         unsigned long mmu_seq, pte_size;
326         unsigned long gpa, gfn, hva, pfn;
327         struct kvm_memory_slot *memslot;
328         struct page *page = NULL, *pages[1];
329         long ret, npages, ok;
330         unsigned int writing;
331         struct vm_area_struct *vma;
332         unsigned long flags;
333         pte_t pte, *ptep;
334         unsigned long pgflags;
335         unsigned int shift, level;
336
337         /* Check for unusual errors */
338         if (dsisr & DSISR_UNSUPP_MMU) {
339                 pr_err("KVM: Got unsupported MMU fault\n");
340                 return -EFAULT;
341         }
342         if (dsisr & DSISR_BADACCESS) {
343                 /* Reflect to the guest as DSI */
344                 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
345                 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
346                 return RESUME_GUEST;
347         }
348
349         /* Translate the logical address and get the page */
350         gpa = vcpu->arch.fault_gpa & ~0xfffUL;
351         gpa &= ~0xF000000000000000ul;
352         gfn = gpa >> PAGE_SHIFT;
353         if (!(dsisr & DSISR_PRTABLE_FAULT))
354                 gpa |= ea & 0xfff;
355         memslot = gfn_to_memslot(kvm, gfn);
356
357         /* No memslot means it's an emulated MMIO region */
358         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
359                 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
360                              DSISR_SET_RC)) {
361                         /*
362                          * Bad address in guest page table tree, or other
363                          * unusual error - reflect it to the guest as DSI.
364                          */
365                         kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
366                         return RESUME_GUEST;
367                 }
368                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
369                                               dsisr & DSISR_ISSTORE);
370         }
371
372         /* used to check for invalidations in progress */
373         mmu_seq = kvm->mmu_notifier_seq;
374         smp_rmb();
375
376         writing = (dsisr & DSISR_ISSTORE) != 0;
377         hva = gfn_to_hva_memslot(memslot, gfn);
378         if (dsisr & DSISR_SET_RC) {
379                 /*
380                  * Need to set an R or C bit in the 2nd-level tables;
381                  * if the relevant bits aren't already set in the linux
382                  * page tables, fall through to do the gup_fast to
383                  * set them in the linux page tables too.
384                  */
385                 ok = 0;
386                 pgflags = _PAGE_ACCESSED;
387                 if (writing)
388                         pgflags |= _PAGE_DIRTY;
389                 local_irq_save(flags);
390                 ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL);
391                 if (ptep) {
392                         pte = READ_ONCE(*ptep);
393                         if (pte_present(pte) &&
394                             (pte_val(pte) & pgflags) == pgflags)
395                                 ok = 1;
396                 }
397                 local_irq_restore(flags);
398                 if (ok) {
399                         spin_lock(&kvm->mmu_lock);
400                         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
401                                 spin_unlock(&kvm->mmu_lock);
402                                 return RESUME_GUEST;
403                         }
404                         /*
405                          * We are walking the secondary page table here. We can do this
406                          * without disabling irq.
407                          */
408                         ptep = __find_linux_pte(kvm->arch.pgtable,
409                                                 gpa, NULL, &shift);
410                         if (ptep && pte_present(*ptep)) {
411                                 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
412                                                         gpa, shift);
413                                 spin_unlock(&kvm->mmu_lock);
414                                 return RESUME_GUEST;
415                         }
416                         spin_unlock(&kvm->mmu_lock);
417                 }
418         }
419
420         ret = -EFAULT;
421         pfn = 0;
422         pte_size = PAGE_SIZE;
423         pgflags = _PAGE_READ | _PAGE_EXEC;
424         level = 0;
425         npages = get_user_pages_fast(hva, 1, writing, pages);
426         if (npages < 1) {
427                 /* Check if it's an I/O mapping */
428                 down_read(&current->mm->mmap_sem);
429                 vma = find_vma(current->mm, hva);
430                 if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
431                     (vma->vm_flags & VM_PFNMAP)) {
432                         pfn = vma->vm_pgoff +
433                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
434                         pgflags = pgprot_val(vma->vm_page_prot);
435                 }
436                 up_read(&current->mm->mmap_sem);
437                 if (!pfn)
438                         return -EFAULT;
439         } else {
440                 page = pages[0];
441                 pfn = page_to_pfn(page);
442                 if (PageCompound(page)) {
443                         pte_size <<= compound_order(compound_head(page));
444                         /* See if we can insert a 2MB large-page PTE here */
445                         if (pte_size >= PMD_SIZE &&
446                             (gpa & (PMD_SIZE - PAGE_SIZE)) ==
447                             (hva & (PMD_SIZE - PAGE_SIZE))) {
448                                 level = 1;
449                                 pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
450                         }
451                 }
452                 /* See if we can provide write access */
453                 if (writing) {
454                         pgflags |= _PAGE_WRITE;
455                 } else {
456                         local_irq_save(flags);
457                         ptep = find_current_mm_pte(current->mm->pgd,
458                                                    hva, NULL, NULL);
459                         if (ptep && pte_write(*ptep))
460                                 pgflags |= _PAGE_WRITE;
461                         local_irq_restore(flags);
462                 }
463         }
464
465         /*
466          * Compute the PTE value that we need to insert.
467          */
468         pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
469         if (pgflags & _PAGE_WRITE)
470                 pgflags |= _PAGE_DIRTY;
471         pte = pfn_pte(pfn, __pgprot(pgflags));
472
473         /* Allocate space in the tree and write the PTE */
474         ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
475         if (ret == -EBUSY) {
476                 /*
477                  * There's already a PMD where wanted to install a large page;
478                  * for now, fall back to installing a small page.
479                  */
480                 level = 0;
481                 pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
482                 pte = pfn_pte(pfn, __pgprot(pgflags));
483                 ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
484         }
485
486         if (page) {
487                 if (!ret && (pgflags & _PAGE_WRITE))
488                         set_page_dirty_lock(page);
489                 put_page(page);
490         }
491
492         if (ret == 0 || ret == -EAGAIN)
493                 ret = RESUME_GUEST;
494         return ret;
495 }
496
497 /* Called with kvm->lock held */
498 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
499                     unsigned long gfn)
500 {
501         pte_t *ptep;
502         unsigned long gpa = gfn << PAGE_SHIFT;
503         unsigned int shift;
504         unsigned long old;
505
506         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
507         if (ptep && pte_present(*ptep)) {
508                 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
509                                               gpa, shift);
510                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
511                 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
512                         unsigned long npages = 1;
513                         if (shift)
514                                 npages = 1ul << (shift - PAGE_SHIFT);
515                         kvmppc_update_dirty_map(memslot, gfn, npages);
516                 }
517         }
518         return 0;                               
519 }
520
521 /* Called with kvm->lock held */
522 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
523                   unsigned long gfn)
524 {
525         pte_t *ptep;
526         unsigned long gpa = gfn << PAGE_SHIFT;
527         unsigned int shift;
528         int ref = 0;
529
530         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
531         if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
532                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
533                                         gpa, shift);
534                 /* XXX need to flush tlb here? */
535                 ref = 1;
536         }
537         return ref;
538 }
539
540 /* Called with kvm->lock held */
541 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
542                        unsigned long gfn)
543 {
544         pte_t *ptep;
545         unsigned long gpa = gfn << PAGE_SHIFT;
546         unsigned int shift;
547         int ref = 0;
548
549         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
550         if (ptep && pte_present(*ptep) && pte_young(*ptep))
551                 ref = 1;
552         return ref;
553 }
554
555 /* Returns the number of PAGE_SIZE pages that are dirty */
556 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
557                                 struct kvm_memory_slot *memslot, int pagenum)
558 {
559         unsigned long gfn = memslot->base_gfn + pagenum;
560         unsigned long gpa = gfn << PAGE_SHIFT;
561         pte_t *ptep;
562         unsigned int shift;
563         int ret = 0;
564
565         ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
566         if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
567                 ret = 1;
568                 if (shift)
569                         ret = 1 << (shift - PAGE_SHIFT);
570                 kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
571                                         gpa, shift);
572                 kvmppc_radix_tlbie_page(kvm, gpa, shift);
573         }
574         return ret;
575 }
576
577 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
578                         struct kvm_memory_slot *memslot, unsigned long *map)
579 {
580         unsigned long i, j;
581         int npages;
582
583         for (i = 0; i < memslot->npages; i = j) {
584                 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
585
586                 /*
587                  * Note that if npages > 0 then i must be a multiple of npages,
588                  * since huge pages are only used to back the guest at guest
589                  * real addresses that are a multiple of their size.
590                  * Since we have at most one PTE covering any given guest
591                  * real address, if npages > 1 we can skip to i + npages.
592                  */
593                 j = i + 1;
594                 if (npages) {
595                         set_dirty_bits(map, i, npages);
596                         j = i + npages;
597                 }
598         }
599         return 0;
600 }
601
602 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
603                                  int psize, int *indexp)
604 {
605         if (!mmu_psize_defs[psize].shift)
606                 return;
607         info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
608                 (mmu_psize_defs[psize].ap << 29);
609         ++(*indexp);
610 }
611
612 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
613 {
614         int i;
615
616         if (!radix_enabled())
617                 return -EINVAL;
618         memset(info, 0, sizeof(*info));
619
620         /* 4k page size */
621         info->geometries[0].page_shift = 12;
622         info->geometries[0].level_bits[0] = 9;
623         for (i = 1; i < 4; ++i)
624                 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
625         /* 64k page size */
626         info->geometries[1].page_shift = 16;
627         for (i = 0; i < 4; ++i)
628                 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
629
630         i = 0;
631         add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
632         add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
633         add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
634         add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
635
636         return 0;
637 }
638
639 int kvmppc_init_vm_radix(struct kvm *kvm)
640 {
641         kvm->arch.pgtable = pgd_alloc(kvm->mm);
642         if (!kvm->arch.pgtable)
643                 return -ENOMEM;
644         return 0;
645 }
646
647 void kvmppc_free_radix(struct kvm *kvm)
648 {
649         unsigned long ig, iu, im;
650         pte_t *pte;
651         pmd_t *pmd;
652         pud_t *pud;
653         pgd_t *pgd;
654
655         if (!kvm->arch.pgtable)
656                 return;
657         pgd = kvm->arch.pgtable;
658         for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
659                 if (!pgd_present(*pgd))
660                         continue;
661                 pud = pud_offset(pgd, 0);
662                 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
663                         if (!pud_present(*pud))
664                                 continue;
665                         pmd = pmd_offset(pud, 0);
666                         for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
667                                 if (pmd_is_leaf(*pmd)) {
668                                         pmd_clear(pmd);
669                                         continue;
670                                 }
671                                 if (!pmd_present(*pmd))
672                                         continue;
673                                 pte = pte_offset_map(pmd, 0);
674                                 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
675                                 kvmppc_pte_free(pte);
676                                 pmd_clear(pmd);
677                         }
678                         pmd_free(kvm->mm, pmd_offset(pud, 0));
679                         pud_clear(pud);
680                 }
681                 pud_free(kvm->mm, pud_offset(pgd, 0));
682                 pgd_clear(pgd);
683         }
684         pgd_free(kvm->mm, kvm->arch.pgtable);
685         kvm->arch.pgtable = NULL;
686 }
687
688 static void pte_ctor(void *addr)
689 {
690         memset(addr, 0, PTE_TABLE_SIZE);
691 }
692
693 int kvmppc_radix_init(void)
694 {
695         unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
696
697         kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
698         if (!kvm_pte_cache)
699                 return -ENOMEM;
700         return 0;
701 }
702
703 void kvmppc_radix_exit(void)
704 {
705         kmem_cache_destroy(kvm_pte_cache);
706 }