Merge branch 'for-5.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[platform/kernel/linux-rpi.git] / arch / powerpc / kernel / security.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Security related flags and so on.
4 //
5 // Copyright 2018, Michael Ellerman, IBM Corporation.
6
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/device.h>
10 #include <linux/memblock.h>
11 #include <linux/nospec.h>
12 #include <linux/prctl.h>
13 #include <linux/seq_buf.h>
14 #include <linux/debugfs.h>
15
16 #include <asm/asm-prototypes.h>
17 #include <asm/code-patching.h>
18 #include <asm/security_features.h>
19 #include <asm/setup.h>
20 #include <asm/inst.h>
21
22 #include "setup.h"
23
24 u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT;
25
26 enum branch_cache_flush_type {
27         BRANCH_CACHE_FLUSH_NONE = 0x1,
28         BRANCH_CACHE_FLUSH_SW   = 0x2,
29         BRANCH_CACHE_FLUSH_HW   = 0x4,
30 };
31 static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
32 static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
33
34 bool barrier_nospec_enabled;
35 static bool no_nospec;
36 static bool btb_flush_enabled;
37 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
38 static bool no_spectrev2;
39 #endif
40
41 static void enable_barrier_nospec(bool enable)
42 {
43         barrier_nospec_enabled = enable;
44         do_barrier_nospec_fixups(enable);
45 }
46
47 void setup_barrier_nospec(void)
48 {
49         bool enable;
50
51         /*
52          * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well.
53          * But there's a good reason not to. The two flags we check below are
54          * both are enabled by default in the kernel, so if the hcall is not
55          * functional they will be enabled.
56          * On a system where the host firmware has been updated (so the ori
57          * functions as a barrier), but on which the hypervisor (KVM/Qemu) has
58          * not been updated, we would like to enable the barrier. Dropping the
59          * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is
60          * we potentially enable the barrier on systems where the host firmware
61          * is not updated, but that's harmless as it's a no-op.
62          */
63         enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
64                  security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR);
65
66         if (!no_nospec && !cpu_mitigations_off())
67                 enable_barrier_nospec(enable);
68 }
69
70 static int __init handle_nospectre_v1(char *p)
71 {
72         no_nospec = true;
73
74         return 0;
75 }
76 early_param("nospectre_v1", handle_nospectre_v1);
77
78 #ifdef CONFIG_DEBUG_FS
79 static int barrier_nospec_set(void *data, u64 val)
80 {
81         switch (val) {
82         case 0:
83         case 1:
84                 break;
85         default:
86                 return -EINVAL;
87         }
88
89         if (!!val == !!barrier_nospec_enabled)
90                 return 0;
91
92         enable_barrier_nospec(!!val);
93
94         return 0;
95 }
96
97 static int barrier_nospec_get(void *data, u64 *val)
98 {
99         *val = barrier_nospec_enabled ? 1 : 0;
100         return 0;
101 }
102
103 DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get,
104                          barrier_nospec_set, "%llu\n");
105
106 static __init int barrier_nospec_debugfs_init(void)
107 {
108         debugfs_create_file_unsafe("barrier_nospec", 0600,
109                                    arch_debugfs_dir, NULL,
110                                    &fops_barrier_nospec);
111         return 0;
112 }
113 device_initcall(barrier_nospec_debugfs_init);
114
115 static __init int security_feature_debugfs_init(void)
116 {
117         debugfs_create_x64("security_features", 0400, arch_debugfs_dir,
118                            &powerpc_security_features);
119         return 0;
120 }
121 device_initcall(security_feature_debugfs_init);
122 #endif /* CONFIG_DEBUG_FS */
123
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3S_64)
125 static int __init handle_nospectre_v2(char *p)
126 {
127         no_spectrev2 = true;
128
129         return 0;
130 }
131 early_param("nospectre_v2", handle_nospectre_v2);
132 #endif /* CONFIG_PPC_FSL_BOOK3E || CONFIG_PPC_BOOK3S_64 */
133
134 #ifdef CONFIG_PPC_FSL_BOOK3E
135 void setup_spectre_v2(void)
136 {
137         if (no_spectrev2 || cpu_mitigations_off())
138                 do_btb_flush_fixups();
139         else
140                 btb_flush_enabled = true;
141 }
142 #endif /* CONFIG_PPC_FSL_BOOK3E */
143
144 #ifdef CONFIG_PPC_BOOK3S_64
145 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
146 {
147         bool thread_priv;
148
149         thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV);
150
151         if (rfi_flush) {
152                 struct seq_buf s;
153                 seq_buf_init(&s, buf, PAGE_SIZE - 1);
154
155                 seq_buf_printf(&s, "Mitigation: RFI Flush");
156                 if (thread_priv)
157                         seq_buf_printf(&s, ", L1D private per thread");
158
159                 seq_buf_printf(&s, "\n");
160
161                 return s.len;
162         }
163
164         if (thread_priv)
165                 return sprintf(buf, "Vulnerable: L1D private per thread\n");
166
167         if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
168             !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
169                 return sprintf(buf, "Not affected\n");
170
171         return sprintf(buf, "Vulnerable\n");
172 }
173
174 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
175 {
176         return cpu_show_meltdown(dev, attr, buf);
177 }
178 #endif
179
180 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
181 {
182         struct seq_buf s;
183
184         seq_buf_init(&s, buf, PAGE_SIZE - 1);
185
186         if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) {
187                 if (barrier_nospec_enabled)
188                         seq_buf_printf(&s, "Mitigation: __user pointer sanitization");
189                 else
190                         seq_buf_printf(&s, "Vulnerable");
191
192                 if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31))
193                         seq_buf_printf(&s, ", ori31 speculation barrier enabled");
194
195                 seq_buf_printf(&s, "\n");
196         } else
197                 seq_buf_printf(&s, "Not affected\n");
198
199         return s.len;
200 }
201
202 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
203 {
204         struct seq_buf s;
205         bool bcs, ccd;
206
207         seq_buf_init(&s, buf, PAGE_SIZE - 1);
208
209         bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED);
210         ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED);
211
212         if (bcs || ccd) {
213                 seq_buf_printf(&s, "Mitigation: ");
214
215                 if (bcs)
216                         seq_buf_printf(&s, "Indirect branch serialisation (kernel only)");
217
218                 if (bcs && ccd)
219                         seq_buf_printf(&s, ", ");
220
221                 if (ccd)
222                         seq_buf_printf(&s, "Indirect branch cache disabled");
223
224         } else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
225                 seq_buf_printf(&s, "Mitigation: Software count cache flush");
226
227                 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW)
228                         seq_buf_printf(&s, " (hardware accelerated)");
229
230         } else if (btb_flush_enabled) {
231                 seq_buf_printf(&s, "Mitigation: Branch predictor state flush");
232         } else {
233                 seq_buf_printf(&s, "Vulnerable");
234         }
235
236         if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) {
237                 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
238                         seq_buf_printf(&s, ", Software link stack flush");
239                 if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW)
240                         seq_buf_printf(&s, " (hardware accelerated)");
241         }
242
243         seq_buf_printf(&s, "\n");
244
245         return s.len;
246 }
247
248 #ifdef CONFIG_PPC_BOOK3S_64
249 /*
250  * Store-forwarding barrier support.
251  */
252
253 static enum stf_barrier_type stf_enabled_flush_types;
254 static bool no_stf_barrier;
255 static bool stf_barrier;
256
257 static int __init handle_no_stf_barrier(char *p)
258 {
259         pr_info("stf-barrier: disabled on command line.");
260         no_stf_barrier = true;
261         return 0;
262 }
263
264 early_param("no_stf_barrier", handle_no_stf_barrier);
265
266 enum stf_barrier_type stf_barrier_type_get(void)
267 {
268         return stf_enabled_flush_types;
269 }
270
271 /* This is the generic flag used by other architectures */
272 static int __init handle_ssbd(char *p)
273 {
274         if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) {
275                 /* Until firmware tells us, we have the barrier with auto */
276                 return 0;
277         } else if (strncmp(p, "off", 3) == 0) {
278                 handle_no_stf_barrier(NULL);
279                 return 0;
280         } else
281                 return 1;
282
283         return 0;
284 }
285 early_param("spec_store_bypass_disable", handle_ssbd);
286
287 /* This is the generic flag used by other architectures */
288 static int __init handle_no_ssbd(char *p)
289 {
290         handle_no_stf_barrier(NULL);
291         return 0;
292 }
293 early_param("nospec_store_bypass_disable", handle_no_ssbd);
294
295 static void stf_barrier_enable(bool enable)
296 {
297         if (enable)
298                 do_stf_barrier_fixups(stf_enabled_flush_types);
299         else
300                 do_stf_barrier_fixups(STF_BARRIER_NONE);
301
302         stf_barrier = enable;
303 }
304
305 void setup_stf_barrier(void)
306 {
307         enum stf_barrier_type type;
308         bool enable;
309
310         /* Default to fallback in case fw-features are not available */
311         if (cpu_has_feature(CPU_FTR_ARCH_300))
312                 type = STF_BARRIER_EIEIO;
313         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
314                 type = STF_BARRIER_SYNC_ORI;
315         else if (cpu_has_feature(CPU_FTR_ARCH_206))
316                 type = STF_BARRIER_FALLBACK;
317         else
318                 type = STF_BARRIER_NONE;
319
320         enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) &&
321                  security_ftr_enabled(SEC_FTR_STF_BARRIER);
322
323         if (type == STF_BARRIER_FALLBACK) {
324                 pr_info("stf-barrier: fallback barrier available\n");
325         } else if (type == STF_BARRIER_SYNC_ORI) {
326                 pr_info("stf-barrier: hwsync barrier available\n");
327         } else if (type == STF_BARRIER_EIEIO) {
328                 pr_info("stf-barrier: eieio barrier available\n");
329         }
330
331         stf_enabled_flush_types = type;
332
333         if (!no_stf_barrier && !cpu_mitigations_off())
334                 stf_barrier_enable(enable);
335 }
336
337 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
338 {
339         if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) {
340                 const char *type;
341                 switch (stf_enabled_flush_types) {
342                 case STF_BARRIER_EIEIO:
343                         type = "eieio";
344                         break;
345                 case STF_BARRIER_SYNC_ORI:
346                         type = "hwsync";
347                         break;
348                 case STF_BARRIER_FALLBACK:
349                         type = "fallback";
350                         break;
351                 default:
352                         type = "unknown";
353                 }
354                 return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type);
355         }
356
357         if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) &&
358             !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR))
359                 return sprintf(buf, "Not affected\n");
360
361         return sprintf(buf, "Vulnerable\n");
362 }
363
364 static int ssb_prctl_get(struct task_struct *task)
365 {
366         if (stf_enabled_flush_types == STF_BARRIER_NONE)
367                 /*
368                  * We don't have an explicit signal from firmware that we're
369                  * vulnerable or not, we only have certain CPU revisions that
370                  * are known to be vulnerable.
371                  *
372                  * We assume that if we're on another CPU, where the barrier is
373                  * NONE, then we are not vulnerable.
374                  */
375                 return PR_SPEC_NOT_AFFECTED;
376         else
377                 /*
378                  * If we do have a barrier type then we are vulnerable. The
379                  * barrier is not a global or per-process mitigation, so the
380                  * only value we can report here is PR_SPEC_ENABLE, which
381                  * appears as "vulnerable" in /proc.
382                  */
383                 return PR_SPEC_ENABLE;
384
385         return -EINVAL;
386 }
387
388 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
389 {
390         switch (which) {
391         case PR_SPEC_STORE_BYPASS:
392                 return ssb_prctl_get(task);
393         default:
394                 return -ENODEV;
395         }
396 }
397
398 #ifdef CONFIG_DEBUG_FS
399 static int stf_barrier_set(void *data, u64 val)
400 {
401         bool enable;
402
403         if (val == 1)
404                 enable = true;
405         else if (val == 0)
406                 enable = false;
407         else
408                 return -EINVAL;
409
410         /* Only do anything if we're changing state */
411         if (enable != stf_barrier)
412                 stf_barrier_enable(enable);
413
414         return 0;
415 }
416
417 static int stf_barrier_get(void *data, u64 *val)
418 {
419         *val = stf_barrier ? 1 : 0;
420         return 0;
421 }
422
423 DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set,
424                          "%llu\n");
425
426 static __init int stf_barrier_debugfs_init(void)
427 {
428         debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir,
429                                    NULL, &fops_stf_barrier);
430         return 0;
431 }
432 device_initcall(stf_barrier_debugfs_init);
433 #endif /* CONFIG_DEBUG_FS */
434
435 static void update_branch_cache_flush(void)
436 {
437         u32 *site, __maybe_unused *site2;
438
439 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
440         site = &patch__call_kvm_flush_link_stack;
441         site2 = &patch__call_kvm_flush_link_stack_p9;
442         // This controls the branch from guest_exit_cont to kvm_flush_link_stack
443         if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
444                 patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
445                 patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP()));
446         } else {
447                 // Could use HW flush, but that could also flush count cache
448                 patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
449                 patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK);
450         }
451 #endif
452
453         // Patch out the bcctr first, then nop the rest
454         site = &patch__call_flush_branch_caches3;
455         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
456         site = &patch__call_flush_branch_caches2;
457         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
458         site = &patch__call_flush_branch_caches1;
459         patch_instruction_site(site, ppc_inst(PPC_RAW_NOP()));
460
461         // This controls the branch from _switch to flush_branch_caches
462         if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE &&
463             link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) {
464                 // Nothing to be done
465
466         } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW &&
467                    link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) {
468                 // Patch in the bcctr last
469                 site = &patch__call_flush_branch_caches1;
470                 patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff
471                 site = &patch__call_flush_branch_caches2;
472                 patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9
473                 site = &patch__call_flush_branch_caches3;
474                 patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH));
475
476         } else {
477                 patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK);
478
479                 // If we just need to flush the link stack, early return
480                 if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) {
481                         patch_instruction_site(&patch__flush_link_stack_return,
482                                                ppc_inst(PPC_RAW_BLR()));
483
484                 // If we have flush instruction, early return
485                 } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) {
486                         patch_instruction_site(&patch__flush_count_cache_return,
487                                                ppc_inst(PPC_RAW_BLR()));
488                 }
489         }
490 }
491
492 static void toggle_branch_cache_flush(bool enable)
493 {
494         if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) {
495                 if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE)
496                         count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE;
497
498                 pr_info("count-cache-flush: flush disabled.\n");
499         } else {
500                 if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) {
501                         count_cache_flush_type = BRANCH_CACHE_FLUSH_HW;
502                         pr_info("count-cache-flush: hardware flush enabled.\n");
503                 } else {
504                         count_cache_flush_type = BRANCH_CACHE_FLUSH_SW;
505                         pr_info("count-cache-flush: software flush enabled.\n");
506                 }
507         }
508
509         if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) {
510                 if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE)
511                         link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE;
512
513                 pr_info("link-stack-flush: flush disabled.\n");
514         } else {
515                 if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) {
516                         link_stack_flush_type = BRANCH_CACHE_FLUSH_HW;
517                         pr_info("link-stack-flush: hardware flush enabled.\n");
518                 } else {
519                         link_stack_flush_type = BRANCH_CACHE_FLUSH_SW;
520                         pr_info("link-stack-flush: software flush enabled.\n");
521                 }
522         }
523
524         update_branch_cache_flush();
525 }
526
527 void setup_count_cache_flush(void)
528 {
529         bool enable = true;
530
531         if (no_spectrev2 || cpu_mitigations_off()) {
532                 if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) ||
533                     security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED))
534                         pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n");
535
536                 enable = false;
537         }
538
539         /*
540          * There's no firmware feature flag/hypervisor bit to tell us we need to
541          * flush the link stack on context switch. So we set it here if we see
542          * either of the Spectre v2 mitigations that aim to protect userspace.
543          */
544         if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) ||
545             security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE))
546                 security_ftr_set(SEC_FTR_FLUSH_LINK_STACK);
547
548         toggle_branch_cache_flush(enable);
549 }
550
551 static enum l1d_flush_type enabled_flush_types;
552 static void *l1d_flush_fallback_area;
553 static bool no_rfi_flush;
554 static bool no_entry_flush;
555 static bool no_uaccess_flush;
556 bool rfi_flush;
557 static bool entry_flush;
558 static bool uaccess_flush;
559 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
560 EXPORT_SYMBOL(uaccess_flush_key);
561
562 static int __init handle_no_rfi_flush(char *p)
563 {
564         pr_info("rfi-flush: disabled on command line.");
565         no_rfi_flush = true;
566         return 0;
567 }
568 early_param("no_rfi_flush", handle_no_rfi_flush);
569
570 static int __init handle_no_entry_flush(char *p)
571 {
572         pr_info("entry-flush: disabled on command line.");
573         no_entry_flush = true;
574         return 0;
575 }
576 early_param("no_entry_flush", handle_no_entry_flush);
577
578 static int __init handle_no_uaccess_flush(char *p)
579 {
580         pr_info("uaccess-flush: disabled on command line.");
581         no_uaccess_flush = true;
582         return 0;
583 }
584 early_param("no_uaccess_flush", handle_no_uaccess_flush);
585
586 /*
587  * The RFI flush is not KPTI, but because users will see doco that says to use
588  * nopti we hijack that option here to also disable the RFI flush.
589  */
590 static int __init handle_no_pti(char *p)
591 {
592         pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
593         handle_no_rfi_flush(NULL);
594         return 0;
595 }
596 early_param("nopti", handle_no_pti);
597
598 static void do_nothing(void *unused)
599 {
600         /*
601          * We don't need to do the flush explicitly, just enter+exit kernel is
602          * sufficient, the RFI exit handlers will do the right thing.
603          */
604 }
605
606 void rfi_flush_enable(bool enable)
607 {
608         if (enable) {
609                 do_rfi_flush_fixups(enabled_flush_types);
610                 on_each_cpu(do_nothing, NULL, 1);
611         } else
612                 do_rfi_flush_fixups(L1D_FLUSH_NONE);
613
614         rfi_flush = enable;
615 }
616
617 static void entry_flush_enable(bool enable)
618 {
619         if (enable) {
620                 do_entry_flush_fixups(enabled_flush_types);
621                 on_each_cpu(do_nothing, NULL, 1);
622         } else {
623                 do_entry_flush_fixups(L1D_FLUSH_NONE);
624         }
625
626         entry_flush = enable;
627 }
628
629 static void uaccess_flush_enable(bool enable)
630 {
631         if (enable) {
632                 do_uaccess_flush_fixups(enabled_flush_types);
633                 static_branch_enable(&uaccess_flush_key);
634                 on_each_cpu(do_nothing, NULL, 1);
635         } else {
636                 static_branch_disable(&uaccess_flush_key);
637                 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
638         }
639
640         uaccess_flush = enable;
641 }
642
643 static void __ref init_fallback_flush(void)
644 {
645         u64 l1d_size, limit;
646         int cpu;
647
648         /* Only allocate the fallback flush area once (at boot time). */
649         if (l1d_flush_fallback_area)
650                 return;
651
652         l1d_size = ppc64_caches.l1d.size;
653
654         /*
655          * If there is no d-cache-size property in the device tree, l1d_size
656          * could be zero. That leads to the loop in the asm wrapping around to
657          * 2^64-1, and then walking off the end of the fallback area and
658          * eventually causing a page fault which is fatal. Just default to
659          * something vaguely sane.
660          */
661         if (!l1d_size)
662                 l1d_size = (64 * 1024);
663
664         limit = min(ppc64_bolted_size(), ppc64_rma_size);
665
666         /*
667          * Align to L1d size, and size it at 2x L1d size, to catch possible
668          * hardware prefetch runoff. We don't have a recipe for load patterns to
669          * reliably avoid the prefetcher.
670          */
671         l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
672                                                 l1d_size, MEMBLOCK_LOW_LIMIT,
673                                                 limit, NUMA_NO_NODE);
674         if (!l1d_flush_fallback_area)
675                 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
676                       __func__, l1d_size * 2, l1d_size, &limit);
677
678
679         for_each_possible_cpu(cpu) {
680                 struct paca_struct *paca = paca_ptrs[cpu];
681                 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
682                 paca->l1d_flush_size = l1d_size;
683         }
684 }
685
686 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
687 {
688         if (types & L1D_FLUSH_FALLBACK) {
689                 pr_info("rfi-flush: fallback displacement flush available\n");
690                 init_fallback_flush();
691         }
692
693         if (types & L1D_FLUSH_ORI)
694                 pr_info("rfi-flush: ori type flush available\n");
695
696         if (types & L1D_FLUSH_MTTRIG)
697                 pr_info("rfi-flush: mttrig type flush available\n");
698
699         enabled_flush_types = types;
700
701         if (!cpu_mitigations_off() && !no_rfi_flush)
702                 rfi_flush_enable(enable);
703 }
704
705 void setup_entry_flush(bool enable)
706 {
707         if (cpu_mitigations_off())
708                 return;
709
710         if (!no_entry_flush)
711                 entry_flush_enable(enable);
712 }
713
714 void setup_uaccess_flush(bool enable)
715 {
716         if (cpu_mitigations_off())
717                 return;
718
719         if (!no_uaccess_flush)
720                 uaccess_flush_enable(enable);
721 }
722
723 #ifdef CONFIG_DEBUG_FS
724 static int count_cache_flush_set(void *data, u64 val)
725 {
726         bool enable;
727
728         if (val == 1)
729                 enable = true;
730         else if (val == 0)
731                 enable = false;
732         else
733                 return -EINVAL;
734
735         toggle_branch_cache_flush(enable);
736
737         return 0;
738 }
739
740 static int count_cache_flush_get(void *data, u64 *val)
741 {
742         if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE)
743                 *val = 0;
744         else
745                 *val = 1;
746
747         return 0;
748 }
749
750 DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get,
751                          count_cache_flush_set, "%llu\n");
752
753 static __init int count_cache_flush_debugfs_init(void)
754 {
755         debugfs_create_file_unsafe("count_cache_flush", 0600,
756                                    arch_debugfs_dir, NULL,
757                                    &fops_count_cache_flush);
758         return 0;
759 }
760 device_initcall(count_cache_flush_debugfs_init);
761
762 static int rfi_flush_set(void *data, u64 val)
763 {
764         bool enable;
765
766         if (val == 1)
767                 enable = true;
768         else if (val == 0)
769                 enable = false;
770         else
771                 return -EINVAL;
772
773         /* Only do anything if we're changing state */
774         if (enable != rfi_flush)
775                 rfi_flush_enable(enable);
776
777         return 0;
778 }
779
780 static int rfi_flush_get(void *data, u64 *val)
781 {
782         *val = rfi_flush ? 1 : 0;
783         return 0;
784 }
785
786 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
787
788 static int entry_flush_set(void *data, u64 val)
789 {
790         bool enable;
791
792         if (val == 1)
793                 enable = true;
794         else if (val == 0)
795                 enable = false;
796         else
797                 return -EINVAL;
798
799         /* Only do anything if we're changing state */
800         if (enable != entry_flush)
801                 entry_flush_enable(enable);
802
803         return 0;
804 }
805
806 static int entry_flush_get(void *data, u64 *val)
807 {
808         *val = entry_flush ? 1 : 0;
809         return 0;
810 }
811
812 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
813
814 static int uaccess_flush_set(void *data, u64 val)
815 {
816         bool enable;
817
818         if (val == 1)
819                 enable = true;
820         else if (val == 0)
821                 enable = false;
822         else
823                 return -EINVAL;
824
825         /* Only do anything if we're changing state */
826         if (enable != uaccess_flush)
827                 uaccess_flush_enable(enable);
828
829         return 0;
830 }
831
832 static int uaccess_flush_get(void *data, u64 *val)
833 {
834         *val = uaccess_flush ? 1 : 0;
835         return 0;
836 }
837
838 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
839
840 static __init int rfi_flush_debugfs_init(void)
841 {
842         debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush);
843         debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush);
844         debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush);
845         return 0;
846 }
847 device_initcall(rfi_flush_debugfs_init);
848 #endif /* CONFIG_DEBUG_FS */
849 #endif /* CONFIG_PPC_BOOK3S_64 */