1 // SPDX-License-Identifier: GPL-2.0+
3 // Security related flags and so on.
5 // Copyright 2018, Michael Ellerman, IBM Corporation.
8 #include <linux/kernel.h>
9 #include <linux/device.h>
10 #include <linux/memblock.h>
11 #include <linux/nospec.h>
12 #include <linux/prctl.h>
13 #include <linux/seq_buf.h>
14 #include <linux/debugfs.h>
16 #include <asm/asm-prototypes.h>
17 #include <asm/code-patching.h>
18 #include <asm/security_features.h>
19 #include <asm/setup.h>
24 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
26 enum branch_cache_flush_type {
27 BRANCH_CACHE_FLUSH_NONE = 0x1,
28 BRANCH_CACHE_FLUSH_SW = 0x2,
29 BRANCH_CACHE_FLUSH_HW = 0x4,
31 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
32 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
34 bool barrier_nospec_enabled;
35 static bool no_nospec;
36 static bool btb_flush_enabled;
37 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
38 static bool no_spectrev2;
41 static void enable_barrier_nospec(bool enable)
43 barrier_nospec_enabled = enable;
44 do_barrier_nospec_fixups(enable);
47 void setup_barrier_nospec(void)
52 * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
53 * But there's a good reason not to. The two flags we check below are
54 * both are enabled by default in the kernel, so if the hcall is not
55 * functional they will be enabled.
56 * On a system where the host firmware has been updated (so the ori
57 * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
58 * not been updated, we would like to enable the barrier. Dropping the
59 * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
60 * we potentially enable the barrier on systems where the host firmware
61 * is not updated, but that's harmless as it's a no-op.
63 enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
64 security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
66 if (!no_nospec && !cpu_mitigations_off())
67 enable_barrier_nospec(enable);
70 static int __init handle_nospectre_v1(char *p)
76 early_param("nospectre_v1", handle_nospectre_v1);
78 #ifdef CONFIG_DEBUG_FS
79 static int barrier_nospec_set(void *data, u64 val)
89 if (!!val == !!barrier_nospec_enabled)
92 enable_barrier_nospec(!!val);
97 static int barrier_nospec_get(void *data, u64 *val)
99 *val = barrier_nospec_enabled ? 1 : 0;
103 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
104 barrier_nospec_set, "%llu\n");
106 static __init int barrier_nospec_debugfs_init(void)
108 debugfs_create_file_unsafe("barrier_nospec", 0600,
109 arch_debugfs_dir, NULL,
110 &fops_barrier_nospec);
113 device_initcall(barrier_nospec_debugfs_init);
115 static __init int security_feature_debugfs_init(void)
117 debugfs_create_x64("security_features", 0400, arch_debugfs_dir,
118 &powerpc_security_features);
121 device_initcall(security_feature_debugfs_init);
122 #endif /* CONFIG_DEBUG_FS */
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
125 static int __init handle_nospectre_v2(char *p)
131 early_param("nospectre_v2", handle_nospectre_v2);
132 #endif /* CONFIG_PPC_FSL_BOOK3E || CONFIG_PPC_BOOK3S_64 */
134 #ifdef CONFIG_PPC_FSL_BOOK3E
135 void setup_spectre_v2(void)
137 if (no_spectrev2 || cpu_mitigations_off())
138 do_btb_flush_fixups();
140 btb_flush_enabled = true;
142 #endif /* CONFIG_PPC_FSL_BOOK3E */
144 #ifdef CONFIG_PPC_BOOK3S_64
145 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
149 thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
153 seq_buf_init(&s, buf, PAGE_SIZE - 1);
155 seq_buf_printf(&s, "Mitigation: RFI Flush");
157 seq_buf_printf(&s, ", L1D private per thread");
159 seq_buf_printf(&s, "\n");
165 return sprintf(buf, "Vulnerable: L1D private per thread\n");
167 if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
168 !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
169 return sprintf(buf, "Not affected\n");
171 return sprintf(buf, "Vulnerable\n");
174 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
176 return cpu_show_meltdown(dev, attr, buf);
180 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
184 seq_buf_init(&s, buf, PAGE_SIZE - 1);
186 if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
187 if (barrier_nospec_enabled)
188 seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
190 seq_buf_printf(&s, "Vulnerable");
192 if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
193 seq_buf_printf(&s, ", ori31 speculation barrier enabled");
195 seq_buf_printf(&s, "\n");
197 seq_buf_printf(&s, "Not affected\n");
202 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
207 seq_buf_init(&s, buf, PAGE_SIZE - 1);
209 bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
210 ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
213 seq_buf_printf(&s, "Mitigation: ");
216 seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
219 seq_buf_printf(&s, ", ");
222 seq_buf_printf(&s, "Indirect branch cache disabled");
224 } else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
225 seq_buf_printf(&s, "Mitigation: Software count cache flush");
227 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
228 seq_buf_printf(&s, " (hardware accelerated)");
230 } else if (btb_flush_enabled) {
231 seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
233 seq_buf_printf(&s, "Vulnerable");
236 if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
237 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
238 seq_buf_printf(&s, ", Software link stack flush");
239 if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
240 seq_buf_printf(&s, " (hardware accelerated)");
243 seq_buf_printf(&s, "\n");
248 #ifdef CONFIG_PPC_BOOK3S_64
250 * Store-forwarding barrier support.
253 static enum stf_barrier_type stf_enabled_flush_types;
254 static bool no_stf_barrier;
255 static bool stf_barrier;
257 static int __init handle_no_stf_barrier(char *p)
259 pr_info("stf-barrier: disabled on command line.");
260 no_stf_barrier = true;
264 early_param("no_stf_barrier", handle_no_stf_barrier);
266 /* This is the generic flag used by other architectures */
267 static int __init handle_ssbd(char *p)
269 if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
270 /* Until firmware tells us, we have the barrier with auto */
272 } else if (strncmp(p, "off", 3) == 0) {
273 handle_no_stf_barrier(NULL);
280 early_param("spec_store_bypass_disable", handle_ssbd);
282 /* This is the generic flag used by other architectures */
283 static int __init handle_no_ssbd(char *p)
285 handle_no_stf_barrier(NULL);
288 early_param("nospec_store_bypass_disable", handle_no_ssbd);
290 static void stf_barrier_enable(bool enable)
293 do_stf_barrier_fixups(stf_enabled_flush_types);
295 do_stf_barrier_fixups(STF_BARRIER_NONE);
297 stf_barrier = enable;
300 void setup_stf_barrier(void)
302 enum stf_barrier_type type;
305 /* Default to fallback in case fw-features are not available */
306 if (cpu_has_feature(CPU_FTR_ARCH_300))
307 type = STF_BARRIER_EIEIO;
308 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
309 type = STF_BARRIER_SYNC_ORI;
310 else if (cpu_has_feature(CPU_FTR_ARCH_206))
311 type = STF_BARRIER_FALLBACK;
313 type = STF_BARRIER_NONE;
315 enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
316 security_ftr_enabled(SEC_FTR_STF_BARRIER);
318 if (type == STF_BARRIER_FALLBACK) {
319 pr_info("stf-barrier: fallback barrier available\n");
320 } else if (type == STF_BARRIER_SYNC_ORI) {
321 pr_info("stf-barrier: hwsync barrier available\n");
322 } else if (type == STF_BARRIER_EIEIO) {
323 pr_info("stf-barrier: eieio barrier available\n");
326 stf_enabled_flush_types = type;
328 if (!no_stf_barrier && !cpu_mitigations_off())
329 stf_barrier_enable(enable);
332 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
334 if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
336 switch (stf_enabled_flush_types) {
337 case STF_BARRIER_EIEIO:
340 case STF_BARRIER_SYNC_ORI:
343 case STF_BARRIER_FALLBACK:
349 return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
352 if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
353 !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
354 return sprintf(buf, "Not affected\n");
356 return sprintf(buf, "Vulnerable\n");
359 static int ssb_prctl_get(struct task_struct *task)
361 if (stf_enabled_flush_types == STF_BARRIER_NONE)
363 * We don't have an explicit signal from firmware that we're
364 * vulnerable or not, we only have certain CPU revisions that
365 * are known to be vulnerable.
367 * We assume that if we're on another CPU, where the barrier is
368 * NONE, then we are not vulnerable.
370 return PR_SPEC_NOT_AFFECTED;
373 * If we do have a barrier type then we are vulnerable. The
374 * barrier is not a global or per-process mitigation, so the
375 * only value we can report here is PR_SPEC_ENABLE, which
376 * appears as "vulnerable" in /proc.
378 return PR_SPEC_ENABLE;
383 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
386 case PR_SPEC_STORE_BYPASS:
387 return ssb_prctl_get(task);
393 #ifdef CONFIG_DEBUG_FS
394 static int stf_barrier_set(void *data, u64 val)
405 /* Only do anything if we're changing state */
406 if (enable != stf_barrier)
407 stf_barrier_enable(enable);
412 static int stf_barrier_get(void *data, u64 *val)
414 *val = stf_barrier ? 1 : 0;
418 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
421 static __init int stf_barrier_debugfs_init(void)
423 debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir,
424 NULL, &fops_stf_barrier);
427 device_initcall(stf_barrier_debugfs_init);
428 #endif /* CONFIG_DEBUG_FS */
430 static void update_branch_cache_flush(void)
432 u32 *site, __maybe_unused *site2;
434 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
435 site = &patch__call_kvm_flush_link_stack;
436 site2 = &patch__call_kvm_flush_link_stack_p9;
437 // This controls the branch from guest_exit_cont to kvm_flush_link_stack
438 if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
439 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
440 patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
442 // Could use HW flush, but that could also flush count cache
443 patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
444 patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
448 // Patch out the bcctr first, then nop the rest
449 site = &patch__call_flush_branch_caches3;
450 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
451 site = &patch__call_flush_branch_caches2;
452 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
453 site = &patch__call_flush_branch_caches1;
454 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
456 // This controls the branch from _switch to flush_branch_caches
457 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
458 link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
459 // Nothing to be done
461 } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
462 link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
463 // Patch in the bcctr last
464 site = &patch__call_flush_branch_caches1;
465 patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
466 site = &patch__call_flush_branch_caches2;
467 patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
468 site = &patch__call_flush_branch_caches3;
469 patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
472 patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
474 // If we just need to flush the link stack, early return
475 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
476 patch_instruction_site(&patch__flush_link_stack_return,
477 ppc_inst(PPC_RAW_BLR()));
479 // If we have flush instruction, early return
480 } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
481 patch_instruction_site(&patch__flush_count_cache_return,
482 ppc_inst(PPC_RAW_BLR()));
487 static void toggle_branch_cache_flush(bool enable)
489 if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
490 if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
491 count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
493 pr_info("count-cache-flush: flush disabled.\n");
495 if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
496 count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
497 pr_info("count-cache-flush: hardware flush enabled.\n");
499 count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
500 pr_info("count-cache-flush: software flush enabled.\n");
504 if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
505 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
506 link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
508 pr_info("link-stack-flush: flush disabled.\n");
510 if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
511 link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
512 pr_info("link-stack-flush: hardware flush enabled.\n");
514 link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
515 pr_info("link-stack-flush: software flush enabled.\n");
519 update_branch_cache_flush();
522 void setup_count_cache_flush(void)
526 if (no_spectrev2 || cpu_mitigations_off()) {
527 if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
528 security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
529 pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
535 * There's no firmware feature flag/hypervisor bit to tell us we need to
536 * flush the link stack on context switch. So we set it here if we see
537 * either of the Spectre v2 mitigations that aim to protect userspace.
539 if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
540 security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
541 security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
543 toggle_branch_cache_flush(enable);
546 static enum l1d_flush_type enabled_flush_types;
547 static void *l1d_flush_fallback_area;
548 static bool no_rfi_flush;
549 static bool no_entry_flush;
550 static bool no_uaccess_flush;
552 static bool entry_flush;
553 static bool uaccess_flush;
554 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
555 EXPORT_SYMBOL(uaccess_flush_key);
557 static int __init handle_no_rfi_flush(char *p)
559 pr_info("rfi-flush: disabled on command line.");
563 early_param("no_rfi_flush", handle_no_rfi_flush);
565 static int __init handle_no_entry_flush(char *p)
567 pr_info("entry-flush: disabled on command line.");
568 no_entry_flush = true;
571 early_param("no_entry_flush", handle_no_entry_flush);
573 static int __init handle_no_uaccess_flush(char *p)
575 pr_info("uaccess-flush: disabled on command line.");
576 no_uaccess_flush = true;
579 early_param("no_uaccess_flush", handle_no_uaccess_flush);
582 * The RFI flush is not KPTI, but because users will see doco that says to use
583 * nopti we hijack that option here to also disable the RFI flush.
585 static int __init handle_no_pti(char *p)
587 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
588 handle_no_rfi_flush(NULL);
591 early_param("nopti", handle_no_pti);
593 static void do_nothing(void *unused)
596 * We don't need to do the flush explicitly, just enter+exit kernel is
597 * sufficient, the RFI exit handlers will do the right thing.
601 void rfi_flush_enable(bool enable)
604 do_rfi_flush_fixups(enabled_flush_types);
605 on_each_cpu(do_nothing, NULL, 1);
607 do_rfi_flush_fixups(L1D_FLUSH_NONE);
612 static void entry_flush_enable(bool enable)
615 do_entry_flush_fixups(enabled_flush_types);
616 on_each_cpu(do_nothing, NULL, 1);
618 do_entry_flush_fixups(L1D_FLUSH_NONE);
621 entry_flush = enable;
624 static void uaccess_flush_enable(bool enable)
627 do_uaccess_flush_fixups(enabled_flush_types);
628 static_branch_enable(&uaccess_flush_key);
629 on_each_cpu(do_nothing, NULL, 1);
631 static_branch_disable(&uaccess_flush_key);
632 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
635 uaccess_flush = enable;
638 static void __ref init_fallback_flush(void)
643 /* Only allocate the fallback flush area once (at boot time). */
644 if (l1d_flush_fallback_area)
647 l1d_size = ppc64_caches.l1d.size;
650 * If there is no d-cache-size property in the device tree, l1d_size
651 * could be zero. That leads to the loop in the asm wrapping around to
652 * 2^64-1, and then walking off the end of the fallback area and
653 * eventually causing a page fault which is fatal. Just default to
654 * something vaguely sane.
657 l1d_size = (64 * 1024);
659 limit = min(ppc64_bolted_size(), ppc64_rma_size);
662 * Align to L1d size, and size it at 2x L1d size, to catch possible
663 * hardware prefetch runoff. We don't have a recipe for load patterns to
664 * reliably avoid the prefetcher.
666 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
667 l1d_size, MEMBLOCK_LOW_LIMIT,
668 limit, NUMA_NO_NODE);
669 if (!l1d_flush_fallback_area)
670 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
671 __func__, l1d_size * 2, l1d_size, &limit);
674 for_each_possible_cpu(cpu) {
675 struct paca_struct *paca = paca_ptrs[cpu];
676 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
677 paca->l1d_flush_size = l1d_size;
681 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
683 if (types & L1D_FLUSH_FALLBACK) {
684 pr_info("rfi-flush: fallback displacement flush available\n");
685 init_fallback_flush();
688 if (types & L1D_FLUSH_ORI)
689 pr_info("rfi-flush: ori type flush available\n");
691 if (types & L1D_FLUSH_MTTRIG)
692 pr_info("rfi-flush: mttrig type flush available\n");
694 enabled_flush_types = types;
696 if (!cpu_mitigations_off() && !no_rfi_flush)
697 rfi_flush_enable(enable);
700 void setup_entry_flush(bool enable)
702 if (cpu_mitigations_off())
706 entry_flush_enable(enable);
709 void setup_uaccess_flush(bool enable)
711 if (cpu_mitigations_off())
714 if (!no_uaccess_flush)
715 uaccess_flush_enable(enable);
718 #ifdef CONFIG_DEBUG_FS
719 static int count_cache_flush_set(void *data, u64 val)
730 toggle_branch_cache_flush(enable);
735 static int count_cache_flush_get(void *data, u64 *val)
737 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
745 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
746 count_cache_flush_set, "%llu\n");
748 static __init int count_cache_flush_debugfs_init(void)
750 debugfs_create_file_unsafe("count_cache_flush", 0600,
751 arch_debugfs_dir, NULL,
752 &fops_count_cache_flush);
755 device_initcall(count_cache_flush_debugfs_init);
757 static int rfi_flush_set(void *data, u64 val)
768 /* Only do anything if we're changing state */
769 if (enable != rfi_flush)
770 rfi_flush_enable(enable);
775 static int rfi_flush_get(void *data, u64 *val)
777 *val = rfi_flush ? 1 : 0;
781 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
783 static int entry_flush_set(void *data, u64 val)
794 /* Only do anything if we're changing state */
795 if (enable != entry_flush)
796 entry_flush_enable(enable);
801 static int entry_flush_get(void *data, u64 *val)
803 *val = entry_flush ? 1 : 0;
807 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
809 static int uaccess_flush_set(void *data, u64 val)
820 /* Only do anything if we're changing state */
821 if (enable != uaccess_flush)
822 uaccess_flush_enable(enable);
827 static int uaccess_flush_get(void *data, u64 *val)
829 *val = uaccess_flush ? 1 : 0;
833 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
835 static __init int rfi_flush_debugfs_init(void)
837 debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush);
838 debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush);
839 debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush);
842 device_initcall(rfi_flush_debugfs_init);
843 #endif /* CONFIG_DEBUG_FS */
844 #endif /* CONFIG_PPC_BOOK3S_64 */